Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,457)

Search Parameters:
Keywords = disease modifying drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Viewed by 133
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

13 pages, 2174 KiB  
Article
Characterization of QuantiFERON-TB-Plus Results in Patients with Tuberculosis Infection and Multiple Sclerosis
by Elisa Petruccioli, Luca Prosperini, Serena Ruggieri, Valentina Vanini, Andrea Salmi, Gilda Cuzzi, Simonetta Galgani, Shalom Haggiag, Carla Tortorella, Gabriella Parisi, Alfio D’Agostino, Gina Gualano, Fabrizio Palmieri, Claudio Gasperini and Delia Goletti
Neurol. Int. 2025, 17(8), 119; https://doi.org/10.3390/neurolint17080119 - 2 Aug 2025
Viewed by 68
Abstract
Background: Disease-modifying drugs (DMDs) for multiple sclerosis (MS) slightly increase the risk of tuberculosis (TB) disease. The QuantiFERON-TB-Plus (QFT-Plus) test is approved for TB infection (TBI) screening. Currently, there are no data available regarding the characterization of QFT-Plus response in patients with MS. [...] Read more.
Background: Disease-modifying drugs (DMDs) for multiple sclerosis (MS) slightly increase the risk of tuberculosis (TB) disease. The QuantiFERON-TB-Plus (QFT-Plus) test is approved for TB infection (TBI) screening. Currently, there are no data available regarding the characterization of QFT-Plus response in patients with MS. Objectives: This study aimed to compare the magnitude of QFT-Plus responses between patients with MS and TBI (MS-TBI) and TBI subjects without MS (NON-MS-TBI). Additionally, discordant responses to TB1/TB2 stimulation were documented. Results were evaluated considering demographic and clinical data, particularly the impact of DMDs and the type of TB exposure. Methods: Patients with MS (N = 810) were screened for TBI (2018–2023). Thirty (3.7%) had an MS-TBI diagnosis, and 20 were recruited for the study. As a control group, we enrolled 106 NON-MS-TBI. Results: MS-TBI showed significantly lower IFN-γ production in response to TB1 (p = 0.01) and TB2 stimulation (p = 0.02) compared to NON-MS-TBI. The 30% of TB2 results of MS-TBI fell into the QFT-Plus grey zone (0.2–0.7 IU/mL). Only 7% of NON-MS-TBI showed this profile (p = 0.002). Conclusions: MS-TBI had a lower QFT-Plus response and more borderline results compared to NON-MS-TBI. Future studies should clarify the significance of the borderline results in this vulnerable population to improve QFT-Plus accuracy regarding sensitivity, specificity, and TB prediction. Full article
Show Figures

Figure 1

62 pages, 4641 KiB  
Review
Pharmacist-Driven Chondroprotection in Osteoarthritis: A Multifaceted Approach Using Patient Education, Information Visualization, and Lifestyle Integration
by Eloy del Río
Pharmacy 2025, 13(4), 106; https://doi.org/10.3390/pharmacy13040106 - 1 Aug 2025
Viewed by 175
Abstract
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate [...] Read more.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication—and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical “What–How–When” framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels. Building on these strategies, the P4–4P Chondroprotection Framework is proposed, integrating predictive risk profiling (physicians), preventive pharmacokinetic and chronotherapy optimization (pharmacists), personalized biomechanical interventions (physiotherapists), and participatory self-management (patients) into a unified, feedback-driven OA care model. To translate this framework into routine practice, I recommend the development of DMOAD-specific clinical guidelines, incorporation of chondroprotective chronotherapy and interprofessional collaboration into health-professional curricula, and establishment of multidisciplinary OA management pathways—supported by appropriate reimbursement structures, to support preventive, team-based management, and prioritization of large-scale randomized trials and real-world evidence studies to validate the long-term structural, functional, and quality of life benefits of synchronized DMOAD and exercise-timed interventions. This comprehensive, precision-driven paradigm aims to shift OA care from reactive palliation to true disease modification, preserving cartilage integrity and improving the quality of life for millions worldwide. Full article
Show Figures

