Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes
Abstract
1. Introduction
2. Vehicle Lateral Control Model
2.1. Lateral Control Model and Steady State
2.2. Vehicle Safety Reference State and Reference Steering Angle
3. Control System Configuration
3.1. Active Steering Saturation Control
3.2. Control System with Active Front Steering Saturation
4. Yaw Moment Control Design
4.1. Yaw Moment Limit and Wheel Torque Distribution
4.2. Control System Modeling with Polytopic LPV
4.3. LPV-LMI Yaw Moment Control Design with Input Constraint
- (a)
- The system (53) has an invariant set where the control input (51) satisfies the constraint (44).
- (b)
- The system (53) has a region of ultimate boundedness .
- (c)
- The region contains the region .
4.4. Enhanced Yaw Moment Control
- (a)
- The system (57) has an invariant set where the control input (56) satisfies the constraint (44).
- (b)
- The system (57) has a region of ultimate boundedness .
- (c)
- The region contains the region .
5. Simulations
5.1. Case I: The Integrated Control
5.2. Case II: The Enhanced Integration Control
5.3. Case III: The Acting-Alone Enhanced Yaw Moment Control
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, L.; Yang, Y.; Wu, G.; Zhao, X.; Fang, S.; Liao, X.; Wang, R.; Zhang, M. A Systematic Review of Autonomous Emergency Braking System: Impact Factor, Technology, and Performance Evaluation. J. Adv. Transp. 2022, 2022, 1188089. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Han, L.; Xiang, C. Handling and Stability Integrated Control of AFS and DYC for Distributed Drive Electric Vehicles Based on Risk Assessment and Prediction. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23148–23163. [Google Scholar] [CrossRef]
- Chen, J.; Shuai, Z.; Zhang, H.; Zhao, W. Path Following Control of Autonomous Four-Wheel-Independent-Drive Electric Vehicles via Second-Order Sliding Mode and Nonlinear Disturbance Observer Techniques. IEEE Trans. Ind. Electron. 2021, 68, 2460–2469. [Google Scholar] [CrossRef]
- Hajiloo, R.; Khajepour, A.; Kasaiezadeh, A.; Chen, S.-K.; Litkouhi, B. A Model Predictive Control of Electronic Limited Slip Differential and Differential Braking for Improving Vehicle Yaw Stability. IEEE Trans. Control Syst. Technol. 2023, 31, 797–808. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Drugge, L.; Nybacka, M. Evaluating Model Predictive Path following and Yaw Stability Controllers for Over-Actuated Autonomous Electric Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 12807–12821. [Google Scholar] [CrossRef]
- Li, P.; Nguyen, A.-T.; Du, H.; Wang, Y.; Zhang, H. Polytopic LPV Approaches for Intelligent Automotive Systems: State of the Art and Future Challenges. Mech. Syst. Signal Process. 2021, 161, 107931. [Google Scholar] [CrossRef]
- Li, P.; Lam, J.; Lu, R.; Li, H. Variable-Parameter-Dependent Saturated Robust Control for Vehicle Lateral Stability. IEEE Trans. Control Syst. Technol. 2022, 30, 1711–1722. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, J.; Wang, F.; Yin, G.; Pi, D.; Feng, J.; Liu, H. An Active Front Steering System Design Considering the CAN Network Delay. IEEE Trans. Transp. Electrif. 2023, 9, 5244–5256. [Google Scholar] [CrossRef]
- Shi, K.; Yuan, X.; He, Q. Double-Layer Dynamic Decoupling Control System for the Yaw Stability of Four Wheel Steering Vehicle. Int. J. Control Autom. Syst. 2019, 17, 1255. [Google Scholar] [CrossRef]
- Peters, Y.; Stadelmayer, M. Control Allocation for All Wheel Drive Sports Cars with Rear Wheel Steering. Automot. Engine Technol. 2019, 4, 111–123. [Google Scholar] [CrossRef]
- Chien, P.-C.; Chen, C.-K. Integrated Chassis Control and Control Allocation for All Wheel Drive Electric Cars with Rear Wheel Steering. Electronics 2021, 10, 2885. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Wang, F.; Yin, G.; Zhu, X.; Li, Y. A Robust Dynamic Game-Based Control Framework for Integrated Torque Vectoring and Active Front-Wheel Steering System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7328–7341. [Google Scholar] [CrossRef]
- Hang, P.; Xia, X.; Chen, X. Handling Stability Advancement with 4WS and DYC Coordinated Control: A Gain-Scheduled Robust Control Approach. IEEE Trans. Veh. Technol. 2021, 70, 3164–3174. [Google Scholar] [CrossRef]
- Da Silva Junior, A.; Birkner, C.; Nakhaie Jazar, R.; Marzbani, H. Coupled Lateral and Longitudinal Controller for Over-Actuated Vehicle in Evasive Maneuvering with Sliding Mode Control Strategy. IEEE Access 2023, 11, 33792–33811. [Google Scholar] [CrossRef]
- Basargan, H.; Mihály, A.; Gáspár, P.; Sename, O. Adaptive Semi-Active Suspension and Cruise Control through LPV Technique. Appl. Sci. 2021, 11, 290. [Google Scholar] [CrossRef]
- Ruiz, A.; Rotondo, D.; Morcego, B. Design of State-Feedback Controllers for Linear Parameter Varying Systems Subject to Time-Varying Input Saturation. Appl. Sci. 2019, 9, 3606. [Google Scholar] [CrossRef]
- Kali, Y.; Saad, M.; Benjelloun, K. Backstepping Super-Twisting for Robotic Manipulators with Matched and Unmatched Uncertainties. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 1154–1159. [Google Scholar] [CrossRef]
- Shen, H.; Song, T.; Fang, L.; Wang, H.; Zhang, Y. Adaptive Super Twisting Observer-Based Prescribed Time Integral Sliding Mode Tracking Control of Uncertain Robotic Manipulators. Adv. Control Sci. 2024, 12, 3824. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Control; Prentice Hall: Upper Saddle River, NJ, USA, 2015; ISBN 978-0-13-349926-1. [Google Scholar]
- Russo, A.; Incremona, G.P.; Seeber, R.; Ferrara, A. Adaptive Bounded Integral Control with Enhanced Anti-Windup Design. IEEE Control Syst. Lett. 2023, 7, 1861–1866. [Google Scholar] [CrossRef]
- Gruenwald, B.C.; Yucelen, T.; Dogan, K.M.; Muse, J.A. On Adaptive Control of Uncertain Dynamical Systems in the Presence of Actuator Dynamics and Amplitude Saturation Limits. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 423–428. [Google Scholar]
- Peng, S.-T.; Chang, Y.-C. A Combination Strategy of Saturated Yaw Moment Control with Specialized Active Front Wheel Steering for Vehicle Assistance and Active Safety Control System. In Proceedings of the 2023 International Automatic Control Conference (CACS), Penghu, Taiwan, 26–29 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Li, J.-T.; Chen, C.-K.; Ren, H. Time-Optimal Trajectory Planning and Tracking for Autonomous Vehicles. Sensors 2024, 24, 3281. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control, 2nd ed.; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-1432-2. [Google Scholar]
- Li, Z.; Chen, H.; Liu, H.; Wang, P.; Gong, X. Integrated Longitudinal and Lateral Vehicle Stability Control for Extreme Conditions with Safety Dynamic Requirements Analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 10. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Guo, L.; Zhang, L.; Ding, H.; Chen, H. Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles. IEEE Trans. Control Syst. Technol. 2021, 29, 2206–2213. [Google Scholar] [CrossRef]
- Li, H.; Liu, K.; Zhao, B.; Xu, N.; Huang, Y.; Yin, Y. Maximizing the Effective Quasi-Usage Rate for 4WIMD-EVs under Combined-Slip Conditions. IEEE Trans. Veh. Technol. 2023, 72, 12. [Google Scholar] [CrossRef]
- Xu, D.; Wang, G.; Qu, L.; Ge, C. Robust Control with Uncertain Disturbances for Vehicle Drift Motions. Appl. Sci. 2021, 11, 4917. [Google Scholar] [CrossRef]
- Jazar, R. Advanced Vehicle Dynamics; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.-T.; Chen, C.-K.; Sheu, Y.-R.; Chang, Y.-C. Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes. Appl. Sci. 2024, 14, 5984. https://doi.org/10.3390/app14145984
Peng S-T, Chen C-K, Sheu Y-R, Chang Y-C. Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes. Applied Sciences. 2024; 14(14):5984. https://doi.org/10.3390/app14145984
Chicago/Turabian StylePeng, Shou-Tao, Chih-Keng Chen, Yih-Ran Sheu, and Yu-Chun Chang. 2024. "Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes" Applied Sciences 14, no. 14: 5984. https://doi.org/10.3390/app14145984
APA StylePeng, S.-T., Chen, C.-K., Sheu, Y.-R., & Chang, Y.-C. (2024). Enhancement of Yaw Moment Control for Drivers with Excessive Steering in Emergency Lane Changes. Applied Sciences, 14(14), 5984. https://doi.org/10.3390/app14145984