Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = direct yaw-moment control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3583 KiB  
Article
Coordinated Slip Ratio and Yaw Moment Control for Formula Student Electric Racing Car
by Yuxing Bai, Weiyi Kong, Liguo Zang, Weixin Zhang, Chong Zhou and Song Cui
World Electr. Veh. J. 2025, 16(8), 421; https://doi.org/10.3390/wevj16080421 - 26 Jul 2025
Viewed by 295
Abstract
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and [...] Read more.
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and the need for adaptive control solutions, a multi-mode adaptive drive distribution strategy for four-wheel-drive Formula Student electric racing cars is proposed in this study to meet specialized operational demands. Based on the dynamic characteristics of standardized test scenarios (e.g., straight-line acceleration and figure-eight loop), two control modes are designed: slip-ratio-based anti-slip control for longitudinal dynamics and direct yaw moment control for lateral stability. A CarSim–Simulink co-simulation platform is established, with test scenarios conforming to competition standards, including variable road adhesion coefficients (μ is 0.3–0.9) and composite curves. Simulation results indicate that, compared to conventional PID control, the proposed strategy reduces the peak slip ratio to the optimal range of 18% during acceleration and enhances lateral stability in the figure-eight loop, maintaining the sideslip angle around −0.3°. These findings demonstrate the potential for significant improvements in both performance and safety, offering a scalable framework for future developments in racing vehicle control systems. Full article
Show Figures

Graphical abstract

17 pages, 2210 KiB  
Article
An Adaptive Vehicle Stability Enhancement Controller Based on Tire Cornering Stiffness Adaptations
by Jianbo Feng, Zepeng Gao and Bingying Guo
World Electr. Veh. J. 2025, 16(7), 377; https://doi.org/10.3390/wevj16070377 - 4 Jul 2025
Viewed by 282
Abstract
This study presents an adaptive integrated chassis control strategy for enhancing vehicle stability under different road conditions, specifically through the real-time estimation of tire cornering stiffness. A hierarchical control architecture is developed, combining active front steering (AFS) and direct yaw moment control (DYC). [...] Read more.
This study presents an adaptive integrated chassis control strategy for enhancing vehicle stability under different road conditions, specifically through the real-time estimation of tire cornering stiffness. A hierarchical control architecture is developed, combining active front steering (AFS) and direct yaw moment control (DYC). A recursive regularized weighted least squares algorithm is designed to estimate tire cornering stiffness from measurable vehicle states, eliminating the need for additional tire sensors. Leveraging this estimation, an adaptive sliding mode controller (ASMC) is proposed in the upper layer, where a novel self-tuning mechanism adjusts control parameters based on tire saturation levels and cornering stiffness variation trends. The lower-layer controller employs a weighted least squares allocation method to distribute control efforts while respecting physical and friction constraints. Co-simulations using MATLAB 2018a/Simulink and CarSim validate the effectiveness of the proposed framework under both high- and low-friction scenarios. Compared with conventional ASMC and DYC strategies, the proposed controller exhibits improved robustness, reduced sideslip, and enhanced trajectory tracking performance. The results demonstrate the significance of the real-time integration of tire dynamics into chassis control in improving vehicle handling and stability. Full article
Show Figures