Figure 1

31 pages, 2032 KiB  
Review
Leflunomide Applicability in Rheumatoid Arthritis: Drug Delivery Challenges and Emerging Formulation Strategies
by Ashish Dhiman and Kalpna Garkhal
Drugs Drug Candidates 2025, 4(3), 36; https://doi.org/10.3390/ddc4030036 - 1 Aug 2025
Viewed by 263
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) [...] Read more.
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) and NSAIDs. Leflunomide (LEF) is a USFDA-approved synthetic DMARD which is being widely prescribed for the management of RA; however, it faces several challenges such as prolonged drug elimination, hepatotoxicity, and others. LEF exerts its therapeutic effects by inhibiting dihydroorotate dehydrogenase (DHODH), thereby suppressing pyrimidine synthesis and modulating immune responses. Emerging nanotechnology-based therapies help in encountering the current challenges faced in LEF delivery to RA patients. This review enlists the LEF’s pharmacokinetics, mechanism of action, and clinical efficacy in RA management. A comparative analysis with methotrexate, biologics, and other targeted therapies, highlighting its role in monotherapy and combination regimens and the safety concerns, including hepatotoxicity, gastrointestinal effects, and teratogenicity, is discussed alongside recommended monitoring strategies. Additionally, emerging trends in novel formulations and drug delivery approaches are explored to enhance efficacy and minimize adverse effects. Overall, LEF remains a perfect remedy for RA patients, specifically individuals contraindicated with drugs like methotrexate. The therapeutic applicability of LEF could be enhanced by developing more customized treatments and advanced drug delivery approaches. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

22 pages, 2357 KiB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Viewed by 190
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

21 pages, 14290 KiB  
Article
Identifying Therapeutic Targets for Amyotrophic Lateral Sclerosis Through Modeling of Multi-Omics Data
by François Xavier Blaudin de Thé, Cornelius J. H. M. Klemann, Ward De Witte, Joanna Widomska, Philippe Delagrange, Clotilde Mannoury La Cour, Mélanie Fouesnard, Sahar Elouej, Keith Mayl, Nicolas Lévy, Johannes Krupp, Ross Jeggo, Philippe Moingeon and Geert Poelmans
Int. J. Mol. Sci. 2025, 26(15), 7087; https://doi.org/10.3390/ijms26157087 - 23 Jul 2025
Viewed by 361
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. In this respect, a better understanding of these mechanisms is needed to identify new and biologically relevant therapeutic targets that could be developed into treatments that are truly disease-modifying, in that they address the underlying causes rather than the symptoms of ALS. In this study, we used two approaches to model multi-omics data in order to map and elucidate the genetic and molecular mechanisms involved in ALS, i.e., the molecular landscape building approach and the Patrimony platform. These two methods are complementary because they rely upon different omics data sets, analytic methods, and scoring systems to identify and rank therapeutic target candidates. The orthogonal combination of the two modeling approaches led to significant convergences, as well as some complementarity, both for validating existing therapeutic targets and identifying novel targets. As for validating existing targets, we found that, out of 217 different targets that have been or are being investigated for drug development, 10 have high scores in both the landscape and Patrimony models, suggesting that they are highly relevant for ALS. Moreover, through both models, we identified or corroborated novel putative drug targets for ALS. A notable example of such a target is MATR3, a protein that has strong genetic, molecular, and functional links with ALS pathology. In conclusion, by using two distinct and highly complementary disease modeling approaches, this study enhances our understanding of ALS pathogenesis and provides a framework for prioritizing new therapeutic targets. Moreover, our findings underscore the potential of leveraging multi-omics analyses to improve target discovery and accelerate the development of effective treatments for ALS, and potentially other related complex human diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

31 pages, 4179 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: Pioneering Sustainable and Effective Approaches for Tissue Repair and Regeneration
by Qinjing Wang, Zhijie Huang, Jiming Guo, Weixing Chen, Min Wang, Yue Ming, Hongyu Liu, Mingshu Huang, Yisheng Huang, Zhengming Tang and Bo Jia
Biomolecules 2025, 15(8), 1055; https://doi.org/10.3390/biom15081055 - 22 Jul 2025
Viewed by 478
Abstract
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, [...] Read more.
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, and compositional diversity, emphasizing their roles in promoting essential regenerative processes—cell proliferation, differentiation, migration, immune modulation, and angiogenesis. We explore their therapeutic applications across multiple tissue types, including skin, bone, neural, liver, gastrointestinal, cardiovascular, and dental tissues, using both natural and engineered PDVLNs in various disease models. Compared to mammalian exosomes, PDVLNs offer advantages such as reduced immune rejection and ethical concerns, enhancing their sustainability and appeal for regenerative medicine. However, challenges in clinical translation, including scalability, standardization, and safety remain. This paper consolidates current knowledge on PDVLNs, highlighting their versatility and providing insights into engineering strategies to optimize efficacy, ultimately outlining future research directions to advance their clinical potential. Plant vesicle-like nanoparticles (PDVLNs) may become a new avenue for the treatment of tissue injury, promoting tissue repair and regeneration through their intrinsic bioactivity or as drug delivery carriers. In addition, PDVLNs can be engineered and modified to achieve better results. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

33 pages, 2362 KiB  
Review
Ferroptosis and Metabolic Dysregulation: Emerging Chemical Targets in Cancer and Infection
by Marta Pawłowska, Jarosław Nuszkiewicz, Dorian Julian Jarek and Alina Woźniak
Molecules 2025, 30(14), 3020; https://doi.org/10.3390/molecules30143020 - 18 Jul 2025
Viewed by 670
Abstract
The distinctive nature of ferroptosis is that it is induced chemically and signifies a regulated cell death dependent on iron-dependent lipid peroxidation. The mechanism of ferroptosis involves oxidative damage to the membrane lipids. It differs from apoptosis and necroptosis, triggering metabolic changes in [...] Read more.
The distinctive nature of ferroptosis is that it is induced chemically and signifies a regulated cell death dependent on iron-dependent lipid peroxidation. The mechanism of ferroptosis involves oxidative damage to the membrane lipids. It differs from apoptosis and necroptosis, triggering metabolic changes in the iron-lipid homeostasis and antioxidant defense, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4). Herein, the molecular mechanisms of ferroptosis and its role in the tumorigenesis process and infection-related diseases are presented. It also discusses metabolic reprogramming as a factor that modifies the levels of cell-sensitizing polyunsaturated fatty acids (PUFAs), iron dysregulation, and oxidative stress in aggressive cancers and inflammatory diseases such as sepsis, tuberculosis, and COVID-19. Particular attention is given to chemical modulators of ferroptosis, including synthetic inducers and inhibitors, as well as bioactive natural compounds. Our focus is on the significance of analytical tools, such as lipidomics and metabolomics, in understanding the phenomenon of ferroptosis. Finally, we explore novel therapeutic approaches targeting ferroptosis in cancer and infectious diseases, while navigating both the opportunities and challenges in drug development. The review then draws on chemical biology and disease pathology to propose promising areas of study for ferroptosis-related therapies. Full article
Show Figures

