Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (647)

Search Parameters:
Keywords = discrete element simulation (DEM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 3273 KB  
Article
Systematic Calibration and Validation of Discrete Element Model Parameters for Cotton Root Systems
by Yong Yue, Rensheng Xing, Yasenjiang Baikeli, Haodong Xu, Weibin Ma and Liehong Guo
Agriculture 2025, 15(17), 1827; https://doi.org/10.3390/agriculture15171827 - 27 Aug 2025
Abstract
Aiming at the problem of lacking accurate and reliable contact and bonding parameters in the discrete element simulation of whole cotton stalk harvesting equipment, this study proposed a reverse modeling method for cotton roots combining the Discrete Element Method (DEM) with 3D laser [...] Read more.
Aiming at the problem of lacking accurate and reliable contact and bonding parameters in the discrete element simulation of whole cotton stalk harvesting equipment, this study proposed a reverse modeling method for cotton roots combining the Discrete Element Method (DEM) with 3D laser scanning. This method systematically constructed a general discrete element model and completed its parameter calibration. Firstly, cotton root samples were collected and measured to obtain key morphological parameters, providing a basis for selecting representative roots and performing 3D reverse reconstruction. Subsequently, mechanical parameters and contact parameters of the cotton roots were measured and calibrated through mechanical tests and stacking angle tests. Furthermore, based on the Hertz–Mindlin with Bonding contact model, a structured root sample model was established using a layered particle combination strategy. The bonding parameters were then optimized and calibrated through shear and tensile mechanical simulation experiments. Finally, a discrete element model of the root–soil complex was established based on the optimal parameter set. The reliability of the model was validated by comparing the simulation results with physical field tests of root extraction force. The results indicated that in the contact parameter validation test, the relative error between the simulated stacking angle and the measured value was only 0.43%, demonstrating the high accuracy of the model in simulating contact characteristics. In the bonding parameter calibration validation tests, the relative errors between the simulation results and measured values for shear and tensile mechanics were 1.22% and 1.40%, respectively, indicating that the model parameters could accurately simulate shear strength and tensile strength. Finally, in the root extraction force validation test, the relative error between the simulated extraction force and the field-measured value was 3.76%, further confirming the model’s applicability for analyzing the complex interaction mechanisms between roots and soil. The findings of this study can provide key models and parameter support for the digital design, operation process simulation, and performance optimization of whole cotton stalk harvesting equipment. Full article
(This article belongs to the Section Agricultural Technology)
29 pages, 2815 KB  
Article
Mechanical Properties of Corn Stalks and Behavior of Particles During Compression Process Based on Discrete Element Method
by Junming Hou, Zheng Li, Yue Ma, Yandong Xu, Hao Ding, Chenglong Li, Chenghao Li, Qiang Tang and Minghui Liu
Agriculture 2025, 15(17), 1824; https://doi.org/10.3390/agriculture15171824 - 27 Aug 2025
Abstract
The mechanical properties of corn stalks play a crucial role in the design of packing and harvesting equipment. Complete and damaged stalks were used to simulate stalk mixtures during the collection process. This study measured the mechanical characteristics of complete stalks and damaged [...] Read more.
The mechanical properties of corn stalks play a crucial role in the design of packing and harvesting equipment. Complete and damaged stalks were used to simulate stalk mixtures during the collection process. This study measured the mechanical characteristics of complete stalks and damaged stalks through experiments. A discrete element method (DEM) model was established which incorporated both the skin and core tissues of the samples. The compression behavior of the stalks was analyzed with the EDEM 2022 software. The results indicate that the complete stalks exhibited both a plastic and second plastic stage, while the damaged stalks fractured immediately upon reaching peak stress. The models of the complete and damaged stalks were validated through a radial compression test. An analysis of the relative errors and particle velocities enabled the quantification of experimental accuracy, ensured the reliability of the experimental data, and revealed the dynamic behavior mechanism of the materials under mechanical loading. The simulation results show that the maximum compression force is 254.11 N and 33.1 N, with a 1.5% and 12.3% relative error compared to the experiment. The particle velocity in the core part is the largest, which is 9.83 × 104 mm/s and 3.51 × 105 mm/s. This study can provide a theoretical reference for researching the mechanical behavior and compressive failure of stalks. Full article
