Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = dipolar cycloaddition reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3491 KB  
Review
2-Azidobenzaldehyde-Enabled Construction of Quinazoline Derivatives: A Review
by Weiqi Qiu, Desheng Zhan, Xiaoming Ma and Xiaofeng Zhang
Int. J. Mol. Sci. 2025, 26(18), 8955; https://doi.org/10.3390/ijms26188955 - 14 Sep 2025
Viewed by 768
Abstract
Quinazoline is a privileged heterocyclic scaffold commonly found in numerous pharmaceuticals and bioactive natural products, known for its diverse biological activities. The pursuit of efficient and versatile synthetic methods to produce quinazoline derivatives remains a central focus for organic and medicinal chemists, owing [...] Read more.
Quinazoline is a privileged heterocyclic scaffold commonly found in numerous pharmaceuticals and bioactive natural products, known for its diverse biological activities. The pursuit of efficient and versatile synthetic methods to produce quinazoline derivatives remains a central focus for organic and medicinal chemists, owing to the therapeutic potential of these compounds. This paper reviews the innovative use of 2-azidobenzaldehyde-enabled annulation strategies for the synthesis of quinazoline derivatives, including quinazolin-4(3H)-one, 2,3-dihydroquinazolin-4(1H)-one, 3,4-dihydroquinazoline, 3,4-dihydroquinazoline-2(1H)-thione, and 1,2,3,4-tetrahydroquinazoline. Emphasizing both the mechanistic insights and practical advantages, this review highlights the efficacy and applicability of these methods in the domain of heterocyclic chemistry, providing an invaluable framework for future drug discovery and development efforts. Full article
Show Figures

Figure 1

21 pages, 4814 KB  
Article
Study of 1,3-Dipolar Cycloaddition Between 4-Acyl-1H-pyrrole-2,3-diones Fused at the [e]-Side with a Heterocyclic Moiety and Diphenylnitrone: A Comprehensive MEDT, Docking Approach and MD Simulation
by Soukaina Ameur, Agnieszka Kącka-Zych, Ziad Moussa, Reem I. Alsantali, Abdellah Zeroual, Mustafa S. Alluhaibi, Abdulrahman A. Alsimaree and Saleh A. Ahmed
Molecules 2025, 30(18), 3718; https://doi.org/10.3390/molecules30183718 - 12 Sep 2025
Viewed by 509
Abstract
In this article, the 1,3-dipolar cycloaddition (1,3-DC) reactions between 4-acyl-1H-pyrrole-2,3-diones fused at the [e]-side with a heterocyclic moiety (FPDs) and diphenylnitrone are studied using Molecular Electron Density Theory (MEDT) at different computational levels. An analysis of the global reactivity descriptors has determined the [...] Read more.
In this article, the 1,3-dipolar cycloaddition (1,3-DC) reactions between 4-acyl-1H-pyrrole-2,3-diones fused at the [e]-side with a heterocyclic moiety (FPDs) and diphenylnitrone are studied using Molecular Electron Density Theory (MEDT) at different computational levels. An analysis of the global reactivity descriptors has determined the role of the reagents. FPDs will act as electrophiles, while diphenylnitrone will be a nucleophile. It was found that the reactions proceed according to a one-step but asynchronous mechanism. Additionally, based on the Bonding Evolution Theory (BET) analysis of the model 1,3-DC reaction between FPDs 1b and diphenylnitrone 2, we can distinguish eight different phases. The formation of the first C1-O5 single bond takes place in phase VII through the disappearance of the V(C1) monosynaptic basin and the depopulation of the V″(O5) monosynaptic basin, while the formation of the second C2-C3 single bond begins at the last phase of the reaction through the connection of two V(C2) and V(C3) monosynaptic basins. Based on this, we can classify this reaction as a “one-step two-stage” process. Furthermore, molecular dynamics (MD) simulation analysis up to 100 ns demonstrated the stability of both the 2P3B–Ligand1 and 2P3B–Zidovudine complexes. An enhancer of shape compression was generated for ligand1, whereas Zidovudine generated a more packed and stable hydrogen bond network that would allow a better occupancy of the active site. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

25 pages, 6231 KB  
Review
1,3-Dipolar Cycloaddition of Nitrile Imines and Nitrile Oxides to Exocyclic C=N Bonds—An Approach to Spiro-N-Heterocycles
by Juliana V. Petrova, Maxim E. Kukushkin and Elena K. Beloglazkina
Int. J. Mol. Sci. 2025, 26(17), 8673; https://doi.org/10.3390/ijms26178673 - 5 Sep 2025
Viewed by 1236
Abstract
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with [...] Read more.
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with these dipoles, spiro-fused 1,2,4-triazoline or 1,2,4-oxadiazoline cycles are formed. Such reactions can provide efficient synthetic approaches to spiro-heterocyclic compounds with enhanced biological activity. This review comprehensively summarizes the literature data on the 1,3-dipolar cycloaddition of nitrile imines and nitrile oxides to exo-C=N bonds for spiro compound synthesis. The research area covers reactions of both saturated and unsaturated dipolarophiles, monocyclic and polycyclic molecules, as well as compounds containing one to three heteroatoms, with special emphasis on systems containing biologically significant heterocyclic pharmacophores. Recent advances in reaction techniques, such as microwave and ultrasonic activation, as well as one-pot and diffusion protocols, are also mentioned. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

24 pages, 2706 KB  
Article
Functionalized Indolizines as Potential Anticancer Agents: Synthetic, Biological and In Silico Investigations
by Roxana Ciorteanu, Catalina Ionica Ciobanu, Narcis Cibotariu, Sergiu Shova, Vasilichia Antoci, Ionel I. Mangalagiu and Ramona Danac
Int. J. Mol. Sci. 2025, 26(17), 8368; https://doi.org/10.3390/ijms26178368 - 28 Aug 2025
Viewed by 806
Abstract
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was [...] Read more.
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was carried out using the 1,3-dipolar cycloaddition of pyridinium N-ylides to ethyl propiolate as a key step. Spectral characterization (using NMR, FT-IR, HRMS and X-ray diffraction) showed that two types of cycloadducts 5af and 6af were obtained when the ylides generated by the 3-bromopyridinium salts were used as 1,3-dipoles in Huisgen cycloaddition reactions to ethyl propiolate. The anticancer effect of selected compounds was in vitro assessed against the National Cancer Institute (NCI) panel of 60 human tumor cells, at 10 μM concentration, with three compounds (5c, 6c and 7g) showing promising inhibitory activity on the growth of several cell lines including lung, brain, renal cancer and melanoma, as well as a cytotoxic effect against HOP-62 non-small cell lung cells (34% for compound 5c and 15% for compound 7g) and SNB-75 glioblastoma cells (15% for compound 5c and 14% for derivative 7c). Molecular docking revealed favorable binding affinities for 5c, 6c and 7g (–9.22 to –9.88 kcal/mol) at the colchicine-binding site of tubulin with key interactions involving βASN-258, βALA-317, and βLYS-352 residues for 5c, βASN-258 in case of 6c, and αVAL-181 and βLYS-254 for derivative 7g. According to the in silico ADMET analysis, the active compounds are predicted to exhibit good oral bioavailability, promising drug-like qualities and low toxicity risks. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

7 pages, 1218 KB  
Communication
Synthesis of Novel Spiro-Isoxazolidine Derivatives of 9α-Hydroxyparthenolide
by Mohamed Zaki, Mohammed Loubidi and Sabine Berteina-Raboin
Molbank 2025, 2025(3), M2054; https://doi.org/10.3390/M2054 - 28 Aug 2025
Viewed by 523
Abstract
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition [...] Read more.
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition of its exocyclic double bond with various nitrones. These compounds were fully characterized by spectroscopic methods. Full article
Show Figures

Figure 1

24 pages, 1892 KB  
Article
Construction of 1,2,3-Triazole-Embedded Polyheterocyclic Compounds via CuAAC and C–H Activation Strategies
by Antonia Iazzetti, Dario Allevi, Giancarlo Fabrizi, Yuri Gazzilli, Antonella Goggiamani, Federico Marrone, Francesco Stipa, Karim Ullah and Roberta Zoppoli
Molecules 2025, 30(12), 2588; https://doi.org/10.3390/molecules30122588 - 13 Jun 2025
Viewed by 709
Abstract
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed [...] Read more.
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed protocol for the synthesis of functionalized 7,10-dihydropyrrolo[3,2,1-ij][1,2,3]triazolo[4,5-c]quinolines and 5,8-dihydrobenzo[3,4][1,2,3]triazolo[4′,5′:5,6]azepino[1,2-a]indoles from suitable bromo-substituted N-propargyl-indoles. The reaction conditions demonstrate broad functional group compatibility including halogen, alkoxyl, cyano, ketone, and ester, affording the target compounds in good to high yields. Full article
Show Figures

Graphical abstract

16 pages, 1321 KB  
Article
Solvent-Free 1,3-Dipolar Cycloadditions of Nitrones for a More Sustainable Synthesis of Glycomimetics
by Debora Pratesi, Alessio Morano, Andrea Goti, Francesca Cardona and Camilla Matassini
Reactions 2025, 6(2), 36; https://doi.org/10.3390/reactions6020036 - 5 Jun 2025
Viewed by 1556
Abstract
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green [...] Read more.
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green protocols. In the present work, these features were maximized by avoiding the use of organic solvents and considering starting materials derived from biomass. Reactions involving (acyclic and cyclic) carbohydrate-derived nitrones as dipoles and levoglucosenone as dipolarophile were considered. Performing selected 1,3-dipolar cycloadditions in neat conditions showed reduced reaction times, maintaining similar selectivity and yields with respect to the classical protocols. The use of microwave irradiation and orbital shaking were also exploited to increase the sustainability of the synthetic protocols. The collected results highlight the potential of solvent-free 1,3-dipolar cycloadditions in the design of efficient synthetic routes according to green chemistry principles, such as prevention, atom economy, safer solvents and auxiliaries, and use of renewable feedstocks. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

40 pages, 12551 KB  
Review
1,3-Dipolar Cycloaddition and Mannich Reactions of Alkynyl Triterpenes: New Trends in Synthetic Strategies and Pharmacological Applications
by Anastasiya V. Petrova and Oxana B. Kazakova
Int. J. Mol. Sci. 2025, 26(9), 4329; https://doi.org/10.3390/ijms26094329 - 2 May 2025
Viewed by 727
Abstract
Nitrogen-containing substitutes, such as 1,2,3-triazoles and Mannich bases, are major pharmacophore systems, among others. The presented review summarizes the recent advances (2019–2024) in the synthesis of 1,2,3-triazoles and Mannich bases conjugated with a triterpenic core. These structural modifications have proven to be effective [...] Read more.
Nitrogen-containing substitutes, such as 1,2,3-triazoles and Mannich bases, are major pharmacophore systems, among others. The presented review summarizes the recent advances (2019–2024) in the synthesis of 1,2,3-triazoles and Mannich bases conjugated with a triterpenic core. These structural modifications have proven to be effective strategies for modulating the biological activity of triterpenes, with particular emphasis on antitumor and antiviral properties. Recent efforts in expanding the structural diversity of triazoles through A-ring modifications and C28 (or C30) substitutions are discussed. Notably, the first examples of N-alkylation of indole triterpenoids by propargyl bromide are presented, along with the application of propargylamine in the synthesis of rare triterpenic aldimines. The review also covers an application of triterpene alkynes in Mannich base synthesis, focusing on functionalization at various positions, including C28 and C19 of the lupane platform, and incorporating of amino acid spacers. While significant progress has been made both in synthetic strategies and pharmacological applications, further research is needed to fully explore the antibacterial, anti-inflammatory, and antidiabetic potential. The review will be useful to researchers in the fields of organic synthesis, natural product and medicinal chemistry, and pharmacology. Full article
Show Figures

Figure 1

15 pages, 794 KB  
Article
Pharmacochemical Studies of Synthesized Coumarin–Isoxazole–Pyridine Hybrids
by Matina D. Douka, Ioanna M. Sigala, Catherine Gabriel, Eleni Nikolakaki, Dimitra J. Hadjipavlou-Litina and Konstantinos E. Litinas
Molecules 2025, 30(7), 1592; https://doi.org/10.3390/molecules30071592 - 2 Apr 2025
Cited by 1 | Viewed by 1542
Abstract
Several new coumarin–isoxazole–pyridine hybrids were synthesized through a 1,3-dipolar cycloaddition reaction of nitrile oxides, prepared in situ from pyridine aldehyde oximes, with propargyloxy- or propargylaminocoumarins in moderate-to-good yields. Synthetic modifications were applied using (diacetoxyiodo)benzene (PIDA) at room temperature, microwave irradiation, or tert-butyl nitrite [...] Read more.
Several new coumarin–isoxazole–pyridine hybrids were synthesized through a 1,3-dipolar cycloaddition reaction of nitrile oxides, prepared in situ from pyridine aldehyde oximes, with propargyloxy- or propargylaminocoumarins in moderate-to-good yields. Synthetic modifications were applied using (diacetoxyiodo)benzene (PIDA) at room temperature, microwave irradiation, or tert-butyl nitrite (TBN) under reflux. Coumarin, isoxazole, and pyridine groups were selected for hybridization in one molecule due to their biological impact to inhibit lipid peroxidation and an enzyme implicated in inflammation. Preliminary in vitro screening tests for lipoxygenase (LOX) inhibition and anti-lipid peroxidation for the new hybrids were performed. A discussion on the structure–activity relationship is presented. Compounds 12b and 13a were found to be potent LOX inhibitors with IC50 5 μΜ and 10 μΜ, respectively, while 12b presented high (90.4%) anti-lipid peroxidation. Furthermore, hybrids 12b and 13a exhibited moderate-to-low anticancer activities on HeLa, HT-29, and H1437 cancer cells. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Scheme 1

12 pages, 3217 KB  
Article
Decarboxylation-Driven Double Annulations: Innovative Multi-Component Reaction Pathways
by Desheng Zhan, Gang Yang, Tieli Zhou, Sashirekha Nallapati and Xiaofeng Zhang
Molecules 2025, 30(7), 1594; https://doi.org/10.3390/molecules30071594 - 2 Apr 2025
Cited by 1 | Viewed by 715
Abstract
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids [...] Read more.
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids have been employed for a thorough evaluation and exploration of decarboxylation-driven double annulations. This method effectively constructs pyrrolizidine frameworks through a concerted double 1,3-dipolar cycloaddition with aspartic acid, as well as tetrahydropyrrolizinones via three-component double annulations, which include decarboxylative 1,3-dipolar cycloaddition and lactamization with glutamic acid. These highly convergent, decarboxylation-driven multicomponent reactions (MCRs) efficiently produce fused polyheterocyclic systems while being environmentally friendly, generating only CO2 and water as byproducts. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry with Applications (Second Edition))
Show Figures

Figure 1

17 pages, 3109 KB  
Article
Surface Grafting of Graphene Flakes with Fluorescent Dyes: A Tailored Functionalization Approach
by Ylea Vlamidis, Carmela Marinelli, Aldo Moscardini, Paolo Faraci, Stefan Heun and Stefano Veronesi
Nanomaterials 2025, 15(5), 329; https://doi.org/10.3390/nano15050329 - 20 Feb 2025
Viewed by 1205
Abstract
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions [...] Read more.
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes. In the present work, this method has been extended to graphene flakes with low defect concentration. A key innovation is the use of a custom-synthesized ylide with a protected amine group (Boc), facilitating subsequent attachment of functional molecules. Indeed, after Boc cleavage, fluorescent dyes (Atto 425, 465, and 633) were covalently linked via NHS ester derivatization. This approach represents a highly selective method of minimizing structural damage. Successful functionalization was demonstrated by Raman spectroscopy, photoluminescence spectroscopy, and confocal microscopy, confirming the effectiveness of the method. This novel approach offers a versatile platform, enabling its use in biological imaging, sensing, and advanced nanodevices. The method paves the way for the development of sensors and devices capable of anchoring a wide range of molecules, including quantum dots and nanoparticles. Therefore, it represents a significant advancement in graphene-based technologies. Full article
Show Figures

Figure 1

18 pages, 7491 KB  
Article
Mussel-Inspired Hydrogels Incorporating Graphite Derivatives for Soft Tissue Regeneration
by Filipa Fernandes, Daniela Peixoto, Cátia Correia, Magda Silva, Maria C. Paiva and Natália M. Alves
Nanomaterials 2025, 15(4), 276; https://doi.org/10.3390/nano15040276 - 12 Feb 2025
Viewed by 951
Abstract
Hyaluronic acid (HA)-based hydrogels offer a promising approach for soft tissue application due to their biocompatibility, tunable mechanical properties, ability to mimic the extracellular matrix, and capacity to support cell adhesion and proliferation. In this work, bioadhesive composite hydrogels were developed by integrating [...] Read more.
Hyaluronic acid (HA)-based hydrogels offer a promising approach for soft tissue application due to their biocompatibility, tunable mechanical properties, ability to mimic the extracellular matrix, and capacity to support cell adhesion and proliferation. In this work, bioadhesive composite hydrogels were developed by integrating graphite derivatives (EG) into a dopamine-modified HA matrix (HA-Cat), which enhances tissue adhesion through catechol groups that mimic mussel-inspired adhesion mechanisms. The EG was functionalized via 1,3-dipolar cycloaddition reaction (f-EG), that allowed the anchoring of silver nanoparticles (f-EG-Ag) and grafting of hydrocaffeic acid (f-EG-Cat) on the functionalized EG surfaces. The hydrogels were produced by oxidative crosslinking of HA-Cat under mild basic pH conditions using sodium periodate. Indirect in vitro assays using L929 fibroblast cells showed high biocompatibility and enhanced cell proliferation at optimized composite hydrogel concentrations. These findings suggest that composite hydrogels could find an application as bioactive, adhesive scaffolds for the regeneration of soft tissues, where they can facilitate localized agent delivery and integration with the host tissue. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

25 pages, 4457 KB  
Article
Pyrrolizine- and Indolizine-Derived Spirooxindoles: Synthesis, Antibacterial Activity and Inverse Docking Analysis
by Pablo Romo, María del Pilar Crespo, Mauricio Barreto, María Elena Burbano, Melissa Mejia-Gutierrez, Jairo Quiroga and Rodrigo Abonia
Chemistry 2025, 7(1), 18; https://doi.org/10.3390/chemistry7010018 - 1 Feb 2025
Cited by 1 | Viewed by 1955
Abstract
Spirooxindoles are a family of heterocyclic compounds which bear the oxindole nucleus in their structures, which have a considerable pharmaceutical potential and which have been linked to various drugs for the treatment of diverse diseases. In this work, a wide variety of spirooxindoles [...] Read more.
Spirooxindoles are a family of heterocyclic compounds which bear the oxindole nucleus in their structures, which have a considerable pharmaceutical potential and which have been linked to various drugs for the treatment of diverse diseases. In this work, a wide variety of spirooxindoles bearing a pyrrolizinic nucleus were obtained by a 1,3-dipolar cycloaddition reaction between substituted isatins, trans-3-benzoyl acrylic acid and L-proline. In this approach, the target products 9am were obtained in 40–86% yields under heating to reflux in methanol over 2 h. Similarly, spirooxindoles containing an indolizinic nucleus 11aj were obtained in 45–69% yields by switching L-proline for pipecolic acid under heating to reflux in acetonitrile for 8 h. The antibacterial activity of the obtained products was evaluated against P. aeruginosa, K. pneumoniae, E. coli, S. aureus, and N. gonorrhoeae, also including an inverse docking analysis. Results show that 9f and 11i, were the most active compounds against S. aureus, while compounds 9d and 9m displayed the higher activity against N. gonorrhoeae. Inverse docking analysis showed that compounds 9b, 11a 11e, and 11i displayed high affinity to the target protein 6TYM and 7Q6S, which are involved in biological pathways of diverse cancer and Parkinson diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

23 pages, 10860 KB  
Article
Studies of the Synthesis of Fused Isoxazoline/Isoquinolinones and Evaluation of the Antifungal Activity of Isoxazole-like Benzamide and Isoquinolinone Hybrids
by Konstantinos A. Ouzounthanasis, Jasmina Glamočlija, Ana Ćirić and Alexandros E. Koumbis
Molecules 2025, 30(3), 589; https://doi.org/10.3390/molecules30030589 - 27 Jan 2025
Cited by 1 | Viewed by 1712
Abstract
Isoxazole derivatives (isoxazoles, isoxazolines, and isoxazolidines) are present in the structure of several natural products and/or pharmaceutically interesting compounds. In this work, a synthetic study for the preparation of fused isoxazoline/isoquinolinone hybrids is presented. The initial approach involving the sequential 1,3-dipolar cycloaddition of [...] Read more.
Isoxazole derivatives (isoxazoles, isoxazolines, and isoxazolidines) are present in the structure of several natural products and/or pharmaceutically interesting compounds. In this work, a synthetic study for the preparation of fused isoxazoline/isoquinolinone hybrids is presented. The initial approach involving the sequential 1,3-dipolar cycloaddition of nitrile oxides to indenone (to obtain the isoxazoline ring) and a Beckmann rearrangement (to construct the isoquinolinone lactam system) was complicated by the formation of fragmentation products during the latter. Therefore, the desired hybrids were successfully reached by applying DDQ-mediated oxidation of the respective isoxazolidines. Based on the results, key observations were made regarding the mechanism of the Beckmann reaction. Moreover, selected isoxazole benzamides and fused isoxazoline/isoxazolidine isoquinolinones were in vitro evaluated against a series of fungi strains (including a 2D checkerboard assay with ketoconazole), revealing that some of these compounds exhibit promising antifungal activity. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

9 pages, 1639 KB  
Article
A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction
by Jessica Master, Shekiel Sydney, Harsha Rajapaske, Malek Saffiddine, Vikiana Reyes and Richard W. Denton
Reactions 2024, 5(4), 1080-1088; https://doi.org/10.3390/reactions5040057 - 16 Dec 2024
Cited by 3 | Viewed by 1640
Abstract
The microwave-assisted 1,3-dipolar cycloaddition reaction of several aldoximes and dimethyl-2-methylene glutarate in the presence of diacetoxyiodobenzene as an oxidant produced four new isoxazoline-derived dimethyl carboxylates. Saponification followed by acidification of the latter yielded novel isoxazoline dicarboxylic acids in reasonable to high yields. The [...] Read more.
The microwave-assisted 1,3-dipolar cycloaddition reaction of several aldoximes and dimethyl-2-methylene glutarate in the presence of diacetoxyiodobenzene as an oxidant produced four new isoxazoline-derived dimethyl carboxylates. Saponification followed by acidification of the latter yielded novel isoxazoline dicarboxylic acids in reasonable to high yields. The structures of these novel compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. Their biological activities disclosed higher inhibition of the growth of E. coli organisms by the aromatic compounds than by the aliphatic derivatives, demonstrating their potential in antibiotics research. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

Back to TopTop