Figure 1

60 pages, 3898 KiB  
Review
The Therapeutic Potential of Phytochemicals Unlocks New Avenues in the Management of Rheumatoid Arthritis
by Kalina A. Nikolova-Ganeva, Nikolina M. Mihaylova, Lidiya A. Kechidzhieva, Kristina I. Ivanova, Alexander S. Zarkov, Daniel L. Parzhanov, Momchil M. Ivanov and Andrey S. Marchev
Int. J. Mol. Sci. 2025, 26(14), 6813; https://doi.org/10.3390/ijms26146813 - 16 Jul 2025
Viewed by 527
Abstract
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis [...] Read more.
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis affects over 20 million people, with a worldwide prevalence of 0.5–1.0%, exhibiting gender, ethnic, and geographical differences. The progressive disability severely impairs physical motion and quality of life and is finally leading to a shortened life span. The pathogenesis of RA is a complex and still poorly understood process in which genetic and environmental factors are principally associated. Current treatment mostly relies on conventional/non-biological disease-modifying anti-rheumatic drugs (cDMARDs), analgesics, non-steroidal anti-inflammatory drugs, glucocorticoids, steroids, immunosuppresants, and biologic DMARDs, which only control inflammation and pain. Along with side effects (drug toxicity and intolerance), these anti-rheumatic drugs possess limited efficacy. Therefore, the discovery of novel multi-target therapeutics with an improved safety profile that function as inhibitors of RA-linked signaling systems are in high demand, and this is in the interest of both patients and clinicians. Plant-derived extracts, nutritional supplements, dietary medicine, and molecules with anti-inflammatory activity represent promising adjuvant agents or alternatives for RA therapeutics. This review not only aims to discuss the basic features of RA pathogenesis, risk factors, and signaling pathways but also highlights the research progress in pre-clinical RA in in vitro and in vivo models, revealing new avenues in the management of the disease in terms of comprehensive multidisciplinary strategies originating from medicinal plants and plant-derived molecules. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Graphical abstract

40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 707
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

14 pages, 258 KiB  
Article
Prevalence and Risk Factors of Latent Tuberculosis Infection Detected by IGRA in Patients with Immune-Mediated Inflammatory Diseases Before and During Biologic DMARD Therapy (TITAN Study)
by José Antonio Mata-Marín, Marisol Apaez-Iglesias, Ana Luz Cano-Díaz, Juan Pablo Sánchez-Navarro, Diana Edith Fernández-Madinaveitia, Gustavo Barriga-Angulo, Salma Triana-González, Alberto Chaparro-Sánchez, Ericka Nelly Pompa-Mera and Jesús Enrique Gaytán-Martínez
J. Clin. Med. 2025, 14(14), 4990; https://doi.org/10.3390/jcm14144990 - 15 Jul 2025
Viewed by 434
Abstract
Background/Objectives: Patients with immune-mediated inflammatory diseases (IMIDs) treated with disease-modifying antirheumatic drugs (DMARDs) are at increased risk of latent tuberculosis infection (LTBI) reactivation, influenced by DMARD type. This study aimed to determine LTBI prevalence using interferon-gamma release assays (IGRAs) and identify associated [...] Read more.
Background/Objectives: Patients with immune-mediated inflammatory diseases (IMIDs) treated with disease-modifying antirheumatic drugs (DMARDs) are at increased risk of latent tuberculosis infection (LTBI) reactivation, influenced by DMARD type. This study aimed to determine LTBI prevalence using interferon-gamma release assays (IGRAs) and identify associated risk factors in IMID patients in a middle-high TB burden setting in Mexico. Methods: A cross-sectional study was conducted from July 2024 to April 2025 at an IMID clinic. Patients aged ≥18 years, either receiving DMARDs or prior to initiating treatment, were included. LTBI was diagnosed using the QuantiFERON-TB Gold Plus assay. Bivariate analysis was performed using the chi-square test, and multivariate analysis was conducted. Results: LTBI prevalence was 34.2% (95% CI 29.1–39.7%) according to QFT-Plus and 35.6% (95% CI 29.7–42.0%) according to TSTs (n = 230). Prior TB exposure was the strongest risk factor (aOR 4.20, 95% CI 1.74–10.12, p = 0.001), while rheumatoid arthritis was associated with a lower LTBI likelihood (aOR 0.31, 95% CI 0.16–0.59, p < 0.001). Conclusions: A high prevalence of LTBI was observed in patients with IMIDs treated with DMARDs. Prior tuberculosis exposure was strongly associated with LTBI. These findings highlight the importance of LTBI screening in this population to prevent reactivation. Full article
(This article belongs to the Section Infectious Diseases)
29 pages, 1685 KiB  
Review
Translating Basic Science to Clinical Applications: A Narrative Review of Repurposed Pharmacological Agents in Preclinical Models of Diabetic Neuropathy
by Corina Andrei, Oana Cristina Șeremet, Ciprian Pușcașu and Anca Zanfirescu
Biomedicines 2025, 13(7), 1709; https://doi.org/10.3390/biomedicines13071709 - 13 Jul 2025
Viewed by 506
Abstract
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed [...] Read more.
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed pharmacological agents, originally developed for other indications, to target key mechanisms of DN. This narrative review examines the main pathophysiological pathways involved in DN, including metabolic imbalance, oxidative stress, neuroinflammation, ion channel dysfunction, and mitochondrial impairment. A wide array of repurposed drugs—including antidiabetics (metformin, empagliflozin, gliclazide, semaglutide, and pioglitazone), antihypertensives (amlodipine, telmisartan, aliskiren, and rilmenidine), lipid-lowering agents (atorvastatin and alirocumab), anticonvulsants (topiramate and retigabine), antioxidant and neuroprotective agents (melatonin), and muscarinic receptor antagonists (pirenzepine, oxybutynin, and atropine)—have shown promising results in rodent models, reducing neuropathic pain behaviors and modulating underlying disease mechanisms. By bridging basic mechanistic insights with pharmacological interventions, this review aims to support translational progress toward mechanism-based therapies for DN. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

14 pages, 1017 KiB  
Article
Evaluation of Nurse-Implemented Self-Management Interventions for Patients with Chronic Inflammatory Arthritis in Bulgaria
by Stefka Stoilova, Mariela Geneva-Popova and Stanislava Popova-Belova
J. Clin. Med. 2025, 14(14), 4854; https://doi.org/10.3390/jcm14144854 - 9 Jul 2025
Viewed by 346
Abstract
Objective: To evaluate the role of nurses in self-management interventions for chronic inflammatory arthritis (CIA). Key areas of interest included the following: (1) providing education on self-injection techniques for biologic disease-modifying antirheumatic drugs (bDMARDs), (2) promoting healthy lifestyles, and (3) supporting mental health. [...] Read more.
Objective: To evaluate the role of nurses in self-management interventions for chronic inflammatory arthritis (CIA). Key areas of interest included the following: (1) providing education on self-injection techniques for biologic disease-modifying antirheumatic drugs (bDMARDs), (2) promoting healthy lifestyles, and (3) supporting mental health. Patients’ satisfaction with the care received was also examined. Methods: A cross-sectional study involving CIA patients, rheumatologists, and nurses was conducted. Participants assessed nurses’ competence in areas such as training for bDMARD self-injection, lifestyle guidance, and emotional support. Satisfaction scores and preferences in managing side effects were also analyzed. Results: The participants expressed high confidence in the nurses’ ability to support CIA self-management. The patients rated the nurses significantly higher than doctors in training for self-injection (p = 0.002) and offering guidance on nutrition and healthy habits (p = 0.002). Although it was not a statistically significant difference, the patients also showed stronger trust in the nurses’ ability to provide psychological and emotional support. Most patients (93.0%) would contact a rheumatologist in case of side effects; 35.5% would seek a nurse. The patients attended by both a doctor and nurse reported significantly higher satisfaction compared to those seen only by a rheumatologist (p < 0.001). Both the doctors and nurses acknowledged the importance of the nurse–patient relationship for effective care (p = 0.527). Conclusions: The findings highlight the critical role of nurses in patient education—particularly in training for self-injection and promoting a healthy lifestyle and mental well-being. Their involvement is strongly associated with higher patient satisfaction and contributes significantly to the overall effectiveness of care in CIA management. Full article
Show Figures

Figure 1

Back to TopTop