Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = direct synthesis of H2O2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 202
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

29 pages, 5210 KiB  
Article
Ion Conduction Dynamics, Characterization, and Application of Ionic Liquid Tributyl Methyl Phosphonium Iodide (TMPI)-Doped Polyethylene Oxide Polymer Electrolyte
by Suneyana Rawat, Monika Michalska, Pramod K. Singh, Karol Strzałkowski, Nisha Pal, Markus Diantoro, Diksha Singh and Ram Chandra Singh
Polymers 2025, 17(14), 1986; https://doi.org/10.3390/polym17141986 - 19 Jul 2025
Viewed by 344
Abstract
The increasing demand for high-performance energy storage devices has stimulated interest in advanced electrolyte materials. Among them, ionic liquids (ILs) stand out for their thermal stability, wide electrochemical windows, and good ionic conductivity. When doped into polymeric matrices, these [...] Read more.
The increasing demand for high-performance energy storage devices has stimulated interest in advanced electrolyte materials. Among them, ionic liquids (ILs) stand out for their thermal stability, wide electrochemical windows, and good ionic conductivity. When doped into polymeric matrices, these ionic liquids form hybrid polymeric electrolytes that synergize the benefits of both liquid and solid electrolytes. This study explores a polymeric electrolyte based on polyethylene oxide (PEO) doped with tributylmethylphosphonium iodide (TMPI) and ammonium iodide (NH4I), focusing on its synthesis, structural and electrical properties, and performance in energy storage devices such as dye-sensitized solar cells and supercapacitors. Strategies to improve its ionic conductivity, mechanical and chemical stability, and electrode compatibility are also discussed, along with future directions in this field. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 346
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

25 pages, 4764 KiB  
Article
Biogenic Synthesis of Calcium-Based Powders from Marine Mollusk Shells: Comparative Characterization and Antibacterial Potential
by Adriana-Gabriela Schiopu, Mihai Oproescu, Alexandru Berevoianu, Raluca Mărginean, Laura Ionașcu, Viorel Năstasă, Andra Dinache, Paul Mereuță, Kim KeunHwan, Daniela Istrate, Adriana-Elena Bălan and Stefan Mira
Materials 2025, 18(14), 3331; https://doi.org/10.3390/ma18143331 - 15 Jul 2025
Viewed by 311
Abstract
Marine mollusk shells are a promising renewable source of calcium-based materials, offering a sustainable alternative for their synthesis. In this study, five types of marine shells—Chamelea gallina, Mya arenaria, Rapana venosa, Mytilus edulis, and Pecten maximus—were calcined [...] Read more.
Marine mollusk shells are a promising renewable source of calcium-based materials, offering a sustainable alternative for their synthesis. In this study, five types of marine shells—Chamelea gallina, Mya arenaria, Rapana venosa, Mytilus edulis, and Pecten maximus—were calcined at 900 °C for 2 h. The resulting powders were characterized by XRD, FTIR, SEM, PSD, and zeta potential analyses. XRD confirmed the dominant presence of CaO, with residual calcite and portlandite. FTIR spectra supported these findings, indicating the decomposition of carbonate phases and the formation of Ca–O bonds. SEM imaging revealed species-specific microstructures ranging from lamellar and wrinkled textures to compact aggregates, while particle size distributions varied from 15 to 37 μm. Thermogravimetric analysis revealed a two-step decomposition process for all samples, with significant species-dependent differences in mass loss and conversion efficiency, highlighting the influence of biogenic origin on the thermal stability and CaO yield of the resulting powders. Zeta potential measurements showed low colloidal stability, with the best performance found in Rapana venosa and Pecten maximus calcinated samples. Antibacterial activity was evaluated using a direct contact method against Escherichia coli and Enterococcus faecalis. All samples exhibited complete inactivation of E. coli, regardless of exposure time, while E. faecalis required prolonged contact (3.3 h) for full inhibition. The results highlight the potential of biogenic CaCO3 and CaO powders as functional, antimicrobial materials suitable for environmental and biomedical applications. This study underscores the viability of marine shell waste valorization within a circular economy framework. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

17 pages, 4195 KiB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Viewed by 280
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

28 pages, 5628 KiB  
Article
Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
by Tamara B. Benzaquén, Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon and Juan Matos
Molecules 2025, 30(12), 2484; https://doi.org/10.3390/molecules30122484 - 6 Jun 2025
Viewed by 485
Abstract
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice [...] Read more.
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice husk as the silica template. Iron was incorporated and the so-prepared biogenic photocatalysts were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, diffuse reflectance UV-Vis, surface pH, cyclic voltammetry, and Fourier transform infrared spectral analysis of pyridine adsorption. The photocatalytic performance of the materials was evaluated following the removal by adsorption and the photon-driven degradation of RhB. The adsorption capacity and photocatalytic activity of the biogenic materials were correlated with their properties, including iron content, texture, surface content, and electrochemical properties. The best biogenic material boosted the degradation rates of RhB under UV irradiation up to 4.7 and 2.2 times greater than the direct photolysis and the benchmark semiconductor TiO2-P25. It can be concluded that the use of rice husks for the synthesis of biogenic Fe-modified mesoporous materials is a promising strategy for wastewater treatment applications, particularly in the removal of highly toxic organic dyes. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules: Recent Advances in Photochemistry)
Show Figures

Graphical abstract

14 pages, 2869 KiB  
Article
Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2
by Tingting Hu, Baozeng Ren and Liang Zhao
Catalysts 2025, 15(6), 544; https://doi.org/10.3390/catal15060544 - 30 May 2025
Viewed by 581
Abstract
Hydrogen peroxide (H2O2) is an important industrial chemical that is widely applied in many areas. The direct synthesis of H2O2 from H2 and O2 has proved to be a green and economic pathway. Pd-based [...] Read more.
Hydrogen peroxide (H2O2) is an important industrial chemical that is widely applied in many areas. The direct synthesis of H2O2 from H2 and O2 has proved to be a green and economic pathway. Pd-based bimetallic catalysts, due to their superior catalytic performances in this reaction, have attracted intensive attention. Herein, Tetrakis(hydroxymethyl)phosphonium chloride (THPC) was adopted as the protective ligand to immobilize Pd-Au alloy nanoparticles onto activated carbon (AC). The varied Pd/Au molar ratios demonstrated homogeneously distributed Pd-Au nanoalloys with average particle sizes ranging from 3.51 to 5.75 nm. The optimal ratio was observed over the Pd3Au1/AC-THPC catalyst with a maximum H2O2 productivity of 165 mol/(kgPd·h) and selectivity of 82.3% under ambient pressure. The relationship between the electronic structure and catalytic activity indicated Pd0 was the active site, while the presence of Au inhibited H2O2 degradation rate. This research could help in the design efficient bimetallic catalysts for the direct synthesis of H2O2. Full article
(This article belongs to the Special Issue Advances in Metal Nanoparticle Catalysis)
Show Figures

Graphical abstract

17 pages, 2741 KiB  
Review
Polyamine-Mediated Growth Regulation in Microalgae: Integrating Redox Balance and Amino Acids Pathway into Metabolic Engineering
by Leandro Luis Lavandosque and Flavia Vischi Winck
SynBio 2025, 3(2), 8; https://doi.org/10.3390/synbio3020008 - 28 May 2025
Viewed by 927
Abstract
Polyamines play a pivotal role in regulating the growth and metabolic adaptation of microalgae, yet their integrative regulatory roles remain underexplored. This review advances a comprehensive perspective of microalgae growth, integrating polyamine dynamics, amino acid metabolism, and redox balance. Polyamines (putrescine, spermidine, and [...] Read more.
Polyamines play a pivotal role in regulating the growth and metabolic adaptation of microalgae, yet their integrative regulatory roles remain underexplored. This review advances a comprehensive perspective of microalgae growth, integrating polyamine dynamics, amino acid metabolism, and redox balance. Polyamines (putrescine, spermidine, and spermine) biology in microalgae, particularly Chlamydomonas reinhardtii, is reviewed, exploring their critical function in modulating cell cycle progression, enzymatic activity, and stress responses through nucleic acid stabilization, protein synthesis regulation, and post-translational modifications. This review explores how the exogenous supplementation of polyamines modifies their intracellular dynamics, affecting growth phases and metabolic transitions, highlighting the complex regulation of internal pools of these molecules. Comparative analyses with Chlorella ohadii and Scenedesmus obliquus indicated species-specific responses to polyamine fluctuations, linking putrescine and spermine levels to important tunable metabolic shifts and fast growth phenotypes in phototrophic conditions. The integration of multi-omic approaches and computational modeling has already provided novel insights into polyamine-mediated growth regulation, highlighting their potential in optimizing microalgae biomass production for biotechnological applications. In addition, genomic-based modeling approaches have revealed target genes and cellular compartments as bottlenecks for the enhancement of microalgae growth, including mitochondria and transporters. System-based analyses have evidenced the overlap of the polyamines biosynthetic pathway with amino acids (especially arginine) metabolism and Nitric Oxide (NO) generation. Further association of the H2O2 production with polyamines metabolism reveals novel insights into microalgae growth, combining the role of the H2O2/NO rate regulation with the appropriate balance of the mitochondria and chloroplast functionality. System-level analysis of cell growth metabolism would, therefore, be beneficial to the understanding of the regulatory networks governing this phenotype, fostering metabolic engineering strategies to enhance growth, stress resilience, and lipid accumulation in microalgae. This review consolidates current knowledge and proposes future research directions to unravel the complex interplay of polyamines in microalgal physiology, opening new paths for the optimization of biomass production and biotechnological applications. Full article
Show Figures

Figure 1

23 pages, 3490 KiB  
Review
Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production
by Yingjie Zheng, Yi Zhao, Wen Luo, Yifan Zhang, Yong Wang and Yang Wu
Catalysts 2025, 15(5), 500; https://doi.org/10.3390/catal15050500 - 21 May 2025
Cited by 2 | Viewed by 741
Abstract
Hydrogen peroxide (H2O2) is a versatile and environmentally friendly oxidant with broad applications in industry, energy, and environmental remediation. Electrocatalytic H2O2 production via the two-electron oxygen reduction reaction (2e ORR) has emerged as a sustainable [...] Read more.
Hydrogen peroxide (H2O2) is a versatile and environmentally friendly oxidant with broad applications in industry, energy, and environmental remediation. Electrocatalytic H2O2 production via the two-electron oxygen reduction reaction (2e ORR) has emerged as a sustainable alternative to traditional anthraquinone processes. Covalent organic frameworks (COFs), as a class of crystalline porous materials, exhibit high structural tunability, large surface areas, and chemical stability, making them promising electrocatalysts for 2e ORR. This review systematically summarizes recent advances in COF-based electrocatalysts for H2O2 production, including both metal-free and metal-containing systems. We discuss key strategies in COF design—such as dimensional modulation, linkage engineering, heteroatom doping, and post-synthetic modification—and highlight their effects on activity, selectivity, and stability. Fundamental insights into the 2e ORR mechanism and evaluation metrics are also provided. Finally, we offer perspectives on current challenges and future directions, emphasizing the integration of machine learning, conductivity enhancement, and scalable synthesis to advance COFs toward practical H2O2 electrosynthesis. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

27 pages, 3166 KiB  
Review
Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater
by Jannat Javed, Yuting Zhou, Saad Ullah, Tianjiu Gao, Caiyun Yang, Ying Han and Hao Wu
Molecules 2025, 30(10), 2194; https://doi.org/10.3390/molecules30102194 - 17 May 2025
Viewed by 838
Abstract
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes [...] Read more.
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes (AOPs) as catalysts because of their unique Fe-S structure, ability to undergo redox cycling, and environmental friendliness. This review explores recent advances in pyrite-derived materials for AOP applications, focusing on their synthesis, catalytic mechanisms, and pollutant degradation. It examines how pyrite activates oxidants such as hydrogen peroxide (H2O2), peracetic acid (PAA), and peroxymonosulfate (PMS) can be used to generate reactive oxygen species (ROS). The role of multi-dimensional pyrite architectures (0D–3D) in enhancing charge transfer, catalytic activity, and recyclability is also discussed. Key challenges, including catalyst stability, industrial scalability, and Fe/S leaching, are addressed alongside potential solutions. Future directions include the integration of pyrite-based catalysts with hybrid materials, as well as green synthesis to improve practical applications. This review provides researchers and engineers with valuable insights into developing sustainable wastewater treatment technologies. Full article
Show Figures

Figure 1

28 pages, 6012 KiB  
Review
Semiconductor-Based Photoelectrocatalysts in Water Splitting: From the Basics to Mechanistic Insights—A Brief Review
by W. J. Pech-Rodríguez, Nihat Ege Şahin, G. G. Suarez-Velázquez and P. C. Meléndez-González
Materials 2025, 18(9), 1952; https://doi.org/10.3390/ma18091952 - 25 Apr 2025
Cited by 1 | Viewed by 1103
Abstract
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on [...] Read more.
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on the photoelectronic effect where electrons and holes interact with H2O, producing H2 and O2, and in some cases, this is achieved with acceptable efficiency. Although there are several reviews on this topic, most of them focus on traditional semiconductors, such as TiO2 and ZnO, neglecting others, such as those based on non-noble metals and organic ones. Herein, semiconductors like CdSe, NiWO4, Fe2O3, and others have been investigated and compared in terms of photocurrent density, band gap, and charge transfer resistance. In addition, this brief review aims to discuss the mechanisms of overall water-splitting reactions from a photonic point of view and subsequently discusses the engineering of material synthesis. Advanced composites are also addressed, such as WO3/BiVO4/Cu2O and CN-FeNiOOH-CoOOH, which demonstrate high efficiency by delivering photocurrent densities of 5 mAcm−2 and 3.5 mA cm−2 at 1.23 vs. RHE, respectively. Finally, the authors offer their perspectives and list the main challenges based on their experience in developing semiconductor-based materials applied in several fields. In this manner, this brief review provides the main advances in these topics, used as references for new directions in designing active materials for photoelectrocatalytic water splitting. Full article
Show Figures

Figure 1

21 pages, 3065 KiB  
Article
Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures
by Nicola Garofalo, Francesco Messa, Alessandra Barbanente, Francesco Paolo Fanizzi, Antonio Salomone, Nicola Margiotta and Paride Papadia
Molecules 2025, 30(9), 1890; https://doi.org/10.3390/molecules30091890 - 24 Apr 2025
Viewed by 473
Abstract
Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in [...] Read more.
Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in DESs, to the best of our knowledge, there are no studies on the chemical reactivity of platinum(II) complexes in these systems. This study investigates the simple model reaction between K2PtCl4 and ethylenediamine (en), exploring the behaviour in DES environment, to optimize the synthesis of simple cisplatin-like platinum compounds with the potential objective of improving the traditional methods, decreasing the number of steps required for obtaining target compounds and reducing chemical waste. The reactions were performed in two hydrophilic DESs: choline chloride:glycerol 1:2 (glyceline, GL) and choline chloride:ethylene glycol 1:2 (ethaline, EG). The experiments, conducted in a 70% (v/v) DES and 30% 1:1 H2O/D2O mixture to allow for direct NMR analysis, revealed that en quickly formed [PtCl2(en)], which further reacted to produce [Pt(en)2]Cl2. Reaction products were characterised by 1D (1H and 195Pt{1H}) and 2D ([1H,13C]-HSQC and [1H,15N]-HSQC) NMR experiments. The discolouration of solutions, due to the consumption of K2PtCl4, and the precipitation of the purple Magnus salt [Pt(en)2][PtCl4] occurred over time. The main observed difference between the two solvent mixtures was the slower reactivity in glyceline, due to the much higher viscosity of the solution. Diffusion-ordered spectroscopy (DOSY) indicated lower water mobility in DES mixtures than pure water, with the reaction products closely associated with DES molecules. Full article
Show Figures

Graphical abstract

21 pages, 19032 KiB  
Article
Synthesis of Copper Nanowires Using Monoethanolamine and the Application in Transparent Conductive Films
by Xiangyun Zha, Depeng Gong, Wanyu Chen, Lili Wu and Chaocan Zhang
Nanomaterials 2025, 15(9), 638; https://doi.org/10.3390/nano15090638 - 22 Apr 2025
Viewed by 686
Abstract
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this [...] Read more.
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this study, Cu NWs were synthesized using copper chloride (CuCl2) as the precursor, monoethanolamine (MEA) as the complexing agent, and hydrated hydrazine (N2H4) as the reducing agent under strongly alkaline conditions at 60 °C. Notably, this is the first time that MEA has been employed as a complexing agent in this synthesis method for Cu NWs. Through a series of experiments, the optimal conditions for the CuCl2–MEA–N2H4 system in Cu NWs synthesis were determined. This study revealed that the presence of amines plays a crucial role in nanowire formation, as the co-ordination of MEA with copper in this system provides selectivity for the nanowire growth direction. MEA prevents the excessive conversion of Cu(I) complexes into Cu2O octahedral precipitates and exhibits an adsorption effect during Cu NWs formation. The different adsorption tendencies of MEA at the nanowire ends and lateral surfaces, depending on its concentration, influence the growth of the Cu NWs, as directly reflected by changes in their diameter and length. At an MEA concentration of 210 mM, the synthesized Cu NWs have an average diameter of approximately 101 nm and a length of about 28 μm. To fabricate transparent conductive films, the Cu NW network was transferred onto a polyethylene terephthalate (PET) substrate by applying a pressure of 20 MPa using a tablet press to ensure strong adhesion between the Cu NW-coated mixed cellulose ester (MCE) filter membrane and the PET substrate. Subsequently, the MCE membrane was dissolved by acetone and isopropanol immersion. The resulting Cu NW transparent conductive film exhibited a sheet resistance of 52 Ω sq−1 with an optical transmittance of 86.7%. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 3643 KiB  
Article
Unlocking Catalytic Efficiency: How Preparation Strategies and Copper Loading Enhance Hydroxyapatite Catalysts for NH3 Oxidation
by Sebastiano Campisi, Melissa Greta Galloni and Antonella Gervasini
Catalysts 2025, 15(4), 405; https://doi.org/10.3390/catal15040405 - 21 Apr 2025
Viewed by 666
Abstract
The selective catalytic oxidation of ammonia (NH3-SCO) is gaining attention due to the hazardous nature of NH3 and its inclusion in emission reduction frameworks such as the National Emission Ceilings Directive and the Gothenburg Protocol (1999). Copper-based hydroxyapatite (Cu/HAP) catalysts [...] Read more.
The selective catalytic oxidation of ammonia (NH3-SCO) is gaining attention due to the hazardous nature of NH3 and its inclusion in emission reduction frameworks such as the National Emission Ceilings Directive and the Gothenburg Protocol (1999). Copper-based hydroxyapatite (Cu/HAP) catalysts have emerged as a promising solution, offering high activity and cost-effectiveness. This study evaluated two preparation methods: a one-pot co-precipitation technique and post-synthesis copper deposition, varying both the contact time and copper concentration. The influence of copper loading and preparation method on catalyst performance in NH3-SCO was investigated in a continuous flow reactor over a temperature range of 200–500 °C, with a fixed gas hourly space velocity (GHSV) of 120,000 h1 and an NH3/O2 ratio of 0.03. X-ray diffraction and DR-UV spectroscopy confirmed the high crystallinity of HAP and provided insights into copper speciation. X-ray photoelectron spectroscopy revealed that Cu/HAP catalysts prepared via one-pot co-precipitation predominantly contained isolated Cu2+ species, which were associated with high catalytic activity in selective NH3-SCO. Conversely, a higher degree of copper structuring was observed in catalysts prepared by post-synthesis deposition, particularly at higher Cu loadings. These findings highlight the potential to tailor Cu structuring on HAP to enhance performance in NH3-SCO through optimized preparation strategies. Full article
(This article belongs to the Special Issue New Trends in Catalysis: ELITECAT 2024)
Show Figures

Graphical abstract

19 pages, 3763 KiB  
Article
Synthesis of Nitrogen-Doped Biomass-Based Activated-Carbon-Supported Nickel Nanoparticles for Hydrazine Oxidation
by Virginija Ulevičienė, Aldona Balčiūnaitė, Daina Upskuvienė, Ance Plavniece, Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Gediminas Niaura, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Catalysts 2025, 15(4), 400; https://doi.org/10.3390/catal15040400 - 19 Apr 2025
Viewed by 669
Abstract
In this study we present an application of wood biomass—alder wood char—as the carbon precursor for the synthesis of novel and sustainable nitrogen-doped activated-carbon-supported nickel nanoparticle catalyst (AWC-Ni-N) for hydrazine oxidation. For comparison, the wood-based carbon material doped with nitrogen only (AWC-N) was [...] Read more.
In this study we present an application of wood biomass—alder wood char—as the carbon precursor for the synthesis of novel and sustainable nitrogen-doped activated-carbon-supported nickel nanoparticle catalyst (AWC-Ni-N) for hydrazine oxidation. For comparison, the wood-based carbon material doped with nitrogen only (AWC-N) was also synthesized. Extensive characterization, including SEM, Raman spectroscopy, XPS, and XRD revealed the catalysts’ microstructure and properties. Electrochemical testing demonstrated that the AWC-Ni-N catalyst significantly enhanced the efficiency of the hydrazine oxidation reaction. In addition, direct N2H4-H2O2 single-fuel-cell tests were conducted using the prepared AWC-N and AWC-Ni-N catalysts as the anodes and cathodes. Peak power densities of up to 10.8 mW cm−2 were achieved at 25 °C, corresponding to a current density of 27 mA cm−2 and a cell voltage of 0.4 V when the AWC-Ni-N catalyst was used as both the anode and cathode. Furthermore, the peak power density increased by approximately 1.6 and 2.9 times, respectively, when the operating temperature was raised from 25 °C to 55 °C for the AWC-N and AWC-Ni-N catalysts. Overall, the AWC-N and AWC-Ni-N catalysts demonstrated significant potential as anode and cathode materials in direct N2H4-H2O2 fuel cells. Full article
Show Figures

Graphical abstract

Back to TopTop