Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,842)

Search Parameters:
Keywords = disaster management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
9 pages, 1406 KiB  
Proceeding Paper
Disaster-Based Mobile Learning System Using Technology Acceptance Model
by John A. Bacus
Eng. Proc. 2025, 103(1), 5; https://doi.org/10.3390/engproc2025103005 - 6 Aug 2025
Abstract
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, [...] Read more.
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, technology, engineering, and mathematics (STEM) education in Davao City, the Philippines. The developed application was provided together with survey questionnaires to 364 students randomly selected from different schools in Davao City usingF a simple random sampling method. The technology acceptance (TAM) model was used to explain how users accepted the new technology. The mobile application was designed with features in four disaster scenarios—fire, flood, volcano, and earthquake. The results revealed a high acceptance, with an average score of the perceived usefulness (PE) of 4.52, perceived ease of use (PEOU) of 4.44, and a behavioral intention (BI) of 4.12. The students accepted the application to enhance disaster risk reduction and management. Aligned with SDG 4 and SDG 11, the application can be used to equip users with the knowledge to respond to disasters and ensure community resilience. Full article
Show Figures

Figure 1

23 pages, 3410 KiB  
Article
LinU-Mamba: Visual Mamba U-Net with Linear Attention to Predict Wildfire Spread
by Henintsoa S. Andrianarivony and Moulay A. Akhloufi
Remote Sens. 2025, 17(15), 2715; https://doi.org/10.3390/rs17152715 - 6 Aug 2025
Abstract
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this [...] Read more.
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this study, we develop a deep learning model to predict wildfire spread using remote sensing data. We propose LinU-Mamba, a model with a U-Net-based vision Mamba architecture, with light spatial attention in skip connections, and an efficient linear attention mechanism in the encoder and decoder to better capture salient fire information in the dataset. The model is trained and evaluated on the two-dimensional remote sensing dataset Next Day Wildfire Spread (NDWS), which maps fire data across the United States with fire entries, topography, vegetation, weather, drought index, and population density variables. The results demonstrate that our approach achieves superior performance compared to existing deep learning methods applied to the same dataset, while showing an efficient training time. Furthermore, we highlight the impacts of pre-training and feature selection in remote sensing, as well as the impacts of linear attention use in our model. As far as we know, LinU-Mamba is the first model based on Mamba used for wildfire spread prediction, making it a strong foundation for future research. Full article
Show Figures

Figure 1

23 pages, 7533 KiB  
Article
Risk Management of Rural Road Networks Exposed to Natural Hazards: Integrating Social Vulnerability and Critical Infrastructure Access in Decision-Making
by Marta Contreras, Alondra Chamorro, Nikole Guerrero, Carolina Martínez, Tomás Echaveguren, Eduardo Allen and Nicolás C. Bronfman
Sustainability 2025, 17(15), 7101; https://doi.org/10.3390/su17157101 - 5 Aug 2025
Abstract
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences [...] Read more.
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences of hazard events alone, specialized literature increasingly suggests the development of a more comprehensive approach for risk assessment, where not only physical aspects associated with infrastructure, such as damage level or disruptions, but also the social and economic attributes of the affected population are considered. Consequently, this paper proposes a Vulnerability Access Index (VAI) to support road network decision-making that integrates the social vulnerability of rural communities exposed to natural events, their accessibility to nearby critical infrastructure, and physical risk. The research methodology considers (i) the Social Vulnerability Index (SVI) calculation based on socioeconomic variables, (ii) Importance Index estimation (Iimp) to evaluate access to critical infrastructure, (iii) VAI calculation combining SVI and Iimp, and (iv) application to a case study in the influence area of the Villarrica volcano in southern Chile. The results show that when incorporating social variables and accessibility, infrastructure criticality varies significantly compared to the infrastructure criticality assessment based solely on physical risk, modifying the decision-making regarding road infrastructure robustness and resilience improvements. Full article
Show Figures

Figure 1

20 pages, 2731 KiB  
Article
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 (registering DOI) - 5 Aug 2025
Abstract
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate [...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies. Full article
Show Figures

Figure 1

23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

86 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

20 pages, 907 KiB  
Review
Challenges and Future Prospects of Pakistan’s Animal Industry: Economic Potential, Emerging Trends, and Strategic Directions
by Ejaz Ali Khan, Muhammad Rizwan, Yuqi Wang, Furqan Munir and Jinlian Hua
Vet. Sci. 2025, 12(8), 733; https://doi.org/10.3390/vetsci12080733 - 4 Aug 2025
Viewed by 65
Abstract
Livestock, poultry, and fisheries play an important economic role in Pakistan’s animal industry. The pet industry is also emerging and contributing to the country’s economy and people’s emotional well-being. This review provides insight into the current challenges and future directions of the animal [...] Read more.
Livestock, poultry, and fisheries play an important economic role in Pakistan’s animal industry. The pet industry is also emerging and contributing to the country’s economy and people’s emotional well-being. This review provides insight into the current challenges and future directions of the animal industry in Pakistan. Livestock, poultry, and fisheries provide an economically beneficial source of milk, meat, and eggs; however, they face challenges such as disease outbreaks, antimicrobial resistance, climate change, natural disasters, and a lack of proper policies. Likewise, humans benefit from companion animals that provide emotional attachment. Moreover, the pet food market has also shown potential growth, contributing to the country’s economy. Due to the close association between animals and humans, both are at risk for infectious disease transmission. Challenges such as the lack of strong animal welfare laws and the increasing number of stray dogs and cats threaten human safety and that of other animals. We highlight current problems and additional approaches to the management of livestock, poultry, fisheries, and pets, which need to be addressed to further advance the animal industry in Pakistan. Full article
Show Figures

Graphical abstract

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 355
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

19 pages, 7359 KiB  
Article
An Aspect-Based Emotion Analysis Approach on Wildfire-Related Geo-Social Media Data—A Case Study of the 2020 California Wildfires
by Christina Zorenböhmer, Shaily Gandhi, Sebastian Schmidt and Bernd Resch
ISPRS Int. J. Geo-Inf. 2025, 14(8), 301; https://doi.org/10.3390/ijgi14080301 - 1 Aug 2025
Viewed by 167
Abstract
Natural disasters like wildfires pose significant threats to communities, which necessitates timely and effective disaster response strategies. While Aspect-based Sentiment Analysis (ABSA) has been widely used to extract sentiment-related information at the sub-sentence level, the corresponding field of Aspect-based Emotion Analysis (ABEA) remains [...] Read more.
Natural disasters like wildfires pose significant threats to communities, which necessitates timely and effective disaster response strategies. While Aspect-based Sentiment Analysis (ABSA) has been widely used to extract sentiment-related information at the sub-sentence level, the corresponding field of Aspect-based Emotion Analysis (ABEA) remains underexplored due to dataset limitations and the increased complexity of emotion classification. In this study, we used EmoGRACE, a fine-tuned BERT-based model for ABEA, which we applied to georeferenced tweets of the 2020 California wildfires. The results for this case study reveal distinct spatio-temporal emotion patterns for wildfire-related aspect terms, with fear and sadness increasing near wildfire perimeters. This study demonstrates the feasibility of tracking emotion dynamics across disaster-affected regions and highlights the potential of ABEA in real-time disaster monitoring. The results suggest that ABEA can provide a nuanced understanding of public sentiment during crises for policymakers. Full article
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 185
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 - 31 Jul 2025
Viewed by 430
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 200
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

21 pages, 3996 KiB  
Technical Note
Design of a Standards-Based Cloud Platform to Enhance the Practicality of Agrometeorological Countermeasures
by Sejin Han, Minju Baek, Jin-Ho Lee, Sang-Hyun Park, Seung-Gil Hong, Yong-Kyu Han and Yong-Soon Shin
Atmosphere 2025, 16(8), 924; https://doi.org/10.3390/atmos16080924 - 30 Jul 2025
Viewed by 184
Abstract
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed [...] Read more.
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed architecture hinders interoperability with external systems. This study aims to redesign the countermeasure function as an independent cloud-based platform grounded in the common standard terminology framework in South Korea. A multi-dimensional data model was developed using attributes such as crop type, cultivation characteristics, growth stage, disaster type, and risk level. The platform incorporates user-specific customization features and history tracking capabilities, and it is structured using a microservices architecture to ensure modularity and scalability. The proposed system enables real-time management and dissemination of localized countermeasure suggestions tailored to various user types, including central and local governments and farmers. This study offers a practical model for enhancing the precision and applicability of agrometeorological response information. It is expected to serve as a scalable reference platform for future integration with external agricultural information systems. Full article
Show Figures

Figure 1

Back to TopTop