(This article belongs to the Section Agricultural Technology)
18 pages, 15632 KB  
Article
Influence of Cutter Ring Structure on Rock-Breaking Force and Efficiency of TBM Disc Cutter Based on Discrete Element Method
by Juan-Juan Li, Jin Yu, Wentao Xu, Xiao-Zhao Li, Tian-Chi Fu and Long-Chuan Deng
Buildings 2025, 15(17), 3050; https://doi.org/10.3390/buildings15173050 - 26 Aug 2025
Abstract
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional [...] Read more.
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional discrete element method (DEM) model was established to simulate the intrusion process of a single disc cutter. Three commonly used disc cutter types were analysed: disc cutter with flat edge (FEDC), disc cutter with rounded edge (REDC) and disc cutter with alloy tooth (ATDC). The edge widths ranging from 10 mm to 24 mm were examined to assess their influence on rock crack propagation, stress distribution, cutting force and specific cutting energy. The FEDC and REDC exhibited face-contact extrusion breaking, whereas the ATDC was line-contact embedding breaking. The crack extension range, crack number, force chain intensity, stress distribution, rock-breaking force and specific cutting energy ranks are as follows: FEDC > REDC > ATDC. The ATDC generated a higher proportion of tensile cracks compared to the FEDC and REDC, though with fewer long cracks. The rock-breaking efficiency of the FEDC was lower, whereas the REDC and ATDC exhibited higher efficiency. With the increase in edge width, the force chain distribution became more concentrated, leading to greater internal rock damage, and the number and length of cracks increased significantly. Cracks initially expanded laterally at smaller edge widths but extended downward as edge width increased. The peak force and specific cutting energy increased with increasing edge width; the peak force at an edge width of 24 mm is approximately 3.5 times that of an edge width of 10 mm. The REDC is preferable in hard rock formations, and the ATDC is more effective in soft rock formations. The edge width should be determined based on rock properties and thrust capacity. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3724 KB  
Article
Failure Mechanisms of Basalt Fiber Concrete Under Splitting Tensile Tests and DEM Simulations
by Linlin Jiang, Chuan Zhao, Shaoxiong Zhang, Mingyue Qiu, Ruitong Zhang, Yifei Li, Wenbing Zhang and Shuyang Yu
Buildings 2025, 15(17), 3035; https://doi.org/10.3390/buildings15173035 - 26 Aug 2025
Abstract
To address the cracking problem caused by the weak tensile performance of concrete, this study investigates the failure mechanisms of basalt fiber-reinforced concrete under different fiber contents, single-blend, and mixed-blend schemes through splitting tensile tests and discrete element method (DEM) simulations. The tests [...] Read more.
To address the cracking problem caused by the weak tensile performance of concrete, this study investigates the failure mechanisms of basalt fiber-reinforced concrete under different fiber contents, single-blend, and mixed-blend schemes through splitting tensile tests and discrete element method (DEM) simulations. The tests employ 0.1–0.3% of 18 mm single-blend fibers and 6 mm:12 mm:18 mm (3:4:3) mixed-blend schemes, and PFC software is used to simulate crack propagation in fiber-reinforced concrete. The results show that the optimal 0.2% content of 18 mm single-blend fibers enhances the splitting tensile strength by 10.8%, whereas excessive 0.3% content reduces the strength by 7.8% due to poor dispersion. The mixed-blend scheme, via gradient crack-resisting effects of multi-scale fibers, increases the strength by 7.43% compared with the single-blend group at the same fiber content. DEM simulations reveal that fibers delay crack propagation through stress concentration transfer: single-blend fibers render tortuous crack paths, while mixed-blend fibers form three-dimensional crack networks, transforming the failure energy dissipation mode from single pull-out to multi-stage consumption. This research provides theoretical basis and optimization strategies for the anti-cracking design of basalt fiber-reinforced concrete. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

19 pages, 5379 KB  
Article
Geometric Coupling Effects of Multiple Cracks on Fracture Behavior: Insights from Discrete Element Simulations
by Shuangping Li, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Intell. Infrastruct. Constr. 2025, 1(2), 6; https://doi.org/10.3390/iic1020006 - 25 Aug 2025
Viewed by 74
Abstract
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to [...] Read more.
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety. Full article
Show Figures

Figure 1

24 pages, 4903 KB  
Article
Numerical Simulation and Parameter Optimization of Double-Pressing Sowing and Soil Covering Operation for Wheat
by Xiaoxiang Weng, Yu Wang, Lianjie Han, Yunhan Zou, Jieyuan Ding, Yangjie Shi, Ruihong Zhang and Xiaobo Xi
Agronomy 2025, 15(9), 2039; https://doi.org/10.3390/agronomy15092039 - 25 Aug 2025
Viewed by 105
Abstract
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects [...] Read more.
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects of the implement’s structural and operational parameters on sowing quality. Based on this analysis, a double-shaft rotary tillage and double-press seeder was designed. Protrusions on the grooving press roller are used to form seed furrows, rotary tiller blades cover the seeds with soil, and the rear press roller compacts the soil. DEM-MBD (discrete element method–multibody dynamics) coupled simulations, combined with single-factor and central composite design (CCD) experiments, were conducted with seeding depth as the evaluation index and four experimental factors: the protrusion height on the press grooving roller, forward speed, seed mass in the seed box, and straw mulching amount. The optimal protrusion height was 29 mm. The effects of rotary tiller blade working depth, rotational speed, and forward speed on soil-covering mass and its coefficient of variation were evaluated through discrete element method (DEM) simulations. The optimal working depth and rotational speed were found to be 55 mm and 350 r·min−1, respectively, based on single-factor and Box–Behnken Design experiments. Field experiments based on optimized parameters showed results consistent with the simulations. The qualified rate of seeding depth decreased as forward speed increased. The optimal forward speed was 4.5 km·h−1, at which the average seeding depth was 25.7 mm, the qualified seeding depth rate was 90%, the soil-covering mass within a 50 cm2 area was 143.2 g, and the coefficient of variation was 13.21%, meeting the requirements for wheat sowing operations. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

33 pages, 10331 KB  
Article
Sand Particle Transport Mechanisms in Rough-Walled Fractures: A CFD-DEM Coupling Investigation
by Chengyue Gao, Weifeng Yang, Henglei Meng and Yi Zhao
Water 2025, 17(17), 2520; https://doi.org/10.3390/w17172520 - 24 Aug 2025
Viewed by 338
Abstract
Utilizing a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach, this study constructs a comprehensive three-dimensional numerical model to simulate particle migration dynamics within rough artificial fractures subjected to the high-energy impact of water inrush. The model explicitly incorporates key governing [...] Read more.
Utilizing a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach, this study constructs a comprehensive three-dimensional numerical model to simulate particle migration dynamics within rough artificial fractures subjected to the high-energy impact of water inrush. The model explicitly incorporates key governing factors, including intricate fracture wall geometry characterized by the joint roughness coefficient (JRC) and aperture variation, hydraulic pressure gradients representative of inrush events, and polydisperse sand particle sizes. Sophisticated simulations track the complete mobilization, subsequent acceleration, and sustained transport of sand particles driven by the powerful high-pressure flow. The results demonstrate that particle migration trajectories undergo a distinct three-phase kinetic evolution: initial acceleration, intermediate coordination, and final attenuation. This evolution is critically governed by the complex interplay of hydrodynamic shear stress exerted by the fluid flow, frictional resistance at the fracture walls, and dynamic interactions (collisions, contacts) between individual particles. Sensitivity analyses reveal that parameters like fracture roughness exert significant nonlinear control on transport efficiency, with an identified optimal JRC range (14–16) promoting the most effective particle transit. Hydraulic pressure and mean aperture size also exhibit strong, nonlinear regulatory influences. Particle transport manifests through characteristic collective migration patterns, including “overall bulk progression”, processes of “fragmentation followed by reaggregation”, and distinctive “center-stretch-edge-retention” formation. Simultaneously, specific behaviors for individual particles are categorized as navigating the “main shear channel”, experiencing “boundary-disturbance drift”, or becoming trapped as “wall-adhered obstructed” particles. Crucially, a robust multivariate regression model is formulated, integrating these key parameter effects, to quantitatively predict the critical migration time required for 80% of the total particle mass to transit the fracture. This investigation provides fundamental mechanistic insights into the particle–fluid dynamics underpinning hazardous water–sand inrush phenomena, offering valuable theoretical underpinnings for risk assessment and mitigation strategies in deep underground engineering operations. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 7264 KB  
Article
Design and Performance Testing of a Multi-Variety Forage Grass Mixed-Sowing Seed Metering Device
by Wenxue Dong, Anbin Zhang, Qihao Wan, Fei Liu, Yingsi Wu, Yin Qi and Yuxing Ren
Agriculture 2025, 15(16), 1788; https://doi.org/10.3390/agriculture15161788 - 21 Aug 2025
Viewed by 219
Abstract
Traditional fluted roller seed metering devices exhibit unstable seeding rates during forage seed mixed sowing. To address this issue, a new seed metering device was designed based on the agronomic requirements of forage seed mixing and the structural characteristics of fluted roller mechanisms. [...] Read more.
Traditional fluted roller seed metering devices exhibit unstable seeding rates during forage seed mixed sowing. To address this issue, a new seed metering device was designed based on the agronomic requirements of forage seed mixing and the structural characteristics of fluted roller mechanisms. The discrete element method (DEM) was employed to numerically simulate the movement of particles within the seed metering device. Single-factor experiments identified optimal parameter ranges for the seed metering device: a metering shaft speed of 10–20 r/min, a seed inlet width of 8–24 mm, and a seed outlet height of 10–20 mm. A response surface methodology (RSM) experiment was then designed using Design-Expert 13 software. The results yielded optimal operating parameters: a metering shaft speed of 18.9 r/min, a seed inlet width of 9.3 mm, and a seed outlet height of 14.4 mm. The field experiment validated the seeding performance with the optimal parameter combination. The coefficient of variation (CV) for the first-class seed (CV1) was 4.16%, and for the second-class seed (CV2) it was 2.98%, both of which met the requirements for mixed sowing of forage. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 6966 KB  
Article
Uniaxial Compressive Mechanical Behavior of Coals with Different Joint Spacing and Angles: A DEM Numerical Simulation Study
by Herui Zhang, Enyuan Wang, Jianhua Yue, Bin Miao, Danyang Xi and Xiaozhen Teng
Appl. Sci. 2025, 15(16), 9196; https://doi.org/10.3390/app15169196 - 21 Aug 2025
Viewed by 170
Abstract
Coal rupture in coal mining is prone to cause rockburst dynamic hazards. To investigate the effect of joint structure characteristics on the mechanical behavior and the fracture mechanism of coal sample. In this study, uniaxial compression numerical simulation experiments were carried out on [...] Read more.
Coal rupture in coal mining is prone to cause rockburst dynamic hazards. To investigate the effect of joint structure characteristics on the mechanical behavior and the fracture mechanism of coal sample. In this study, uniaxial compression numerical simulation experiments were carried out on coal sample with joint spacings (JSs) of 3 mm and 6 mm and joint angles (JAs) of 0°, 30°, 60°, 90°, respectively, by using the discrete element method (DEM) method. The combined effect of JS and JA on the mechanical properties of coal and its damage mechanism is investigated. The results show that: (1) By increasing JA, the uniaxial compressive strength (UCS) of the specimen first decreased and increased, and the UCS was minimized at θ = 60°. The cracks in the coal sample were transformed from “X”-shaped distribution to “V”-shaped distribution and were dominated by shear cracks. (2) The enlargement of JS contributed to increasing the UCS of the coal sample. At the same time, the crack length remarkably expanded, and the crack distribution broadened. (3) A smaller JA favors the development of tensile cracks and the aggregation of tensile chains towards the end of the specimen. The cracking inclination of the coal sample showed an inverse “N”-type movement with the increase in JA. (4) As the increase in JS benefits the forming of tensile cracks, the extension of cracking inclination of coal sample diminishes. The spread range and accumulation level of tensile chain grows. Full article
Show Figures

Figure 1

30 pages, 6817 KB  
Article
Numerical Study on Non-Icebreaking Ship Maneuvering in Floating Ice Based on Coupled NDEM–MMG Modeling
by Deling Wang, Luyuan Zou, Zhiheng Zhang and Xinqiang Chen
J. Mar. Sci. Eng. 2025, 13(8), 1578; https://doi.org/10.3390/jmse13081578 - 17 Aug 2025
Viewed by 297
Abstract
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the [...] Read more.
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the three-degree-of-freedom MMG model for ship dynamics. The framework was applied to an S175 container ship, and numerical simulations were conducted for turning circle and Zig-Zag maneuvers under varying ice concentrations (0–60%), floe sizes, and rudder angles. NDEM efficiently handles complex, high-frequency multi-body collisions with larger time steps compared to conventional DEM or CFD–DEM approaches, enabling large-scale simulations of realistic ice conditions. Results indicate that increasing ice concentration from 0% to 60% reduces the turning diameter from 4.11L to 3.21L and decreases steady turning speed by approximately 53%. Larger floes form stable force chains that restrict lateral motion, while higher rudder angles improve responsiveness but may induce dynamic instability. These findings improve understanding of non-icebreaking ship maneuverability in ice and provide practical guidance for safe and efficient Arctic navigation. Full article
Show Figures

Figure 1

23 pages, 10218 KB  
Article
Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations
by Fangfei Li, Guoxiang Yang, Dengke Guo, Xiaoning Liu, Xiaoliang Wang and Gengkai Hu
Sustainability 2025, 17(16), 7374; https://doi.org/10.3390/su17167374 - 14 Aug 2025
Viewed by 351
Abstract
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions [...] Read more.
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions are heavily influenced by the slope geometry, lithology, and structural parameters of the slope. However, systematic studies remain limited due to experimental challenges and the inherent variability of landslide scenarios. This study employs Discrete Element Method (DEM) modeling to comprehensively investigate how geological structure parameters control the dynamic amplification and deformation characteristic of typical bedding/anti-dip layered slopes consist of parallel distributed rock masses and joint faces, with calibrated mechanical properties. A soft-bond model (SBM) is utilized to accurately simulate the quasi-brittle rock behavior. Numerical results reveal distinct dynamic responses between bedding and anti-dip slopes, where local amplification zones (LAZs) act as seismic energy concentrators, while potential sliding zones (PSZs) exhibit hindering effects. Parametric analyses of strata dip angles and thicknesses identify a critical dip range where slope stability drastically decreases, highlighting high-risk configurations for earthquake-induced landslides. By linking the slope failure mechanism to seismic risk reduction strategies, this work provides practical guidelines for sustainable slope design and landslide mitigation in tectonically active regions. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

14 pages, 797 KB  
Article
Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation
by Salavat Mudarisov, Ildar Gabitov, Yakov Lobachevsky, Ildar Farkhutdinov and Lyudmila Kravchenko
AgriEngineering 2025, 7(8), 256; https://doi.org/10.3390/agriengineering7080256 - 8 Aug 2025
Viewed by 403
Abstract
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle [...] Read more.
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle contact rules, determined by normal and tangential interactions as well as cohesion forces. This study presents a comprehensive analysis of discrete element method (DEM) contact models used to simulate soil cultivation processes. This study addresses a key issue—the absence of a systematic approach to selecting adequate contact models, which limits the accuracy of predicting soil behavior during interaction with agricultural machinery. A detailed classification of 17 combinations of contact models implemented in the commercial software Rocky DEM was performed, grouped into three categories: normal force models (Linear Spring [LSP], Hysteresis [HLS], Hertzian [HSD]), tangential force models (Coulomb, linear spring limit [linear], Mindlin–Deresiewicz), and cohesive force models (linear cohesion [linear], constant force [constant], Johnson–Kendall–Roberts [JKR]). Experimental validation was conducted by analyzing the angle of repose for various soil types (sandy loam, light loam, medium loam, and heavy clay) with moisture contents ranging from 11 to 31%. This analysis identified the nine most effective combinations of contact models to describe normal, tangential, and cohesive forces (LSP–Coulomb–linear, HLS–linear–linear, HLS–Coulomb–linear, HSD–linear–linear, HSD–linear–JKR, HSD–Coulomb–linear, HSD–Coulomb–JKR, HSD–Mindlin–Deresiewicz–linear, HSD–Mindlin–Deresiewicz–JKR), which showed reliable agreement with experimental angle of repose measurements at approximately 85% accuracy. This study significantly contributes to advancing computer modeling methods in agriculture by providing a scientifically grounded approach for selecting DEM contact models. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

14 pages, 4120 KB  
Article
DEM Parameter Calibration and Experimental Definition for White Tea Granular Systems
by Dapeng Ye, Yuxuan Gao, Yanlin Qi, Hao Wang, Renye Wu and Haiyong Weng
Agronomy 2025, 15(8), 1909; https://doi.org/10.3390/agronomy15081909 - 8 Aug 2025
Viewed by 272
Abstract
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, [...] Read more.
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, this study calibrates its DEM parameters based on the DEM approach, providing input for virtual commissioning of packaging machinery. Through physical experiments, the static friction coefficient (0.546), restitution coefficient (0.326), and rolling friction coefficient (0.133) between tea leaves and steel plates were determined. A three-dimensional DEM model of tea leaves was established using slicing techniques and the multi-sphere aggregation method. The steepest-ascent method and Box–Behnken design were employed to optimize the simulation parameters, resulting in the following optimal parameter combination: inter-particle restitution coefficient (0.16), static friction coefficient (0.14), and rolling friction coefficient (0.15). Validation simulations demonstrated that the mean angle of repose of tea leaves under the optimized parameter combination was 22.51°, with a relative error of only 1.29% compared to the actual experimental result of 22.80°. The calibrated parameters can be directly applied to the simulation of the feeding system in white tea automatic packaging machines, enabling optimization of vibration parameters through prediction of pile behavior, thereby reducing weighing errors. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 5248 KB  
Article
Design and Experiment of DEM-Based Layered Cutting–Throwing Perimeter Drainage Ditcher for Rapeseed Fields
by Xiaohu Jiang, Zijian Kang, Mingliang Wu, Zhihao Zhao, Zhuo Peng, Yiti Ouyang, Haifeng Luo and Wei Quan
Agriculture 2025, 15(15), 1706; https://doi.org/10.3390/agriculture15151706 - 7 Aug 2025
Viewed by 284
Abstract
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss [...] Read more.
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss during soil-cutting and -throwing processes. We mathematically modeled soil cutting–throwing dynamics and blade traction forces, integrating soil rheological properties to refine parameter interactions. Discrete Element Method (DEM) simulations and single-factor experiments analyzed impacts of the inner/outer blade widths, blade group distance, and blade opening on power consumption. Results indicated that increasing the inner/outer blade widths (200–300 mm) by expanding the direct cutting area significantly reduced the cutter torque by 32% and traction resistance by 48.6% from reduced soil-blockage drag; larger blade group distance (0–300 mm) initially decreased but later increased power consumption due to soil backflow interference, with peak efficiency at 200 mm spacing; the optimal blade opening (586 mm) minimized the soil accumulation-induced power loss, validated by DEM trajectory analysis showing continuous soil flow. Box–Behnken experiments and genetic algorithm optimization determined the optimal parameters: inner blade width: 200 mm; outer blade width: 300 mm; blade group distance: 200 mm; and blade opening: 586 mm, yielding a simulated power consumption of 27.07 kW. Field tests under typical 18.7% soil moisture conditions confirmed a <10% error between simulated and actual power consumption (28.73 kW), with a 17.3 ± 0.5% reduction versus controls. Stability coefficients for the ditch depth, top/bottom widths exceeded 90%, and the backfill rate was 4.5 ± 0.3%, ensuring effective drainage for rapeseed cultivation. This provides practical theoretical and technical support for efficient ditching equipment in rice–rapeseed rotations, enabling resource-saving design for clay loam soils. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop