Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = disaster management and mitigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4491 KiB  
Article
Incorporating Natural Capital Damage from Major Wildfire Events in Headwaters Management and Resource Allocation
by Jared Soares, David Batker, Yung-Hsin Sun, Aaron Batker-Pritzker and Rebecca Guo
Water 2025, 17(16), 2368; https://doi.org/10.3390/w17162368 - 9 Aug 2025
Viewed by 392
Abstract
Conventional reports on wildfire damage focus on damage to built structures and life loss without capturing the long-term loss of many environmental benefits provided by natural capital. The assessment of the full cost of a wildfire event can be very challenging and time-consuming [...] Read more.
Conventional reports on wildfire damage focus on damage to built structures and life loss without capturing the long-term loss of many environmental benefits provided by natural capital. The assessment of the full cost of a wildfire event can be very challenging and time-consuming due to its broad range of impacts traversing decades. Two major wildfires, the 2021 Caldor Fire and 2022 Mosquito Fire, impacted rural communities and burned nearly 30 percent of the approximately 1 million acres of forests and private timber lands in the Upper American River Watershed (UARW) in California’s Sierra Nevada headwaters. The UARW provides a stock of natural capital that provides a flow of environmental benefits, or ecosystem goods and services, including California statewide water supply that was not recognized in the conventional reporting to properly inform decisions and investments for mitigation and recovery. Leveraging new tools available through the recent valuation of the UARW’s ecosystem goods and services, this study provides a first look at the magnitude of damage to the headwaters’ ecosystem from wildfires and, thus, informs proactive, adaptive management actions and post-disaster recovery and restoration. Using burn severity data and per-acre estimates of ecosystem goods and services, we estimate natural capital damage of over USD 14.8 billion across an optimistically estimated period of 20 years. Several recovery time horizons are used to evaluate the sensitivity of the analysis. These findings provide important benchmarks and a viable approach for all levels of government and private entities responsible for allocating resources, mitigating wildfire risks, and improving watershed health. Full article
Show Figures

Figure 1

21 pages, 8772 KiB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 - 7 Aug 2025
Viewed by 478
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 3410 KiB  
Article
LinU-Mamba: Visual Mamba U-Net with Linear Attention to Predict Wildfire Spread
by Henintsoa S. Andrianarivony and Moulay A. Akhloufi
Remote Sens. 2025, 17(15), 2715; https://doi.org/10.3390/rs17152715 - 6 Aug 2025
Viewed by 476
Abstract
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this [...] Read more.
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this study, we develop a deep learning model to predict wildfire spread using remote sensing data. We propose LinU-Mamba, a model with a U-Net-based vision Mamba architecture, with light spatial attention in skip connections, and an efficient linear attention mechanism in the encoder and decoder to better capture salient fire information in the dataset. The model is trained and evaluated on the two-dimensional remote sensing dataset Next Day Wildfire Spread (NDWS), which maps fire data across the United States with fire entries, topography, vegetation, weather, drought index, and population density variables. The results demonstrate that our approach achieves superior performance compared to existing deep learning methods applied to the same dataset, while showing an efficient training time. Furthermore, we highlight the impacts of pre-training and feature selection in remote sensing, as well as the impacts of linear attention use in our model. As far as we know, LinU-Mamba is the first model based on Mamba used for wildfire spread prediction, making it a strong foundation for future research. Full article
Show Figures

Graphical abstract

21 pages, 493 KiB  
Proceeding Paper
Natural Hazards and Spatial Data Infrastructures (SDIs) for Disaster Risk Reduction
by Michail-Christos Tsoutsos and Vassilios Vescoukis
Eng. Proc. 2025, 87(1), 101; https://doi.org/10.3390/engproc2025087101 - 5 Aug 2025
Viewed by 242
Abstract
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This [...] Read more.
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This research points out the usefulness of Spatial Data Infrastructures (SDIs) for disaster risk reduction through a literature review, focusing on the necessity of data unification and disposal. Initially, the principles of SDIs are presented, given the fact that this framework contributes significantly to the fulfilment of specific targets and priorities of the Sendai Framework for Disaster Risk Reduction 2015–2030. Thereafter, the challenges of SDIs are investigated in order to underline the main drawbacks stakeholders in emergency management have to come up against, namely the semantic misalignment that impedes efficient data retrieval, malfunctions in the interoperability of datasets and web services, the non-availability of the data in spite of their existence, and a lack of quality data, while also highlighting the obstacles of real case studies on national NSDIs. Thus, diachronic observations on disasters will not be made, despite these comprising a meaningful dataset in disaster mitigation. Consequently, the harmonization of national SDIs with international schemes, such as the Group on Earth Observations (GEO) and European Union’s space program Copernicus, and the usefulness of Artificial Intelligence (AI) and Machine Learning (ML) for disaster mitigation through the prediction of natural hazards are demonstrated. In this paper, for the purpose of disaster preparedness, real-world implementation barriers that preclude SDIs to be completed or deter their functionality are presented, culminating in the proposed future research directions and topics for the SDIs that need further investigation. SDIs constitute an ongoing collaborative effort intending to offer valuable operational tools for decision-making under the threat of a devastating event. Despite the operational potential of SDIs, the complexity of data standardization and coordination remains a core challenge. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 2731 KiB  
Article
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 - 5 Aug 2025
Viewed by 665
Abstract
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate [...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies. Full article
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 1108
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 - 1 Aug 2025
Viewed by 410
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

28 pages, 9894 KiB  
Article
At-Site Versus Regional Frequency Analysis of Sub-Hourly Rainfall for Urban Hydrology Applications During Recent Extreme Events
by Sunghun Kim, Kyungmin Sung, Ju-Young Shin and Jun-Haeng Heo
Water 2025, 17(15), 2213; https://doi.org/10.3390/w17152213 - 24 Jul 2025
Viewed by 400
Abstract
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused [...] Read more.
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused on Seoul’s disaster prevention framework (30-year and 100-year return periods). Employing L-moment statistics and Monte Carlo simulations, the rainfall quantiles were estimated, the methodological performance was evaluated, and Seoul’s current disaster prevention standards were assessed. The analysis revealed significant spatio-temporal variability in Seoul’s precipitation, causing considerable uncertainty in individual site estimates. A performance evaluation, including the relative root mean square error and confidence interval, consistently showed regional frequency analysis superiority over at-site frequency analysis. While at-site frequency analysis demonstrated better performance only for short return periods (e.g., 2 years), regional frequency analysis exhibited a substantially lower relative root mean square error and significantly narrower confidence intervals for larger return periods (e.g., 10, 30, 100 years). This methodology reduced the average 95% confidence interval width by a factor of approximately 2.7 (26.98 mm versus 73.99 mm). This enhanced reliability stems from the information-pooling capabilities of regional frequency analysis, mitigating uncertainties due to limited record lengths and localized variabilities. Critically, regionally derived 100-year rainfall estimates consistently exceeded Seoul’s 100 mm disaster prevention threshold across most areas, suggesting that the current infrastructure may be substantially under-designed. The use of minute-scale data underscored its necessity for urban hydrological modeling, highlighting the inadequacy of conventional daily rainfall analyses. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

19 pages, 2689 KiB  
Article
A Multi-Temporal Knowledge Graph Framework for Landslide Monitoring and Hazard Assessment
by Runze Wu, Min Huang, Haishan Ma, Jicai Huang, Zhenhua Li, Hongbo Mei and Chengbin Wang
GeoHazards 2025, 6(3), 39; https://doi.org/10.3390/geohazards6030039 - 23 Jul 2025
Viewed by 400
Abstract
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, [...] Read more.
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, we propose a systematic framework for constructing a multi-temporal knowledge graph of landslides that integrates multi-source temporal data, enabling the dynamic tracking of landslide processes. Our approach comprises three key steps. First, we summarize domain knowledge and develop a temporal ontology model based on the disaster chain management system. Second, we map heterogeneous datasets (both tabular and textual data) into triples/quadruples and represent them based on the RDF (Resource Description Framework) and quadruple approaches. Finally, we validate the utility of multi-temporal knowledge graphs through multidimensional queries and develop a web interface that allows users to input landslide names to retrieve location and time-axis information. A case study of the Zhangjiawan landslide in the Three Gorges Reservoir Area demonstrates the multi-temporal knowledge graph’s capability to track temporal updates effectively. The query results show that multi-temporal knowledge graphs effectively support multi-temporal queries. This study advances landslide research by combining static knowledge representation with the dynamic evolution of landslides, laying the foundation for hazard forecasting and intelligent early-warning systems. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

21 pages, 1716 KiB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Viewed by 343
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

23 pages, 4997 KiB  
Article
Prediction of Bearing Layer Depth Using Machine Learning Algorithms and Evaluation of Their Performance
by Yuxin Cong, Arisa Katsuumi and Shinya Inazumi
Mach. Learn. Knowl. Extr. 2025, 7(3), 69; https://doi.org/10.3390/make7030069 - 21 Jul 2025
Viewed by 741
Abstract
In earthquake-prone areas such as Tokyo, accurate estimation of bearing stratum depth is crucial for foundation design, liquefaction assessment, and urban disaster mitigation. However, traditional methods such as the standard penetration test (SPT), while reliable, are labor-intensive and have limited spatial distribution. In [...] Read more.
In earthquake-prone areas such as Tokyo, accurate estimation of bearing stratum depth is crucial for foundation design, liquefaction assessment, and urban disaster mitigation. However, traditional methods such as the standard penetration test (SPT), while reliable, are labor-intensive and have limited spatial distribution. In this study, 942 geological survey records from the Tokyo metropolitan area were used to evaluate the performance of three machine learning algorithms, random forest (RF), artificial neural network (ANN), and support vector machine (SVM), in predicting bearing stratum depth. The main input variables included geographic coordinates, elevation, and stratigraphic category. The results showed that the RF model performed well in terms of multiple evaluation indicators and had significantly better prediction accuracy than ANN and SVM. In addition, data density analysis showed that the prediction error was significantly reduced in high-density areas. The results demonstrate the robustness and adaptability of the RF method in foundation soil layer identification, emphasizing the importance of comprehensive input variables and spatial coverage. The proposed method can be used for large-scale, data-driven bearing stratum prediction and has the potential to be integrated into geological risk management systems and smart city platforms. Full article
Show Figures

Figure 1

22 pages, 827 KiB  
Article
Disaster Risk Reduction Audits and BIM for Resilient Highway Infrastructure: A Proactive Assessment Framework
by Seung-Jun Lee, Hong-Sik Yun, Ji-Sung Kim, Hwan-Dong Byun and Sang-Hoon Lee
Buildings 2025, 15(14), 2545; https://doi.org/10.3390/buildings15142545 - 19 Jul 2025
Viewed by 394
Abstract
Highway infrastructure faces growing exposure to natural hazards, necessitating more proactive and data-driven risk mitigation strategies. This study explores the integration of Disaster Risk Reduction Audits (DRRAs) into the lifecycle of highway infrastructure projects as a structured method for enhancing disaster resilience and [...] Read more.
Highway infrastructure faces growing exposure to natural hazards, necessitating more proactive and data-driven risk mitigation strategies. This study explores the integration of Disaster Risk Reduction Audits (DRRAs) into the lifecycle of highway infrastructure projects as a structured method for enhancing disaster resilience and operational safety. Using case analyses and scenario-based labor estimation models across design and construction phases, this research quantifies the resource requirements and effectiveness of DRRA application. The results show a statistically significant reduction in disaster occurrence rates in projects where a DRRA was implemented, despite slightly higher labor inputs. These findings highlight the value of adopting phased DRRA implementation as a national standard, with flexibility across different project types and scales. This study concludes that institutionalizing DRRAs, particularly when supported by digital platforms and decision-support tools, can serve as a critical component in transforming traditional infrastructure management into a more resilient and adaptive system. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1606
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

24 pages, 18258 KiB  
Article
An Integrated Approach for Emergency Response and Long-Term Prevention for Rainfall-Induced Landslide Clusters
by Wenxin Zhao, Yajun Li, Yunfei Huang, Guowei Li, Fukang Ma, Jun Zhang, Mengyu Wang, Yan Zhao, Guan Chen, Xingmin Meng, Fuyun Guo and Dongxia Yue
Remote Sens. 2025, 17(14), 2406; https://doi.org/10.3390/rs17142406 - 12 Jul 2025
Viewed by 383
Abstract
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation [...] Read more.
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation for rainfall-induced shallow landslides. The workflow includes (1) rapid landslide detection based on time-series image fusion and threshold segmentation on the Google Earth Engine (GEE) platform; (2) numerical simulation of landslide runout using the R.avaflow model; (3) landslide susceptibility assessment based on event-driven inventories and machine learning; and (4) delineation of high-risk slopes by integrating simulation outputs, susceptibility results, and exposed elements. Applied to Qugaona Township in Zhouqu County, Bailong River Basin, the framework identified 747 landslides. The R.avaflow simulations captured the spatial extent and depositional features of landslides, assisting post-disaster operations. The Gradient Boosting-based susceptibility model achieved an accuracy of 0.870, with 8.0% of the area classified as highly susceptible. In Cangan Village, high-risk slopes were delineated, with 31.08%, 17.85%, and 22.42% of slopes potentially affecting buildings, farmland, and roads, respectively. The study recommends engineering interventions for these areas. Compared with traditional methods, this approach demonstrates greater applicability and provides a more comprehensive basis for managing rainfall-induced landslide hazards. Full article
Show Figures

Figure 1

17 pages, 921 KiB  
Article
Residents’ Perception of Flood Prediction Products: The Study of NASA’s Satellite Enhanced Snowmelt Flood Prediction
by Yue Ge, Sara Iman, Yago Martín, Siew Hoon Lim, Jennifer M. Jacobs and Xinhua Jia
Sustainability 2025, 17(14), 6328; https://doi.org/10.3390/su17146328 - 10 Jul 2025
Viewed by 356
Abstract
In the context of emergency management, individual or household decisions to engage in risk mitigation behaviors are widely recognized to be influenced by a benefit–cost perception (perceived applied value (PAV) vs. perceived economic value (PEV), respectively). To better understand how such decisions are [...] Read more.
In the context of emergency management, individual or household decisions to engage in risk mitigation behaviors are widely recognized to be influenced by a benefit–cost perception (perceived applied value (PAV) vs. perceived economic value (PEV), respectively). To better understand how such decisions are made, we conducted a mail survey (N = 211) of households living in the Red River of the North Basin, North Dakota, in 2018. The survey is aimed at understanding the overall experience of households with flooding and their behavior toward advanced protective strategies against future floods by analyzing household PEV—their willingness to pay for the National Aeronautics and Space Administration’s (NASA) Satellite Enhanced Snowmelt Flood Prediction system. This paper presents a mediation model in which various predictors (flood risk, experience, flood knowledge, flood risk perception, flood preparedness, flood mitigation, and flood insurance) are analyzed in relation to the PAV of the new Satellite Enhanced Snowmelt Flood Predictions in the Red River of the North Basin, which, in turn, may shape the PEV of this product. We discuss the potential implications for both the emergency management research community and professionals regarding the application of advanced risk mitigation technologies to help protect and sustain communities across the country from floods and other natural disasters. This paper provides a greater understanding of the economic and social aspects of sustainability in the context of emergency management and community development. Full article
Show Figures

Figure 1

Back to TopTop