Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,633)

Search Parameters:
Keywords = discriminative power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7775 KiB  
Article
Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid
by Laxman Solankee, Avinash Rai and Mukesh Kirar
Energies 2025, 18(15), 4171; https://doi.org/10.3390/en18154171 - 6 Aug 2025
Abstract
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for [...] Read more.
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

25 pages, 4865 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

17 pages, 545 KiB  
Article
Concordance Index-Based Comparison of Inflammatory and Classical Prognostic Markers in Untreated Hepatocellular Carcinoma
by Natalia Afonso-Luis, Inés Monescillo-Martín, Joaquín Marchena-Gómez, Pau Plá-Sánchez, Francisco Cruz-Benavides and Carmen Rosa Hernández-Socorro
J. Clin. Med. 2025, 14(15), 5514; https://doi.org/10.3390/jcm14155514 - 5 Aug 2025
Abstract
Background/Objectives: Inflammation-based markers have emerged as potential prognostic tools in hepatocellular carcinoma (HCC), but comparative data with classical prognostic factors in untreated HCC are limited. This study aimed to evaluate and compare the prognostic performance of inflammatory and conventional markers using Harrell’s [...] Read more.
Background/Objectives: Inflammation-based markers have emerged as potential prognostic tools in hepatocellular carcinoma (HCC), but comparative data with classical prognostic factors in untreated HCC are limited. This study aimed to evaluate and compare the prognostic performance of inflammatory and conventional markers using Harrell’s concordance index (C-index). Methods: This retrospective study included 250 patients with untreated HCC. Prognostic variables included age, BCLC stage, Child–Pugh classification, Milan criteria, MELD score, AFP, albumin, Charlson comorbidity index, and the inflammation-based markers neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), Systemic Inflammation Response Index (SIRI), and Systemic Immune-inflammation Index (SIII). Survival was analyzed using Cox regression. Predictive performance was assessed using the C-index, Akaike Information Criterion (AIC), and likelihood ratio tests. Results: Among the classical markers, BCLC showed the highest predictive performance (C-index: 0.717), while NLR ranked highest among the inflammatory markers (C-index: 0.640), above the MELD score and Milan criteria. In multivariate analysis, NLR ≥ 2.3 remained an independent predictor of overall survival (HR: 1.787; 95% CI: 1.264–2.527; p < 0.001), along with BCLC stage, albumin, Charlson index, and Milan criteria. Including NLR in the model modestly improved the C-index (from 0.781 to 0.794) but significantly improved model fit (Δ–2LL = 10.75; p = 0.001; lower AIC). Conclusions: NLR is an accessible, cost-effective, and independent prognostic marker for overall survival in untreated HCC. It shows discriminative power comparable to or greater than most conventional predictors and may complement classical stratification tools for HCC. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 5658 KiB  
Communication
When DNA Tells the Tale: High-Resolution Melting as a Forensic Tool for Mediterranean Cetacean Identification
by Mariangela Norcia, Alessia Illiano, Barbara Mussi, Fabio Di Nocera, Emanuele Esposito, Anna Di Cosmo, Domenico Fulgione and Valeria Maselli
Int. J. Mol. Sci. 2025, 26(15), 7517; https://doi.org/10.3390/ijms26157517 - 4 Aug 2025
Viewed by 29
Abstract
Effective species identification is crucial for the conservation and management of marine mammals, particularly in regions such as the Mediterranean Sea, where several cetacean populations are endangered or vulnerable. In this study, we developed and validated a High-Resolution Melting (HRM) analysis protocol for [...] Read more.
Effective species identification is crucial for the conservation and management of marine mammals, particularly in regions such as the Mediterranean Sea, where several cetacean populations are endangered or vulnerable. In this study, we developed and validated a High-Resolution Melting (HRM) analysis protocol for the rapid, cost-effective, and reliable identification of the four representative marine cetacean species that occur in the Mediterranean Sea: the bottlenose dolphin (Tursiops truncatus), the striped dolphin (Stenella coeruleoalba), the sperm whale (Physeter macrocephalus), and the fin whale (Balaenoptera physalus). Species-specific primers targeting mitochondrial DNA regions (cytochrome b and D-loop) were designed to generate distinct melting profiles. The protocol was tested on both tissue and fecal samples, demonstrating high sensitivity, reproducibility, and discrimination power. The results confirmed the robustness of the method, with melting curve profiles clearly distinguishing the target species and achieving a success rate > 95% in identifying unknown samples. The use of HRM offers several advantages over traditional sequencing methods, including reduced cost, speed, portability, and suitability for degraded samples, such as those from the stranded individuals. This approach provides a valuable tool for non-invasive genetic surveys and real-time species monitoring, contributing to more effective conservation strategies for cetaceans and enforcement of regulations against illegal trade. Full article
(This article belongs to the Special Issue Molecular Insights into Zoology)
Show Figures