Figure 1

27 pages, 7170 KiB  
Article
Hierarchical Torque Vectoring Control Strategy of Distributed Driving Electric Vehicles Considering Stability and Economy
by Shuiku Liu, Haichuan Zhang, Shu Wang and Xuan Zhao
Sensors 2025, 25(13), 3933; https://doi.org/10.3390/s25133933 - 24 Jun 2025
Viewed by 441
Abstract
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the [...] Read more.
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the fusion of vision and dynamic is developed to accurately and promptly obtain the TRFC in the upper layer. Second, a direct yaw moment control (DYC) strategy based on the adaptive model predictive control (MPC) is designed to ensure vehicle stability in the middle layer, where tire cornering stiffness is updated dynamically based on the estimated TRFC. Then, the lower layer develops the torque vectoring allocation controller, which comprehensively considers handling stability and energy consumption and distributes the driving torques among the wheels. The weight between stability and economy is coordinated according to the stability boundaries derived from an extended phase-plane correlated with the TRFC. Finally, Hardware-in-the-Loop (HIL) simulations are conducted to validate the effectiveness of the proposed strategy. The results demonstrate that compared with the conventional stability torque distribution strategy, the proposed control strategy not only reduces the RMSE of sideslip angle by 44.88% but also decreases the motor power consumption by 24.45% under DLC conditions, which indicates that the proposed method can significantly enhance vehicle handling stability while reducing energy consumption. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 6663 KiB  
Article
The Fault-Tolerant Control Strategy for the Steering System Failure of Four-Wheel Independent By-Wire Steering Electric Vehicles
by Qianlong Han, Chengye Liu, Jingbo Zhao and Haimei Liu
World Electr. Veh. J. 2025, 16(3), 183; https://doi.org/10.3390/wevj16030183 - 18 Mar 2025
Cited by 1 | Viewed by 785
Abstract
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, [...] Read more.
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, the four-wheel independent wire-controlled steering electric vehicle is taken as the research object, aiming at the collaborative control problem of trajectory tracking and yaw stability when the actuator of the by-wire steering system fails, a fault-tolerant control method based on the synergy of differential steering and direct yaw moment is proposed. This approach adopts a hierarchical control system. The front wheel controller predicts the necessary steering angle in accordance with a linear model and addresses the requirements of the front wheels and additional torque. Subsequently, considering the uncertainties in the drive control system and the complexities of the road obstacle model, the differential steering torque is computed via the sliding mode control method; the lower-level controller implements the torque optimization distribution strategy based on the quadratic programming algorithm. Finally, the validity of this approach under multiple working conditions was verified via CarSim 2019 and MATLAB R2023b/Simulink simulation experiments. Full article
Show Figures

Figure 1

24 pages, 6773 KiB  
Article
Coordinated Control Strategy for Stability Control and Trajectory Tracking with Wheel-Driven Autonomous Vehicles Under Harsh Situations
by Gang Liu and Wensheng Shao
World Electr. Veh. J. 2025, 16(3), 163; https://doi.org/10.3390/wevj16030163 - 11 Mar 2025
Cited by 2 | Viewed by 769
Abstract
A coordinated strategy is proposed to prevent interference between trajectory tracking control and stability control in wheel-driven autonomous vehicles. A tire cornering stiffness estimate model is developed using the recursive least squares approach with a forgetting factor (FFRLS), resulting in precise estimation of [...] Read more.
A coordinated strategy is proposed to prevent interference between trajectory tracking control and stability control in wheel-driven autonomous vehicles. A tire cornering stiffness estimate model is developed using the recursive least squares approach with a forgetting factor (FFRLS), resulting in precise estimation of tire cornering stiffness. An adaptive trajectory tracking control is developed, utilizing real-time updates of tire cornering stiffness; for the direct yaw moment required for stability control, an integral sliding-mode control is adopted, and the chatter problem of the integral sliding-mode controller is optimized by a fuzzy controller. The coordinated control of trajectory tracking and vehicle stability is ultimately attained through the application of the normalized stability index. The method’s practicality is validated by the hardware-in-the-loop simulation platform. Full article
Show Figures

Figure 1

26 pages, 6007 KiB  
Article
Design and Control Strategies of Multirotors with Horizontal Thrust-Vectored Propellers
by Ricardo Rosales Martinez, Hannibal Paul and Kazuhiro Shimonomura
Drones 2025, 9(2), 145; https://doi.org/10.3390/drones9020145 - 16 Feb 2025
Viewed by 1183
Abstract
With the growing adoption of Unmanned Aerial Vehicles (UAVs) in industrial and commercial sectors, the limitations of traditional under-actuated multirotors are becoming increasingly evident, particularly in manipulation tasks. Limited control over the thrust vector direction of the propellers, coupled with its interdependence on [...] Read more.
With the growing adoption of Unmanned Aerial Vehicles (UAVs) in industrial and commercial sectors, the limitations of traditional under-actuated multirotors are becoming increasingly evident, particularly in manipulation tasks. Limited control over the thrust vector direction of the propellers, coupled with its interdependence on the vehicle’s roll, pitch, and yaw moments, significantly restricts manipulation capabilities. To address these challenges, this work presents a control framework for multirotor UAVs equipped with thrust-vectoring components, enabling enhanced control over the direction of lateral forces. The framework supports various actuator configurations by integrating fixed vertical propellers with horizontally mounted thrust-vectoring components. It is capable of handling horizontal thruster setups that generate forces in all directions along the x- and y-axes. Alternatively, it accommodates constrained configurations where the vehicle is limited to generating force in a single direction along either the x- or y-axis. The supported UAVs can follow transmitter commands, setpoints, or predefined trajectories, while the flight controller autonomously manages the propellers and thrusters to achieve the desired motion. Moment evaluations were conducted to assess the torsional capabilities of the vehicles by varying the angles of the thrusters during torsional tasks. The results demonstrate comparable torsional magnitudes to previously studied thrust-vectoring UAVs. Simulations with vehicles of varying inertia and dimensions showed that, even with large horizontal thruster offsets, the vehicles followed desired trajectories while maintaining stable horizontal orientation and smaller attitude variations compared to normal flight. Similar performance was observed with positive and negative vertical offsets, demonstrating the framework’s tolerance for thrusters outside the horizontal plane. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

20 pages, 2999 KiB  
Article
Development of Integrated Chassis Control of Semi-Active Suspension with Differential Brake for Vehicle Lateral Stability
by Kyungtack Lee and Jinwoo Seol
World Electr. Veh. J. 2025, 16(2), 91; https://doi.org/10.3390/wevj16020091 - 11 Feb 2025
Cited by 1 | Viewed by 747
Abstract
This paper describes an integrated control strategy that utilizes semi-active suspension and differential braking to enhance lateral stability while maintaining roll performance. The integrated control architecture adopts a hierarchical structure consisting of an estimator, a supervisor, a controller, and an allocator. In the [...] Read more.
This paper describes an integrated control strategy that utilizes semi-active suspension and differential braking to enhance lateral stability while maintaining roll performance. The integrated control architecture adopts a hierarchical structure consisting of an estimator, a supervisor, a controller, and an allocator. In the estimation layer, an algorithm is proposed to robustly estimate the side slip angle and roll angle in various situations. The control mode is established by the supervision layer based on the state of the vehicle. The maneuverability mode tracks the driver’s intentions, and the lateral stability mode ensures the vehicle’s stability. Reference values such as yaw rate and roll angle are determined by the control mode. In the controller layer, the yaw and roll moments are generated using sliding mode control to achieve the target yaw rate and roll angle. Brake torque and suspension damping force are distributed to each wheel in the allocator layer. In particular, a damping distribution method based on the roll region index is proposed. The proposed method is compared with conventional methods, such as full stiff damping and yaw-assisted damping, through simulation and real-world evaluation. The tests demonstrate that the proposed approach enhances lateral and roll stability, particularly regarding maximum side slip and roll angle values. The roll-region-index-based distribution method reduces the maximum roll angle by about 17.4% and the maximum side slip angle by about 8.7% compared to each conventional method. Compared to conventional methods, the proposed method showed more stable driving performance by ensuring stability in both directions in extreme lane change situations. Full article
Show Figures

Figure 1

23 pages, 5111 KiB  
Article
A Novel Adaptive Non-Singular Fast Terminal Sliding Mode Control for Direct Yaw Moment Control in 4WID Electric Vehicles
by Jung Eun Lee and Byeong Woo Kim
Sensors 2025, 25(3), 941; https://doi.org/10.3390/s25030941 - 4 Feb 2025
Cited by 2 | Viewed by 1361
Abstract
This study proposes an adaptive non-singular fast terminal sliding mode control (NFTSMC)-based direct yaw moment control (DYC) strategy to enhance driving stability in four-wheel independent drive (4WID) electric vehicles. Unlike conventional SMC, the proposed method dynamically adapts to system uncertainties and reduces chattering, [...] Read more.
This study proposes an adaptive non-singular fast terminal sliding mode control (NFTSMC)-based direct yaw moment control (DYC) strategy to enhance driving stability in four-wheel independent drive (4WID) electric vehicles. Unlike conventional SMC, the proposed method dynamically adapts to system uncertainties and reduces chattering, a critical issue in control applications. The approach begins with the development of an NFTSMC method, analyzing its performance to identify areas for improvement. To enhance robustness and responsiveness, a novel adaptive NFTSMC method is introduced. This method integrates a non-singular fast terminal sliding mode surface with a novel adaptive fast-reaching control law that combines an adaptive switching mechanism and a fast-reaching law. The designed adaptive switching law adjusts the sliding gain in real time based on system conditions, reducing chattering without needing an upper bound on uncertainties as required by traditional NFTSMC methods. Concurrently, the fast-reaching law ensures rapid convergence from any initial condition and accurate tracking performance. Simulation results across various steering maneuvers, including step, sinusoidal, and fish-hook inputs, demonstrate that the proposed method significantly improves tracking accuracy and driving stability over traditional SMC and NFTSMC methods. Marked reductions in RMS and peak yaw rate errors, and effective chattering mitigation, highlight advancements in vehicle safety and stability. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 4109 KiB  
Article
Stability Study of Distributed Drive Vehicles Based on Estimation of Road Adhesion Coefficient and Multi-Parameter Control
by Peng Ji, Fengrui Han and Yifan Zhao
World Electr. Veh. J. 2025, 16(1), 38; https://doi.org/10.3390/wevj16010038 - 13 Jan 2025
Cited by 1 | Viewed by 1280
Abstract
In order to improve the driving stability of distributed-drive intelligent electric vehicles under different roadway attachment conditions, this paper proposes a multi-parameter control algorithm based on the estimation of road adhesion coefficients. First, a seven-degree-of-freedom (7-DOF) vehicle dynamics model is established and optimized [...] Read more.
In order to improve the driving stability of distributed-drive intelligent electric vehicles under different roadway attachment conditions, this paper proposes a multi-parameter control algorithm based on the estimation of road adhesion coefficients. First, a seven-degree-of-freedom (7-DOF) vehicle dynamics model is established and optimized with a layered control strategy. The upper-level control module calculates the desired yaw rate and sideslip angle using the two-degree-of-freedom (2-DOF) vehicle model and estimates the road adhesion coefficient by using the singular-value optimized cubature Kalman filtering (CKF) algorithm; the middle-level utilizes the second-order sliding mode controller (SOSMC) as a direct yaw moment controller in order to track the desired yaw rate and sideslip angle while also employing a joint distribution algorithm to control the torque distribution based on vehicle stability parameters, thereby enhancing system robustness; and the lower-level controller performs optimal torque allocation based on the optimal tire loading rate as the objective. A Speedgoat-CarSim hardware-in-the-loop simulation platform was established, and typical driving scenarios were simulated to assess the stability and accuracy of the proposed control algorithm. The results demonstrate that the proposed algorithm significantly enhances vehicle-handling stability across both high- and low-adhesion road conditions. Full article
Show Figures

Figure 1

23 pages, 16564 KiB  
Article
Cooperative Control of Distributed Drive Electric Vehicles for Handling, Stability, and Energy Efficiency, via ARS and DYC
by Ningyuan Guo, Jie Ye and Zihao Huang
Sustainability 2024, 16(24), 11301; https://doi.org/10.3390/su162411301 - 23 Dec 2024
Cited by 1 | Viewed by 1188
Abstract
Distributed drive electric vehicles (DDEV), characterized by their independently drivable wheels, offer significant advantages in terms of vehicle handling, stability, and energy efficiency. These attributes collectively contribute to enhancing driving safety and extending the all-electric range for sustainable transportation. Nonetheless, the challenge persists [...] Read more.
Distributed drive electric vehicles (DDEV), characterized by their independently drivable wheels, offer significant advantages in terms of vehicle handling, stability, and energy efficiency. These attributes collectively contribute to enhancing driving safety and extending the all-electric range for sustainable transportation. Nonetheless, the challenge persists in designing a control strategy that effectively coordinates the objectives of handling, stability, and energy efficiency under both lateral and longitudinal driving conditions. To this end, this paper proposes a cooperative control strategy for DDEVs, incorporating active rear steering (ARS) and direct yaw moment control (DYC) to enhance handling capabilities, stability, and energy efficiency. A stability boundary is delineated using an analytical expression that correlates with the front wheel steering angle, and an adjustment factor is introduced to quantify vehicle stability based on this input parameter. This factor aids in establishing a coordinated control reference for handling and stability. At the upper-level motion control layer, a model predictive control method is developed to track this reference and implement ARS and DYC for superior performance. Specifically, the rear lateral force serves as the control command for ARS, which is converted into a rear wheel steering angle using a tire inverse model. Meanwhile, the front lateral force is modeled as linear-time-varying to simplify calculations. At the lower-level torque allocation layer, the adjustment factor is utilized to balance tire workload rate and in-wheel motors’ (IWM) energy consumption, enabling efficient switching between energy consumption and driving stability targets, and the torque allocation is conducted to acquire the expected IWMs’ command. Both the upper and lower-level optimization problems are formulated as convex problems, ensuring efficient and effective solutions. Simulations verify the effectiveness of this strategy in improving handling, stability, and energy economy under DLC cases, while maintaining high computational efficiency. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

18 pages, 5900 KiB  
Article
Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine
by Amira Elkodama, A. Abdellatif, S. Shaaban, Mostafa A. Rushdi, Shigeo Yoshida and Amr Ismaiel
Appl. Sci. 2024, 14(21), 9810; https://doi.org/10.3390/app14219810 - 27 Oct 2024
Viewed by 2139
Abstract
Multi-rotor system (MRS) wind turbines can provide a competitive alternative to large-scale wind turbines due to their significant advantages in reducing capital, transportation, and operating costs. The main challenges of MRS wind turbines include the complexity of the supporting structure, mathematical modeling of [...] Read more.
Multi-rotor system (MRS) wind turbines can provide a competitive alternative to large-scale wind turbines due to their significant advantages in reducing capital, transportation, and operating costs. The main challenges of MRS wind turbines include the complexity of the supporting structure, mathematical modeling of the aerodynamic interaction between the rotors, and the yaw control mechanism. In this work, MATLAB 2018b/Simulink® software was used to model and simulate a twin-rotor wind turbine (TRWT), and an NREL 5 MW wind turbine was used to verify the model outputs. Different random signals of wind velocities and directions were used as inputs to each rotor to generate different thrust loads, inducing twisting moments on the main tower. A yaw controller system was adapted to ensure that the turbine constantly faced the wind to maximize the power output. A DC motor was used as the mechanism’s actuator. The goal was to achieve a compromise between aligning the rotors with the wind direction and reducing the torque induced on the main tower. A comparison between linear and nonlinear controllers was performed to test the yaw system actuator’s response at different wind speeds and directions. Sliding mode control (SMC) was chosen, as it was suitable for the nonlinearity of the system, and its performance showed a faster response compared with the PID controller, with a settling time of 0.17 sec and a very low overshoot. The controller used the transfer function of the motor to generate a sliding surface. The dynamic responses of the controlled angle are shown and discussed. The controller showed promising results, with a suitable response and low chattering signals. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

25 pages, 9774 KiB  
Article
Coordinated Control of Differential Drive-Assist Steering and Direct Yaw Moment Control for Distributed-Drive Electric Vehicles
by Shaopeng Zhu, Junfei Lu, Ling Zhu, Huipeng Chen, Jian Gao and Wei Xie
Electronics 2024, 13(18), 3711; https://doi.org/10.3390/electronics13183711 - 19 Sep 2024
Cited by 2 | Viewed by 2173
Abstract
Direct yaw moment control (DYC) and differential drive-assist steering (DDAS) for distributed-drive vehicles are both realized by allocating the in-wheel motor torque. To address the interference caused by overlapping control objectives, this paper proposes a multilayer control strategy that integrates DYC and DDAS, [...] Read more.
Direct yaw moment control (DYC) and differential drive-assist steering (DDAS) for distributed-drive vehicles are both realized by allocating the in-wheel motor torque. To address the interference caused by overlapping control objectives, this paper proposes a multilayer control strategy that integrates DYC and DDAS, consisting of an upper controller, a coordinated decision layer, and a torque distribution layer. The upper controller, designed based on the vehicle’s dynamic characteristics, incorporates an adaptive fuzzy control DYC system and a dual PID control DDAS system. The coordinated decision layer is developed utilizing a phase-plane dynamic weighting method, delineating region boundaries by applying the double-line and limit cycle methods. The torque distribution strategy is formulated considering motor peak torque and road adhesion conditions. Multi-condition joint simulation experiments indicate that the proposed multilayer control strategy, integrating the advantages of DYC and DDAS, reduces peak steering wheel torque by approximately 10%, peak yaw rate by around 25%, peak sideslip angle by roughly 29%, and peak sideslip angle rate by about 19%, significantly improving driving stability and maneuvering flexibility. Full article
Show Figures

Figure 1

16 pages, 12036 KiB  
Article
Tilt-X: Development of a Pitch-Axis Tiltrotor Quadcopter for Maximizing Horizontal Pulling Force and Yaw Moment
by Xiaodi Tao and Seong Young Ko
Appl. Sci. 2024, 14(14), 6181; https://doi.org/10.3390/app14146181 - 16 Jul 2024
Cited by 2 | Viewed by 3015
Abstract
In recent years, there has been a significant amount of research on tiltrotor multicopter unmanned aerial vehicles (TM-UAVs) in aerial robotics. Despite the varying frame types of TM-UAVs, they all still aim to decouple the propeller from the body, which means that the [...] Read more.
In recent years, there has been a significant amount of research on tiltrotor multicopter unmanned aerial vehicles (TM-UAVs) in aerial robotics. Despite the varying frame types of TM-UAVs, they all still aim to decouple the propeller from the body, which means that the propeller’s attitude control is independent of the body’s attitude control. On the one hand, this solves the issue of multicopter unmanned aerial vehicles (M-UAVs) being limited by small roll and pitch angles, thereby improving flight performance. On the other hand, it addresses the drawbacks of M-UAVs as typical underactuated systems. However, the fact still remains that it cannot significantly change thrust direction, thus providing the necessary wrench direction for aerial manipulation. This paper presents a pitch-axis tiltrotor quadcopter unmanned aerial vehicle (UAV) design named Tilt-X, which can maximize horizontal pulling force and yaw moment when used as an aerial manipulator. This design contributes to tasks such as pushing, pulling, and twisting. The reliability of the design has been demonstrated through dynamic modeling and experimental validation. Full article
(This article belongs to the Special Issue Advances in Unmanned Aerial Vehicle (UAV) System)
Show Figures

Figure 1

26 pages, 3803 KiB  
Article
Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes
by Shou-Tao Peng, Chih-Keng Chen, Yih-Ran Sheu and Yu-Chun Chang
Appl. Sci. 2024, 14(14), 5984; https://doi.org/10.3390/app14145984 - 9 Jul 2024
Cited by 1 | Viewed by 1150
Abstract
When a ground vehicle runs at high speeds, even a slight excess in the wheel steering angle can immediately cause the vehicle to slide sideways and lose control. In this study, we propose an active safety control system designed to address emergency situations [...] Read more.
When a ground vehicle runs at high speeds, even a slight excess in the wheel steering angle can immediately cause the vehicle to slide sideways and lose control. In this study, we propose an active safety control system designed to address emergency situations where the driver applies excessive steering input and the vehicle speed varies significantly during control. The system combines the direct yaw moment (DYM) method with a steering saturation scheme that prevents excessive driver steering input from adversely influencing the front-wheel steering. Consequently, the control system allows the DYM to focus more on other stabilization tasks and maintain tire/road friction within its workable linear range. The implementation relies on a reference steering angle and a reference vehicle state, derived from a linear vehicle model considering tire/road friction limitations. When the driver’s steering angle and the system state deviate from these reference values, the control system intervenes by applying both the steering saturation scheme and DYM method. This ensures the front-wheel steering angle and system state remain close to the reference values. The control strategy is developed using the polytopic Linear Parameter Varying (LPV) technique and Linear Matrix Inequality (LMI) to account for the changes in vehicle speed. It is further enhanced with an input saturation technique based on a high-gain approach, which improves control utilization and system response during emergency situations. The advantages of the proposed control strategy are demonstrated through simulation results. Full article
Show Figures

Figure 1

30 pages, 31803 KiB  
Article
An NMPC-Based Integrated Longitudinal and Lateral Vehicle Stability Control Based on the Double-Layer Torque Distribution
by Xu Bai, Yinhang Wang, Mingchen Jia, Xinchen Tan, Liqing Zhou, Liang Chu and Di Zhao
Sensors 2024, 24(13), 4137; https://doi.org/10.3390/s24134137 - 26 Jun 2024
Cited by 1 | Viewed by 2095
Abstract
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire [...] Read more.
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro–mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop