Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = direct numerical simulation (DNS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

30 pages, 2664 KiB  
Article
Direct Numerical Simulation of the Differentially Heated Cavity and Comparison with the κ-ε Model for High Rayleigh Numbers
by Fernando Iván Molina-Herrera and Hugo Jiménez-Islas
Modelling 2025, 6(3), 66; https://doi.org/10.3390/modelling6030066 - 11 Jul 2025
Viewed by 216
Abstract
This study presents a numerical comparison between Direct numerical simulation (DNS) and the standard κ-ε turbulence model to evaluate natural convection in a two-dimensional, differentially heated, air-filled cavity over the Rayleigh number range 103 to 1010. The objective is to [...] Read more.
This study presents a numerical comparison between Direct numerical simulation (DNS) and the standard κ-ε turbulence model to evaluate natural convection in a two-dimensional, differentially heated, air-filled cavity over the Rayleigh number range 103 to 1010. The objective is to assess the predictive capabilities of both methods across laminar and turbulent regimes, with a particular emphasis on the quantitative comparison of thermal characteristics under high Rayleigh number conditions. The Navier–Stokes and energy equations were solved using the finite element method with Boussinesq approximation, employing refined meshes near the hot and cold walls to resolve thermal and velocity boundary layers. The results indicate that for Ra ≤ 106, the κ-ε model significantly underestimates temperature gradients, maximum velocities, and average Nusselt numbers, with errors up to 19.39%, due to isotropic assumptions and empirical formulation. DNS, in contrast, achieves global energy balance errors of less than 0.0018% across the entire range. As Ra increases, the κ-ε model predictions converge to DNS, with Nusselt number deviations dropping below 1.2% at Ra = 1010. Streamlines, temperature profiles, and velocity distributions confirm that DNS captures flow dynamics more accurately, particularly near the wall vortices. These findings validate DNS as a reference solution for high-Ra natural convection and establish benchmark data for assessing turbulence models in confined geometries Full article
Show Figures

Graphical abstract

25 pages, 14432 KiB  
Article
Source Term-Based Synthetic Turbulence Generator Applied to Compressible DNS of the T106A Low-Pressure Turbine
by João Isler, Guglielmo Vivarelli, Chris Cantwell, Francesco Montomoli, Spencer Sherwin, Yuri Frey, Marcus Meyer and Raul Vazquez
Int. J. Turbomach. Propuls. Power 2025, 10(3), 13; https://doi.org/10.3390/ijtpp10030013 - 4 Jul 2025
Viewed by 348
Abstract
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp [...] Read more.
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp element framework to introduce anisotropic turbulence into the flow field. A single sponge layer was imposed, which covers the inflow and outflow regions just downstream and upstream of the inflow and outflow boundaries, respectively, to avoid acoustic wave reflections on the boundary conditions. Additionally, in the T106A model, mixed polynomial orders were utilized, as Nektar++ allows different polynomial orders for adjacent elements. A lower polynomial order was employed in the outflow region to further assist the sponge layer by coarsening the mesh and diffusing the turbulence near the outflow boundary. Thus, this study contributes to the development of a more robust and efficient model for high-fidelity simulations of turbine blades by enhancing stability and producing a more accurate flow field. The main findings are compared with experimental and DNS data, showing good agreement and providing new insights into the influence of turbulence length scales on flow separation, transition, wake behaviour, and loss profiles. Full article
Show Figures

Graphical abstract

22 pages, 5767 KiB  
Article
Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation
by Daniel Stoll and Sergiy Antonyuk
Atmosphere 2025, 16(7), 815; https://doi.org/10.3390/atmos16070815 - 3 Jul 2025
Viewed by 329
Abstract
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition [...] Read more.
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition within wetted fibrous nonwoven filter media used in masks was carried out. Initial experimental investigations determined key properties of the filter material, including porosity, fiber diameter, and surface charge density. Using Micro-Computed Tomography (µCT), preferred locations for droplet deposition within the filter were identified. Additional experiments quantified the amount of water absorbed by the filter medium and assessed its impact on the existing electric field. Numerical simulations examined various models with differing porosity and fiber diameter, incorporating different levels of water content to analyze the changes in the electric field, flow velocity, and resulting filtration efficiency. The results provide valuable insights into the significant effects of fiber change on filtration performance, demonstrating the electret filter’s ability to partially compensate for the negative impacts of water. Full article
(This article belongs to the Special Issue Electrostatics of Atmospheric Aerosols (2nd Edition))
Show Figures

Figure 1

16 pages, 1751 KiB  
Article
Drag Reduction in Compressible Channel Turbulence with Periodic Interval Blowing and Suction
by Shibo Lee, Chenglin Zhou, Yang Zhang, Yunlong Zhao, Jiaqi Luo and Yao Zheng
Appl. Sci. 2025, 15(13), 7117; https://doi.org/10.3390/app15137117 - 24 Jun 2025
Viewed by 280
Abstract
This paper employs direct numerical simulation (DNS) to investigate the influence of blowing and suction control on the compressible fully developed turbulent flow within an infinitely long channel. The spanwise blowing strips are positioned at uniform intervals along the bottom wall of the [...] Read more.
This paper employs direct numerical simulation (DNS) to investigate the influence of blowing and suction control on the compressible fully developed turbulent flow within an infinitely long channel. The spanwise blowing strips are positioned at uniform intervals along the bottom wall of the channel, while the suction strips are symmetrically placed on the top wall. The basic flow (uncontrolled case) and the controlled cases involving global control and interval control are compared at Ma=0.8 and 1.5. Although the wall mass flow rate remains constant across all controlled cases, the applied blowing/suction intensity and spanwise strip areas exhibit significant variations. The numerical results indicate that augmenting the blowing/suction intensity will alter the velocity gradient of the viscous sublayer in the controlled region. Nonetheless, a reduction in the area of the controlled region diminishes the impact of blowing/suction on drag reduction on the entire wall. The spatially averaged velocity profiles on the wall for cases with identical wall mass flow rates are nearly indistinguishable, suggesting that the wall mass flow rate is the primary factor influencing the spatially averaged drag reduction rate on the entire wall, rather than the blowing/suction intensity or the injected energy. This is because the wall mass flow rate influences the average peak position of the Reynolds stress, which, in turn, affects the skin friction drag. An increase in the wall mass flow rate correlates with a heightened drag reduction rate on the blowing side, while simultaneously leading to a rising drag increase rate on the suction side. Full article
Show Figures

Figure 1

26 pages, 17358 KiB  
Article
Direct Numerical Simulation of Flow and Heat Transfer in a Compressor Blade Passage Across a Range of Reynolds Numbers
by Yang Liu, Chenchen Zhao, Lei Zhou, Duo Wang and Hongyi Xu
Aerospace 2025, 12(6), 563; https://doi.org/10.3390/aerospace12060563 - 19 Jun 2025
Viewed by 761
Abstract
This study employs Direct Numerical Simulation (DNS) to investigate the flow and heat transfer characteristics in a compressor blade passage at five Reynolds numbers (Re=1.091×105, 1.229×105, 1.367×105, [...] Read more.
This study employs Direct Numerical Simulation (DNS) to investigate the flow and heat transfer characteristics in a compressor blade passage at five Reynolds numbers (Re=1.091×105, 1.229×105, 1.367×105, 1.506×105, and 1.645×105). A recent method based on local inviscid velocity reconstruction is applied to define and calculate boundary layer parameters, whereas the Rortex vortex identification method is used to analyze turbulent vortical structures. Results indicate that Re significantly affects separation bubble size, transition location, and reattachment behavior, thereby altering wall heat transfer characteristics. On the pressure surface, separation and early transition are observed at higher Re, with the Nusselt number (Nu) remaining high after transition. On the suction surfaces, separation occurs such that large-scale separation at low Re reduces Nu, while reattachment combined with turbulent mixing at high Re significantly increases Nu. Turbulent vortical structures enhance near-wall fluid mixing through induced ejection and sweep events, thereby promoting momentum and heat transport. As Re increases, the vortical structures become denser with reduced scales and the peaks in heat flux move closer to the wall, thus improving convective heat transfer efficiency. Full article
Show Figures

Figure 1

49 pages, 5500 KiB  
Review
Heat Transfer Enhancement in Heat Exchangers by Longitudinal Vortex Generators: A Review of Numerical and Experimental Approaches
by Yidie Luo, Gongli Li, Nick S. Bennett, Zhen Luo, Adnan Munir and Mohammad S. Islam
Energies 2025, 18(11), 2896; https://doi.org/10.3390/en18112896 - 31 May 2025
Viewed by 1257
Abstract
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal [...] Read more.
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal performance enhancement of HE through LVGs is missing in the literature. Therefore, this study aims to provide a critical review of both numerical simulations and experimental studies focusing on the enhancement of heat transfer through LVGs to further enhance the knowledge of the field. It begins with elucidating the fundamental principles behind LVGs and delineating their role in manipulating flow patterns to augment heat transfer. This is followed by an exploration of the various numerical methods employed in the field, including computational fluid dynamics techniques such as Reynolds-Averaged Navier–Stokes (RANS) models, Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). Various experimental methods are then summarised, including differential pressure measuring instruments, temperature measurements, velocity measurements, heat transfer coefficient measurements, and flow visualisation techniques. The effectiveness of these methods in capturing the complex fluid dynamics and thermal characteristics induced by LVGs is critically assessed. The review covers a wide range of LVG configurations, including their geometry, placements, and orientations, and their effects on the thermal performance of heat exchangers. Different from previous reviews that mainly focus on classical configurations and historical studies, this review also emphasizes recent developments in computational fluid dynamics and progress in interdisciplinary fields such as innovative materials, additive manufacturing, surface finishing, and machine learning. By bridging the gap between fluid dynamics, thermal enhancement, and emerging manufacturing technologies, this paper provides a forward-looking, comprehensive analysis that is valuable for both academic and industrial innovations. Full article
Show Figures

Figure 1

20 pages, 3353 KiB  
Article
Improvements in Turbulent Jet Particle Dispersion Modeling and Its Validation with DNS
by Ege Batmaz, Florian Webner, Daniel Schmeling and Claus Wagner
Atmosphere 2025, 16(6), 637; https://doi.org/10.3390/atmos16060637 - 23 May 2025
Viewed by 485
Abstract
Particle dispersion models (PDMs) are essential to capture the influence of unresolved turbulent eddies on particle transport in computational fluid dynamics (CFD) simulations. However, the validation of these models remains challenging, especially when relying on experimental data or CFD simulations that are based [...] Read more.
Particle dispersion models (PDMs) are essential to capture the influence of unresolved turbulent eddies on particle transport in computational fluid dynamics (CFD) simulations. However, the validation of these models remains challenging, especially when relying on experimental data or CFD simulations that are based on turbulence models. In this work, we use time-averaged data obtained in a direct numerical simulation (DNS) instead of relying on turbulence models to model particle dispersion. In addition, a new particle dispersion model is presented, referred to as the limited particle–eddy interaction time (LPI) model. For a detailed and systematic evaluation of the new LPI model, we compare its performance with that of other commonly used models, such as the mean particle–eddy interaction time (MPI) model implemented in OpenFOAM® and the randomized particle–eddy interaction time (RPI) model from the literature. The MPI model shows good agreement with the DNS for the largest particles tested (Stokes number, St = 0.2) but exhibits erratic and unphysical trajectories for smaller particles (St ≤ 0.05). To mitigate this erratic behavior, we have adjusted the eddy interaction time in the new LPI model. Full article
(This article belongs to the Special Issue Numerical Simulation of Aerosol Microphysical Processes (2nd Edition))
Show Figures

Figure 1

18 pages, 2250 KiB  
Article
Combustion Characteristics of Liquid Ammonia Direct Injection Under High-Pressure Conditions Using DNS
by Ziwei Huang, Haiou Wang, Qian Meng, Kun Luo and Jianren Fan
Energies 2025, 18(9), 2228; https://doi.org/10.3390/en18092228 - 27 Apr 2025
Viewed by 513
Abstract
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet [...] Read more.
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet its combustion behavior is still not well understood. In this work, the combustion characteristics of liquid ammonia direct injection under high-pressure conditions were investigated using direct numerical simulation (DNS) in a Eulerian–Lagrangian framework. The ammonia spray was injected via a circular nozzle and underwent combustion under high-temperature and high-pressure conditions, resulting in complex turbulent spray combustion. It was found that the peaks of mass fraction of important species, heat release rate, and gaseous temperature increase with increasing axial distance, and the peaks shifted to richer mixtures. The distribution of scalar dissipation rate at various locations is nearly log-normal. The budget analysis of species transport equations shows that the reaction term is much larger than the diffusion term, suggesting that auto-ignition plays a predominant role in turbulent ammonia spray flame stabilization. It can be observed that both non-premixed and premixed combustion modes co-exist in the ammonia spray combustion. Moreover, the contribution of premixed combustion becomes more significant as the axial distance increases. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

21 pages, 20931 KiB  
Article
Numerical Study on the Dynamics and Thermal Effects of Bubble Stable Cavitation in Focused Ultrasound Fields
by Tianyang Huang, Jing Zhang, Jiacheng Ye and Zhekai Gao
Processes 2025, 13(4), 951; https://doi.org/10.3390/pr13040951 - 23 Mar 2025
Viewed by 546
Abstract
In order to investigate the bubble dynamics and thermal effects of stable cavitation under different acoustic fields, this study computes and analyzes a series of DNS (Direct Numerical Simulation) approaches with the VOF (Volume of Fluid) method. The analysis focuses on bubble clusters [...] Read more.
In order to investigate the bubble dynamics and thermal effects of stable cavitation under different acoustic fields, this study computes and analyzes a series of DNS (Direct Numerical Simulation) approaches with the VOF (Volume of Fluid) method. The analysis focuses on bubble clusters with a radius of 1.5 μm and a void ratio of 106, commonly encountered in ultrasound therapy. Firstly, the results show that the thermal effects of bubble cavitation are non-linearly positively correlated with the ultrasound amplitude and the volume changes of the bubbles. Meanwhile, acoustic scattering caused by ultrasound passing through the bubbles leads to acoustic pressure focusing, intensifying cavitation. Secondly, the thermal effect is most evident at an acoustic frequency of 250 kHz. When the ultrasound input frequency is higher than 250 kHz, acoustic attenuation occurs, while at frequencies lower than 250 kHz, the efficiency of bubbles’ energy absorption reduces. Finally, when the acoustic pressure amplitude on the bubble surface is above 210 kPa, the thermal effect of cavitation is significantly enhanced. However, the temperature rise in the flow domain gradually slows with time and eventually reaches a fixed rate. To sum up, to optimize and control the thermal effects of ultrasound therapy, the ultrasound frequency and amplitude must be carefully selected based on the targeted bubble cluster. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 6517 KiB  
Article
Direct Numerical Simulation of Boundary Layer Transition Induced by Roughness Elements in Supersonic Flow
by Haiyang Wang, Zaijie Liu, Hexia Huang, Huijun Tan and Dan Zhao
Aerospace 2025, 12(3), 242; https://doi.org/10.3390/aerospace12030242 - 15 Mar 2025
Viewed by 666
Abstract
Current research on the transition mechanisms induced by moderate-height roughness elements remains insufficiently explored. Hence, direct numerical simulation (DNS) and BiGlobal stability analysis are employed in this study to investigate boundary layer transition from laminar to turbulent flow induced by moderate-height isolated roughness [...] Read more.
Current research on the transition mechanisms induced by moderate-height roughness elements remains insufficiently explored. Hence, direct numerical simulation (DNS) and BiGlobal stability analysis are employed in this study to investigate boundary layer transition from laminar to turbulent flow induced by moderate-height isolated roughness elements and roughness strips under a supersonic freestream at Mach 3.5. Analysis of DNS results reveals that the isolated roughness element induces transition within the boundary layer, characterized by two high-speed streaks in the wake. This transition is attributed to the coupling between the separated shear layer at the roughness apex and the downstream counter-rotating vortex pair (CVP). BiGlobal stability analysis further identifies that symmetric eigenmodes dominate the transition process in the wake, actively promoting flow destabilization. Conversely, the roughness strip configuration suppresses transition, with only attenuated high-speed streaks persisting in the near wake before complete dissipation. The wake flow exhibits multiple CVPs and adjacent horseshoe vortex pairs interacting with the shear layer, with antisymmetric modes dominating this process. These findings provide technical foundations and theoretical frameworks for predicting and controlling roughness-induced transition. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

20 pages, 5395 KiB  
Article
From Direct Numerical Simulations to Data-Driven Models: Insights into Mean Velocity Profiles and Turbulent Stresses in Channel Flows
by Apostolos Palasis, Antonios Liakopoulos and George Sofiadis
Modelling 2025, 6(1), 18; https://doi.org/10.3390/modelling6010018 - 23 Feb 2025
Viewed by 1517
Abstract
In this paper, we compare three mathematical models for the mean velocity and Reynolds stress profiles for fully developed pressure-driven turbulent channel flow with the aim of assessing the level of accuracy of each model. Each model is valid over the whole boundary [...] Read more.
In this paper, we compare three mathematical models for the mean velocity and Reynolds stress profiles for fully developed pressure-driven turbulent channel flow with the aim of assessing the level of accuracy of each model. Each model is valid over the whole boundary layer thickness (0 y δ), and it is formulated in terms of a law of the wall and a law of the wake. To calibrate the mathematical models, we use data obtained by direct numerical simulations (DNS) of pressure-driven turbulent channel flow in the range 182 Reτ 10,049. The models selected for performance evaluation are two models (Musker’s and AL84) originally developed based on high Reynolds boundary layer experimental data and Luchini’s model, which was developed when some DNS data were also available for wall-bounded turbulent flows. Differences are quantified in terms of local relative or absolute errors. Luchini’s model outperforms the other two models in the “low” and “intermediate” Reynolds number cases (Reτ= 182 to 5186). However, for the “high” Reynolds number cases (Reτ= 8016 and Reτ= 10,049). Luchini’s model exhibits larger errors than the other two models. Both Musker’s and AL84 models exhibit comparable accuracy levels when compared with the DNS datasets, and their performance improves as the Reynolds number increases. Full article
Show Figures

Figure 1

17 pages, 1103 KiB  
Article
Numerical Evaluation of the IMERSPEC Methodology and Spalart–Allmaras Turbulence Model in Fully Developed Channel Flow Simulations
by Laura Augusta Vasconcelos de Albuquerque, Mariana Fernandes dos Santos Villela and Felipe Pamplona Mariano
Fluids 2025, 10(2), 45; https://doi.org/10.3390/fluids10020045 - 11 Feb 2025
Cited by 2 | Viewed by 1075
Abstract
This study evaluates the performance of the IMERSPEC methodology combined with the Spalart–Allmaras turbulence model for simulating fully developed turbulent flows in a plane channel. Turbulent flows, known for their complexity, require numerical methods that balance computational efficiency with accuracy. The IMERSPEC approach, [...] Read more.
This study evaluates the performance of the IMERSPEC methodology combined with the Spalart–Allmaras turbulence model for simulating fully developed turbulent flows in a plane channel. Turbulent flows, known for their complexity, require numerical methods that balance computational efficiency with accuracy. The IMERSPEC approach, recognized for its spectral accuracy and efficiency, was applied alongside the Spalart–Allmaras model, valued for its simplicity and robustness in representing turbulence, particularly in scenarios where flow over solid surfaces is critical. Simulations were conducted at Reynolds numbers (Reτ) of 180, 550, and 1000, with results validated against direct numerical simulation (DNS) data. The study investigated various grid resolutions, revealing that finer meshes substantially enhance accuracy by mitigating velocity profile oscillations and reducing the L2 error norm. Key findings highlight the method’s ability to accurately replicate turbulent flow characteristics, including velocity distributions and shear stress profiles, while maintaining a favorable computational cost-to-accuracy ratio. This work provides valuable insights into turbulence modeling, demonstrating the potential of the IMERSPEC methodology for practical engineering applications. Full article
Show Figures

Figure 1

35 pages, 6742 KiB  
Article
Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM
by Zhuoneng Li and Zeeshan A. Rana
Aerospace 2025, 12(2), 108; https://doi.org/10.3390/aerospace12020108 - 31 Jan 2025
Cited by 1 | Viewed by 1097
Abstract
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied [...] Read more.
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied to the flow around a NACA0012 airfoil at a Reynolds number which involves key flow phenomena such as laminar separation, transition to turbulence, and flow reattachment. Simulations are conducted using the open-source computational fluid dynamics package OpenFOAM, with a second-order implicit Euler scheme for time integration and the Pressure-Implicit Splitting Operator (PISO) algorithm for pressure–velocity coupling. The results are compared against direct numerical simulation (DNS) for the same flow conditions. Key metrics, including the pressure coefficient and reattached turbulent velocity profiles, show excellent agreement between the iLES and DNS reference results. However, both iLES and LES predict a thinner separation bubble in the transitional flow region then DNS. Notably, the iLES approach achieved a 35% reduction in mesh resolution relative to wall-resolving LES, and a 70% reduction relative to DNS, while maintaining satisfactory accuracy. The study also captures detailed instantaneous flow evolution on the airfoil’s upper surface, with evidence suggesting that three-dimensional disturbances arise from interactions between separating boundary layers near the trailing edge. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

14 pages, 3431 KiB  
Article
Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis
by Sarah Kerdi, Adnan Qamar, Henry J. Tanudjaja and Noreddine Ghaffour
Membranes 2025, 15(1), 32; https://doi.org/10.3390/membranes15010032 - 16 Jan 2025
Cited by 3 | Viewed by 1434
Abstract
Reverse osmosis (RO) filtration performance is heavily influenced by the design of the feed spacer. Spacer design impacts hydrodynamic patterns within the system, affecting water production and concentration polarization. Two spacer designs, namely pillar (P) and standard (S), were investigated to improve the [...] Read more.
Reverse osmosis (RO) filtration performance is heavily influenced by the design of the feed spacer. Spacer design impacts hydrodynamic patterns within the system, affecting water production and concentration polarization. Two spacer designs, namely pillar (P) and standard (S), were investigated to improve the performance of a commercially available spacer design (C) in the RO process. Two approaches were employed to evaluate spacer performance. First, direct numerical simulation (DNS) was utilized to fundamentally understand the hydrodynamics generated by each spacer design. Second, laboratory RO experiments were conducted to confirm the simulation results. The P and S spacers induced higher flow velocity and vorticity than the C spacer, as confirmed by simulations and experiments. Reduced dead zones were also demonstrated using P and S spacers. However, the standard spacer design exhibited a clear advantage in promoting more efficient mixing within the filtration channels. This enhanced mixing substantially reduced salt concentration at the membrane surface, improving the filtration performance. In agreement with the permeation velocity computation, the S spacer achieved the highest improvement (13%) in both flux yield and specific flux relative to the C spacer. This finding confirms the S spacer’s ability to enhance RO performance while reducing energy consumption. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

Back to TopTop