Figure 1

12 pages, 234 KiB  
Article
Bedside Risk Scoring for Carbapenem-Resistant Gram-Negative Bacterial Infections in Patients with Hematological Malignancies
by Sare Merve Başağa, Ayşegül Ulu Kılıç, Zeynep Ture, Gökmen Zararsız and Serra İlayda Yerlitaş
Infect. Dis. Rep. 2025, 17(4), 92; https://doi.org/10.3390/idr17040092 (registering DOI) - 1 Aug 2025
Viewed by 88
Abstract
Background/Objectives: This study aimed to create a ‘carbapenem resistance score’ with the risk factors of carbapenem-resistant Gram-negative bacterial infections (GNBIs) in patients with hematological malignancies. Methods: Patients with carbapenem-resistant and susceptible GNBIs were included in this study and compared in terms of risk [...] Read more.
Background/Objectives: This study aimed to create a ‘carbapenem resistance score’ with the risk factors of carbapenem-resistant Gram-negative bacterial infections (GNBIs) in patients with hematological malignancies. Methods: Patients with carbapenem-resistant and susceptible GNBIs were included in this study and compared in terms of risk factors. Three models of “carbapenem resistance risk scores” were created with statistically significant variables. Results: The study included 154 patients with hospital-acquired GNBIs, of whom 64 had carbapenem-resistant GNBIs and 90 had carbapenem-susceptible GNBIs. Univariate and multivariate analyses identified several statistically significant risk factors for carbapenem resistance, including transfer from another hospital or clinic (p = 0.038), prior use of antibiotics like fluoroquinolones (p = 0.009) and carbapenems (p = 0.001), a history of carbapenem-resistant infection in the last six months (p < 0.001), rectal Klebsiella pneumoniae colonization (p < 0.001), hospitalization for ≥30 days (p = 0.001), and the presence of a urinary catheter (p = 0.002). Notably, the 14-day mortality rate was significantly higher in the carbapenem-resistant group (p < 0.001). Based on these findings, three risk-scoring models were developed. Common factors in all three models were fluoroquinolone use in the last six months, rectal K. pneumoniae colonization, and the presence of a urinary catheter. The fourth variable was transfer from another hospital (Model 1), a history of carbapenem-resistant infection (Model 2), or hospitalization for ≥30 days (Model 3). All models demonstrated strong discriminative power (AUC for Model 1: 0.830, Model 2: 0.826, Model 3: 0.831). For all three models, a cutoff value of >2.5 was adopted as the threshold to identify patients at high risk for carbapenem resistance, a value which yielded high positive and negative predictive values. Conclusions: This study successfully developed three practical risk-scoring models to predict carbapenem resistance in patients with hematological malignancies using common clinical risk factors. A cutoff score of >2.5 proved to be a reliable threshold for identifying high-risk patients across all models, providing clinicians with a valuable tool to guide appropriate empirical antibiotic therapy. Full article
17 pages, 2076 KiB  
Article
Detection and Classification of Power Quality Disturbances Based on Improved Adaptive S-Transform and Random Forest
by Dongdong Yang, Shixuan Lü, Junming Wei, Lijun Zheng and Yunguang Gao
Energies 2025, 18(15), 4088; https://doi.org/10.3390/en18154088 - 1 Aug 2025
Viewed by 130
Abstract
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest [...] Read more.
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest (RF) classifier to address these challenges. The IAST employs a globally adaptive Gaussian window as its kernel function, which automatically adjusts window length and spectral resolution based on real-time frequency characteristics, thereby enhancing time–frequency localization accuracy while reducing algorithmic complexity. To optimize computational efficiency, window parameters are determined through an energy concentration maximization criterion, enabling rapid extraction of discriminative features from diverse PQ disturbances (e.g., voltage sags and transient interruptions). These features are then fed into an RF classifier, which simultaneously mitigates model variance and bias, achieving robust classification. Experimental results show that the proposed IAST–RF method achieves a classification accuracy of 99.73%, demonstrating its potential for real-time PQ monitoring in modern grids with high renewable energy penetration. Full article
Show Figures

Figure 1

29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 - 1 Aug 2025
Viewed by 292
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

29 pages, 959 KiB  
Review
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling
by Amr Elguoshy, Hend Zedan and Suguru Saito
Metabolites 2025, 15(8), 514; https://doi.org/10.3390/metabo15080514 - 1 Aug 2025
Viewed by 229
Abstract
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted [...] Read more.
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies—including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks—are advancing cancer research. Specifically, we highlight three major applications of ML–metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer)
Show Figures

Figure 1

48 pages, 2275 KiB  
Article
Intersectional Software Engineering as a Field
by Alicia Julia Wilson Takaoka, Claudia Maria Cutrupi and Letizia Jaccheri
Software 2025, 4(3), 18; https://doi.org/10.3390/software4030018 - 30 Jul 2025
Viewed by 225
Abstract
Intersectionality is a concept used to explain the power dynamics and inequalities that some groups experience owing to the interconnection of social differences such as in gender, sexual identity, poverty status, race, geographic location, disability, and education. The relation between software engineering, feminism, [...] Read more.
Intersectionality is a concept used to explain the power dynamics and inequalities that some groups experience owing to the interconnection of social differences such as in gender, sexual identity, poverty status, race, geographic location, disability, and education. The relation between software engineering, feminism, and intersectionality has been addressed by some studies thus far, but it has never been codified before. In this paper, we employ the commonly used ABC Framework for empirical software engineering to show the contributions of intersectional software engineering (ISE) as a field of software engineering. In addition, we highlight the power dynamic, unique to ISE studies, and define gender-forward intersectionality as a way to use gender as a starting point to identify and examine inequalities and discrimination. We show that ISE is a field of study in software engineering that uses gender-forward intersectionality to produce knowledge about power dynamics in software engineering in its specific domains and environments. Employing empirical software engineering research strategies, we explain the importance of recognizing and evaluating ISE through four dimensions of dynamics, which are people, processes, products, and policies. Beginning with a set of 10 seminal papers that enable us to define the initial concepts and the query for the systematic mapping study, we conduct a systematic mapping study leads to a dataset of 140 primary papers, of which 15 are chosen as example papers. We apply the principles of ISE to these example papers to show how the field functions. Finally, we conclude the paper by advocating the recognition of ISE as a specialized field of study in software engineering. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Software)
Show Figures

Figure 1

15 pages, 483 KiB  
Article
Comparing Inflammatory Biomarkers in Cardiovascular Disease: Insights from the LURIC Study
by Angela P. Moissl, Graciela E. Delgado, Hubert Scharnagl, Rüdiger Siekmeier, Bernhard K. Krämer, Daniel Duerschmied, Winfried März and Marcus E. Kleber
Int. J. Mol. Sci. 2025, 26(15), 7335; https://doi.org/10.3390/ijms26157335 - 29 Jul 2025
Viewed by 250
Abstract
Inflammatory biomarkers, including high-sensitivity C-reactive protein (hsCRP), serum amyloid A (SAA), and interleukin-6 (IL-6), have been associated with an increased risk of future cardiovascular events. While they provide valuable prognostic information, these associations do not necessarily imply a direct causal role. The combined [...] Read more.
Inflammatory biomarkers, including high-sensitivity C-reactive protein (hsCRP), serum amyloid A (SAA), and interleukin-6 (IL-6), have been associated with an increased risk of future cardiovascular events. While they provide valuable prognostic information, these associations do not necessarily imply a direct causal role. The combined prognostic utility of these markers, however, remains insufficiently studied. We analysed 3300 well-characterised participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, all of whom underwent coronary angiography. Participants were stratified based on their serum concentrations of hsCRP, SAA, and IL-6. Associations between biomarker combinations and mortality were assessed using multivariate Cox regression and ROC analysis. Individuals with elevated hsCRP and SAA or IL-6 showed higher prevalence rates of coronary artery disease, heart failure, and adverse metabolic traits. These “both high” groups had lower estimated glomerular filtration rate, higher NT-proBNP, and increased HbA1c. Combined elevations of hsCRP and SAA were significantly associated with higher all-cause and cardiovascular mortality in partially adjusted models. However, these associations weakened after adjusting for IL-6. IL-6 alone demonstrated the highest predictive power (AUC: 0.638) and improved risk discrimination when included in multi-marker models. The co-elevation of hsCRP, SAA, and IL-6 identifies a high-risk phenotype characterised by greater cardiometabolic burden and increased mortality. IL-6 may reflect upstream inflammatory activity and could serve as a therapeutic target. Multi-marker inflammatory profiling holds promise for refining cardiovascular risk prediction and advancing personalised prevention strategies. Full article
Show Figures

Graphical abstract

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 157
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

37 pages, 9111 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 318
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
BIM-Ken: Identifying Disease-Related miRNA Biomarkers Based on Knowledge-Enhanced Bio-Network
by Yanhui Zhang, Kunjie Dong, Wenli Sun, Zhenbo Gao, Jianjun Zhang and Xiaohui Lin
Genes 2025, 16(8), 902; https://doi.org/10.3390/genes16080902 - 28 Jul 2025
Viewed by 205
Abstract
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and [...] Read more.
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and define reliable miRNA biomarkers. To tackle this issue, we propose a disease-related miRNA biomarker identification method based on the knowledge-enhanced bio-network (BIM-Ken) by combining the miRNA expression data and prior knowledge. BIM-Ken constructs the miRNA cooperation network by examining the miRNA interactions based on the miRNA expression data, which contains characteristics about the specific disease, and the information of the network nodes (miRNAs) is enriched by miRNA knowledge (i.e., miRNA-disease associations) from databases. Further, BIM-Ken optimizes the miRNA cooperation network using the well-designed GAE (graph auto-encoder). We improve the loss function by introducing the functional consistency and the difference prompt, so as to facilitate the optimized network to keep the intrinsically important characteristics of the miRNA data about the specific disease and the prior knowledge. The experimental results on the public datasets showed the superiority of BIM-Ken in classification. Subsequently, BIM-Ken was applied to analyze renal cell carcinoma data, and the defined key modules demonstrated involvement in the cancer-related pathways with good discrimination ability. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

19 pages, 298 KiB  
Entry
Resilience, Adversity, and Social Supports in Childhood and Adolescence
by Val Livingston, Breshell Jackson-Nevels, Brandon D. Mitchell and Phillip M. Riddick
Encyclopedia 2025, 5(3), 108; https://doi.org/10.3390/encyclopedia5030108 - 28 Jul 2025
Viewed by 365
Definition
More than 50 years ago, children were viewed as naturally resilient and often labeled invulnerable or invincible. Resilience is now understood to be the result of dynamic interactions between individual, familial, social, and environmental systems, decentralizing the focus from the individual to the [...] Read more.
More than 50 years ago, children were viewed as naturally resilient and often labeled invulnerable or invincible. Resilience is now understood to be the result of dynamic interactions between individual, familial, social, and environmental systems, decentralizing the focus from the individual to the global society. Experiences with adversity may emanate from the youth’s family environment, their community, the school system, and larger structural challenges related to poverty, discrimination, health disparities, and educational inequities. Youth experiences with adversity, trauma, and tragedy have the potential to negatively impact youth well-being, with consequences manifesting across the lifespan. Children and adolescents generally hold limited power to change their circumstances and are often ill-equipped to resolve the adverse or traumatic experiences occurring within their ecosystem. The value of social supports in the young person’s ability to be resilient has been affirmed. This understanding is particularly important for children growing up in poverty or in Low- and Middle-Income Countries (LMICs) where significant challenges occur as a result of economic and social disadvantage. Resilience at the individual level is unlikely to eliminate macrolevel issues. Developing and deploying strategies to enhance the ability of youth to rebound from adversity represents a positive step at the micro level, but the larger issues of economic and social disadvantage are unlikely to change without macro-level interventions. Glancing toward the future, traumatized youth may grow into traumatized adults without appropriate interventions and changes in social policies, programs, and protections. Full article
(This article belongs to the Section Social Sciences)
20 pages, 77932 KiB  
Article
Image Alignment Based on Deep Learning to Extract Deep Feature Information from Images
by Lin Zhu, Yuxing Mao and Jianyu Pan
Sensors 2025, 25(15), 4628; https://doi.org/10.3390/s25154628 - 26 Jul 2025
Viewed by 341
Abstract
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual [...] Read more.
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual architecture and introduces spatial pyramid pooling to achieve cross-scalar feature fusion, effectively enhancing the feature’s adaptability to scale. A feature enhancement module based on the self-attention mechanism is designed, with key features that exhibit geometric invariance and high discriminative power, achieved through a dynamic weight allocation strategy. This improves the network’s robustness to multimodal image deformation. Experiments on two public datasets, MSRS and RoadScene, show that the method performs well in terms of alignment accuracy, with the RMSE metrics being reduced by 0.661 and 0.473, and the SSIM, MI, and NCC improved by 0.155, 0.163, and 0.211; and 0.108, 0.226, and 0.114, respectively, compared with the benchmark model. The visualization results validate the significant improvement in the features’ visual quality and confirm the method’s advantages in terms of stability and discriminative properties of deep feature extraction. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

Back to TopTop