Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = diode supply current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4537 KiB  
Article
A 0.049 mm2 0.5-to-5.8 GHz LNA Achieving a Flat High Gain Based on an Active Inductor and Low Capacitive ESD Protection
by Dawei Dong, Zhenrong Li, You Quan, Xuanzhang He, Junyi Zhang, Chengzhi Li and Liyan Yu
Micromachines 2025, 16(8), 852; https://doi.org/10.3390/mi16080852 - 24 Jul 2025
Viewed by 221
Abstract
This paper introduces a 0.5–5.8 GHz low-noise amplifier (LNA) incorporating a gyrator-C-based active inductor (AI) and an enhanced deep trench isolation (DTI) electrostatic discharge (ESD) diode. Results suggest that AIs exhibit excellent consistency under various process voltage temperatures (PVTs) as well as input [...] Read more.
This paper introduces a 0.5–5.8 GHz low-noise amplifier (LNA) incorporating a gyrator-C-based active inductor (AI) and an enhanced deep trench isolation (DTI) electrostatic discharge (ESD) diode. Results suggest that AIs exhibit excellent consistency under various process voltage temperatures (PVTs) as well as input powers and the improved DTI diodes reduce parasitic capacitance by an average of 8.5% compared to conventional ones. In terms of circuit design, comprehensive analyses of gain flatness and noise are conducted. Fabricated using a 0.18 μm SiGe BiCMOS technology, the LNA delivers a high S21 of 18.3 ± 0.3 dB, a minimum noise figure of 2.6 dB, and an S11 and S22 of less than −10 dB over the entire frequency band. Operating from a 3.3 V supply voltage with a core area of 0.049 mm2, it consumes 10 mA of current. Full article
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 406
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

28 pages, 9836 KiB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 398
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

18 pages, 405 KiB  
Article
Validated UHPLC Methods for Melatonin Quantification Reveal Regulatory Violations in EU Online Dietary Supplements Commerce
by Celine Vanhee, Cloë Degrève, Niels Boschmans, Yasmina Naïmi, Michael Canfyn, Eric Deconinck and Marie Willocx
Molecules 2025, 30(12), 2647; https://doi.org/10.3390/molecules30122647 - 19 Jun 2025
Viewed by 774
Abstract
The global sleep aids market has grown significantly due to rising stress and increased awareness of sleep’s importance. Melatonin, available in the EU as a prescription or over-the-counter medicine, depending on the country, is also permitted in dietary supplements with country-specific limits. Recent [...] Read more.
The global sleep aids market has grown significantly due to rising stress and increased awareness of sleep’s importance. Melatonin, available in the EU as a prescription or over-the-counter medicine, depending on the country, is also permitted in dietary supplements with country-specific limits. Recent reports indicate concerning levels of excessive melatonin in EU dietary supplements, necessitating accurate quantification methods. We developed and validated, by applying accuracy profiles, ISO17025-compliant, rapid ultra-high performance liquid chromatography (UHPLC) methodologies coupled with either diode array detection (DAD) or high-resolution accurate mass spectrometry (HRAM MS). The cost-effective UHPLC-DAD method is suitable for medicines and most dietary supplements, except those more complex herbal matrices containing passionflower, hop, hemp, lime tree or lavender or their extracts, where UHPLC-HRAM MS is recommended due to selectivity issues of the DAD methodology. To demonstrate the applicability, we analyzed 50 dietary supplements claiming to contain melatonin—25 from legal supply chains and 25 from suspicious sources claiming therapeutic melatonin content. Our findings confirmed previous reports of high melatonin content in online products, especially when purchased through rogue internet pharmacies. Moreover, 12% of legal supply chain samples violated current legislation through unauthorized health claims or contained at least triple the melatonin amount permitted in Belgium. This research provides reliable analytical methods for regulatory bodies and confirms the circulation of non-compliant melatonin-containing dietary supplements in the EU market, even in the legal supply chain. Full article
Show Figures

Graphical abstract

10 pages, 28452 KiB  
Article
Highly Linear 2.6 GHz Band InGaP/GaAs HBT Power Amplifier IC Using a Dynamic Predistorter
by Hyeongjin Jeon, Jaekyung Shin, Woojin Choi, Sooncheol Bae, Kyungdong Bae, Soohyun Bin, Sangyeop Kim, Yunhyung Ju, Minseok Ahn, Gyuhyeon Mun, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang
Electronics 2025, 14(11), 2300; https://doi.org/10.3390/electronics14112300 - 5 Jun 2025
Viewed by 439
Abstract
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc [...] Read more.
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc current. It is connected in parallel with an inter-stage of the two-stage PAIC through a series configuration of a resistor and an inductor, and features a shunt capacitor at the base of the transistor. These passive components have been optimized to enhance the linearization performance by managing the RF signal’s coupling to the diode. Using these optimized components, the AM−AM and AM−PM nonlinearities arising from the nonlinear resistance and capacitance in the diode can be effectively used to significantly flatten the AM−AM and AM−PM characteristics of the PAIC. The proposed predistorter was applied to the 2.6 GHz two-stage InGaP/GaAs HBT PAIC. The IC was tested using a 5 × 5 mm2 module package based on a four-layer laminate. The load network was implemented off-chip on the laminate. By employing a continuous-wave (CW) signal, the AM−AM and AM−PM characteristics at 2.55–2.65 GHz were improved by approximately 0.05 dB and 3°, respectively. When utilizing the new radio (NR) signal, based on OFDM cyclic prefix (CP) with a signal bandwidth of 100 MHz and a peak-to-average power ratio (PAPR) of 9.7 dB, the power-added efficiency (PAE) reached at least 11.8%, and the average output power was no less than 24 dBm, achieving an adjacent channel leakage power ratio (ACLR) of −40.0 dBc. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 3468 KiB  
Article
Three-Phase Power Factor Correction Front-End for Motor Drive Applications
by Abdulrahman Alduraibi and Abdulhakeem Alsaleem
Electronics 2025, 14(11), 2180; https://doi.org/10.3390/electronics14112180 - 27 May 2025
Viewed by 443
Abstract
Adjustable-speed drives (ASD) are extensively adopted in industrial power systems due to their ability to enhance overall efficiency by supplying optimal power to motors based on specific speed and torque requirements. While much existing research focuses on conventional diode rectifiers or voltage-source inverters [...] Read more.
Adjustable-speed drives (ASD) are extensively adopted in industrial power systems due to their ability to enhance overall efficiency by supplying optimal power to motors based on specific speed and torque requirements. While much existing research focuses on conventional diode rectifiers or voltage-source inverters as front-end solutions, this paper introduces a three-phase power factor correction (PFC) approach using a common DC-link voltage for motor drive applications. This innovative method significantly reduces input current harmonics and improves power factor with minimal active switching components and straightforward control strategies. Furthermore, the DC-link bus can be utilized for multiple motor drives as well. Both analytical and simulation studies validate the effectiveness of the proposed system, demonstrating that the input currents achieve a sine wave form with a unity power factor, while total harmonic distortion of the input current (THDi) is minimized to approximately 2% at the rated power level. Full article
Show Figures

Figure 1

18 pages, 5857 KiB  
Article
Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance
by Quanyu He, Hyunwoo Cho, Inkyum Kim, Jonghwan Lee and Daewon Kim
Polymers 2025, 17(10), 1400; https://doi.org/10.3390/polym17101400 - 20 May 2025
Viewed by 579
Abstract
Electrospinning techniques have been widely applied in diverse applications, such as biocompatible membranes, energy storage systems, and triboelectric nanogenerators (TENGs), with the capability to incorporate other functional materials to achieve specific purposes. Recently, gas sensors incorporating doped semiconducting materials fabricated by electrospinning have [...] Read more.
Electrospinning techniques have been widely applied in diverse applications, such as biocompatible membranes, energy storage systems, and triboelectric nanogenerators (TENGs), with the capability to incorporate other functional materials to achieve specific purposes. Recently, gas sensors incorporating doped semiconducting materials fabricated by electrospinning have been extensively investigated. TENGs, functioning as self-powered energy sources, have been utilized to drive gas sensors without external power supplies. Herein, a self-powered triboelectric ethanol sensor (TEES) is fabricated by integrating a TENG and an ethanol gas sensor into a single device. The proposed TEES exhibits a significantly improved response time and lower detection limit compared to published integrated triboelectric sensors. The device achieves an open-circuit voltage of 51.24 V at 800 rpm and a maximum short-circuit current of 7.94 μA at 800 rpm. Owing to the non-contact freestanding operating mode, the TEES shows no significant degradation after 240,000 operational cycles. Compared with previous studies that integrated TENGs and ethanol sensors, the proposed TEES demonstrated a marked improvement in sensing performance, with a faster response time (6 s at 1000 ppm) and a lower limit of detection (10 ppm). Furthermore, ethanol detection is enabled by modulating the gate terminal of an IRF840 metal-oxide semiconductor field-effect transistor (MOSFET), which controls the illumination of a light-emitting diode (LED). The LED is extinguished when the electrical output decreases below the setting value, allowing for the discrimination of intoxicated states. These results suggest that the TEES provides a promising platform for self-powered, high-performance ethanol sensing. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

18 pages, 8070 KiB  
Article
Millimeter-Wave Imaging with Range-Resolved 3D Depth Extraction Using Glow Discharge Detection and Frequency-Modulated Continuous Wave Radar
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Appl. Sci. 2025, 15(4), 2248; https://doi.org/10.3390/app15042248 - 19 Feb 2025
Cited by 1 | Viewed by 776
Abstract
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to [...] Read more.
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to their cost-effectiveness, robustness to high-power MMW signals, and reliable operation under diverse environmental conditions. Based on weakly ionized plasma (WIP) technology, GDDs detect changes in discharge current upon MMW exposure, providing an affordable and durable alternative to traditional MMW imaging systems. The system operates within a subset of the W-band (101–109 GHz), utilizing a customized transmitter (Tx 272 from VDI Technologies), which operates at a frequency range proportional to the VCO supply voltage level. The Frequency-Modulated Continuous Wave (FMCW) signal source is split into target and reference paths via a compact waveguide splitter, improving stability and reducing the complexity of the optical setup. Reflected signals are processed by the GDD, which functions as a heterodyne receiver, and Fast Fourier Transform (FFT) is used to extract range data. A 2D grid scanning mechanism, controlled by step motors, maps the surface of the object, while depth information is derived from FMCW frequency differentials to construct a complete 3D profile. This work demonstrates the potential of GDD-based 3D MMW imaging as a low-cost, efficient solution for security screening and industrial inspection. By addressing challenges in cost, scalability, and performance under high-power MMW signals, this approach represents a significant step forward in making MMW imaging technology more accessible, while highlighting the need for further development to achieve practical implementation. Full article
Show Figures

Figure 1

17 pages, 7949 KiB  
Article
An Ultra-Low-Power 0.8 V, 60 nW Temperature Sensor for Battery-Less Wireless Sensor Networks
by Naveed and Jeff Dix
J. Low Power Electron. Appl. 2025, 15(1), 1; https://doi.org/10.3390/jlpea15010001 - 9 Jan 2025
Viewed by 1529
Abstract
This work presents a nano-watt digital output temperature sensor featuring a supply-insensitive, self-biased current source. Second-order temperature dependencies of the MOS diode are canceled to produce a stable reference and a linear temperature-sensitive voltage. The sensor integrates a sensing unit, voltage-controlled differential ring [...] Read more.
This work presents a nano-watt digital output temperature sensor featuring a supply-insensitive, self-biased current source. Second-order temperature dependencies of the MOS diode are canceled to produce a stable reference and a linear temperature-sensitive voltage. The sensor integrates a sensing unit, voltage-controlled differential ring oscillators, and a low-power frequency-to-digital converter, utilizing a resistor-less design to minimize power and area. The delay element in the ring oscillator reduces stage count, improving noise performance and compactness. Fabricated in 65 nm CMOS, the sensor occupies 0.02 mm2 and consumes 60 nW at 25 °C and 0.8 V. Measurements show an inaccuracy of +1.5/−1.6 °C from −20 °C to 120 °C after two-point calibration, with a resolution of 0.2 °C (rms) and a resolution FoM of 0.022 nJ·K−2. Consuming 0.55 nJ per conversion with a 9.2 ms conversion time, the sensor was tested in a battery-less wireless sensor node, demonstrating its suitability for wireless sensing systems. Full article
Show Figures

Figure 1

16 pages, 1709 KiB  
Article
An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter
by Sushil Phuyal, Shashwot Shrestha, Swodesh Sharma, Rachana Subedi, Anil Kumar Panjiyar and Mukesh Gautam
Electricity 2025, 6(1), 1; https://doi.org/10.3390/electricity6010001 - 7 Jan 2025
Viewed by 1217
Abstract
With the rise of renewable energy penetration in the grid, photovoltaic (PV) panels are connected to the grid via inverters to supply solar energy. Transformer-less grid-tied PV inverters are gaining popularity because of their improved efficiency, reduced size, and lower costs. However, they [...] Read more.
With the rise of renewable energy penetration in the grid, photovoltaic (PV) panels are connected to the grid via inverters to supply solar energy. Transformer-less grid-tied PV inverters are gaining popularity because of their improved efficiency, reduced size, and lower costs. However, they can induce a path for leakage currents between the PV and the grid due to the absence of galvanic isolation. This leads to serious electromagnetic interference, loss in efficiency, and safety concerns. The leakage current is primarily influenced by the nature of the common mode voltage (CMV), which is determined by the switching techniques of the inverter. In this paper, a novel inverter topology of Hysteresis Controlled H5 with Two Clamping Diodes (HCH5-D2) is derived. The HCH5-D2 topology helps decouple the AC part (Grid) and DC part (PV) during the freewheeling period to make the CMV constant, thereby reducing the leakage current. Additionally, the extra diodes help reduce voltage spikes generated during the freewheeling period and maintain the CMV at a constant value. Finally, a 2.2 kW grid-connected single-phase HCH5-D2 PV inverter system’s MATLAB simulation is presented, showing better results compared to a traditional H4 inverter. Full article
Show Figures

Figure 1

22 pages, 10375 KiB  
Article
A Space-Vector Analysis of the Twelve-Pulse Diode Bridge Rectifier Operation for the Auxiliary Circuit Current Determination Providing the Optimal Line Currents’ THD
by Jaroslaw Rolek and Grzegorz Utrata
Energies 2025, 18(1), 90; https://doi.org/10.3390/en18010090 - 29 Dec 2024
Viewed by 965
Abstract
Three-phase diode bridge rectifiers are widely employed in various industrial applications because of their inherent simplicity, robustness, low electromagnetic interference and good overall performance. However, their use causes harmonic distortion in the electric power network line currents due to their nonlinear nature, which, [...] Read more.
Three-phase diode bridge rectifiers are widely employed in various industrial applications because of their inherent simplicity, robustness, low electromagnetic interference and good overall performance. However, their use causes harmonic distortion in the electric power network line currents due to their nonlinear nature, which, in turn, affects the electric power quality. The fundamental approach to limit the line currents’ total harmonic distortion (THD) introduced by the diode bridge rectification systems is based on increasing the number of steps in their waveform per power supply cycle and drawing them closer to the pure-sine waveforms. This can be achieved by employing the conventional twelve-pulse rectification system composed of two parallel connected six-pulse diode bridge rectifiers, in which the DC circuit is expanded on the auxiliary circuit responsible for adequately shaping the line currents’ waveforms per power supply cycle. When the auxiliary circuit is connected to the interphase reactor (IPR) additional (secondary) winding, the ability of the rectification system to reduce the line current THD depends mainly on the auxiliary circuit current waveform and its parameters. This paper provides a space vector analysis of the twelve-pulse diode bridge rectifier operation. It leads to devising a formula for the auxiliary circuit current related to the phase angle of the rectification system line currents’ space vector and the load current, which has been missing in the literature so far. The formula explicitly defines the auxiliary circuit current waveform that guarantees the optimal line currents’ THD for the twelve-pulse diode bridge rectifier which is expanded with the auxiliary circuit connected to the IPR secondary winding. The theoretical studies are validated through experimental investigations. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

20 pages, 3856 KiB  
Article
Research on Self-Recovery Ignition Protection Circuit for High-Voltage Power Supply System Based on Improved Gray Wolf Algorithm
by Jingyi Zhu, Wanlu Zhu, Haifeng Wei and Yi Zhang
Energies 2024, 17(24), 6332; https://doi.org/10.3390/en17246332 - 16 Dec 2024
Viewed by 838
Abstract
In order to solve the problems of traditional high-voltage power supply ignition protection circuits, such as non-essential start–stop power supply, a slow response speed, the system needing to be restarted manually, and so on, a high-voltage power supply system self-recovery ignition protection circuit [...] Read more.
In order to solve the problems of traditional high-voltage power supply ignition protection circuits, such as non-essential start–stop power supply, a slow response speed, the system needing to be restarted manually, and so on, a high-voltage power supply system self-recovery ignition protection circuit was designed using an IGWO (improved grey wolf optimization) and PID control strategy designed to speed up the response speed, and improve the reliability and stability of the system. In high-voltage power supply operation, the firing discharge phenomenon occurs. Current transformers fire signal into a current signal through the firing voltage value and Zener diode voltage comparison to set the safety threshold; when the threshold is exceeded, the fire protection mechanism is activated, reducing the power supply voltage output to protect the high-voltage power supply system. When the ignition signal disappears, based on the IGWO-PID control of the ignition self-recovery circuit according to the feedback voltage, the DC supply voltage of the high-voltage power supply is adjusted, inhibiting the ignition discharge and, according to the ignition signal, “segmented” to restore the output of the initial voltage. MATLAB/Simulink was used to establish a system simulation model and physical platform test. The results show that the protection effect of the designed scheme is an improvement, in line with the needs of practical work. Full article
(This article belongs to the Special Issue Advances in Stability Analysis and Control of Power Systems)
Show Figures

Figure 1

14 pages, 11563 KiB  
Article
Analysis of Circuits Supplying Thomson Coil Actuator Operating in Vacuum Contact Units of DC and AC Ultra-Fast Circuit Breakers
by Michal Rodak and Piotr Borkowski
Energies 2024, 17(22), 5809; https://doi.org/10.3390/en17225809 - 20 Nov 2024
Viewed by 1067
Abstract
The use of vacuum-hybrid DC circuit breaking methods allows the short-circuit current to be switched off in a shorter time, resulting in a reduction in the arc burning time. This requires the use of a drive, such as the Thomson Coil Actuator TCA, [...] Read more.
The use of vacuum-hybrid DC circuit breaking methods allows the short-circuit current to be switched off in a shorter time, resulting in a reduction in the arc burning time. This requires the use of a drive, such as the Thomson Coil Actuator TCA, capable of providing a short response time for opening the vacuum interrupter VI, regardless of its rated current. The IDD is powered by a pre-charged capacitor, which, together with the drive coil, forms an LC oscillating circuit that, when switched on by a thyristor, generates a current pulse of several kA with a frequency above 1 kHz. The paper investigates the effect of modifying the basic IDD power supply circuit by adding semiconductor diodes to shape the current pulse and improve its performance. The authors also focused on exploring the impact of the connection quality and their length and the associated loss in drive force while proving that a circuit with a reverse diode on the IDD coil is most beneficial and that the effect of the circuit on the front of the current pulse can significantly slow down the drive. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 8350 KiB  
Article
Low Power Emission Pulse Generation Circuit Based on n-Type Amorphous In-Ga-Zn-Oxide Transistors for Active-Matrix Organic Light-Emitting Diode Displays
by Min-Kyu Chang, Ji Hoon Kim and Hyoungsik Nam
Micromachines 2024, 15(11), 1330; https://doi.org/10.3390/mi15111330 - 30 Oct 2024
Viewed by 1114
Abstract
This paper presents a low power emission (EM) pulse generation circuit using n-type amorphous In-Ga-Zn-Oxide (a-IGZO) semiconductor thin-film transistors (TFTs). The low power consumption is achieved by avoiding the shoot-through current paths through an optimized inverter circuit. The proposed circuit consists of 12 [...] Read more.
This paper presents a low power emission (EM) pulse generation circuit using n-type amorphous In-Ga-Zn-Oxide (a-IGZO) semiconductor thin-film transistors (TFTs). The low power consumption is achieved by avoiding the shoot-through current paths through an optimized inverter circuit. The proposed circuit consists of 12 TFTs and 2 capacitors including 6 TFTs and 1 capacitor for the inverter circuit to control the pulling-down TFTs. In addition, the wider variance range of the threshold voltage (Vth) from 4 V to 2.5 V is covered by additional 6 TFTs for series-connected two transistor (STT) schemes and two low supply voltages to take into account the negative Vth of depletion-mode TFTs. The simulation of 30 EM circuits is conducted over a 6.1-inch active-matrix organic light-emitting diode display of 120 Hz refresh rate and 3840 × 2160 (UHD) resolution. The power consumption of the EM circuit with the proposed inverter is measured at the low values from 0.836 mW to 0.568 mW over pulse widths from 3 to 2157 horizontal times. It is ensured that the proposed circuit achieves the low power consumption regardless of pulse widths. Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

14 pages, 2377 KiB  
Article
Research on the Flicker Effect in Modern Light Sources Powered by an Electrical Network
by Romuald Masnicki, Janusz Mindykowski, Beata Palczynska and Dawid Werner
Energies 2024, 17(20), 5080; https://doi.org/10.3390/en17205080 - 12 Oct 2024
Viewed by 1803
Abstract
Disruptions in power quality have a negative impact on many energy consumers. These include lighting, where interference manifests itself, among others, in the form of light flickering. The article presents phenomena accompanying the operation of modern light sources against the background of exemplary [...] Read more.
Disruptions in power quality have a negative impact on many energy consumers. These include lighting, where interference manifests itself, among others, in the form of light flickering. The article presents phenomena accompanying the operation of modern light sources against the background of exemplary results of studies on the flicker of conventional light sources, such as incandescent or fluorescent lamps. The flickering effect of light generated in modern lamps can occur under stable voltage conditions in the supply network. The main subjects of the conducted research were solid-state light sources—light-emitting diode (LED) lamps, currently available on the lighting market. To assess the effects of these phenomena, it is necessary to use measures other than those traditionally used. The method used allows for the measurement of flicker resulting from both power supply disturbances and the properties of modern light sources. Using the developed measurement system, it is possible to record temporal changes in flicker coefficients resulting from, for example, changing supply voltage conditions. Due to the possibility of flickering light from sources offered by different manufacturers, as shown by research, it is advisable to carry out measurements at the place of use of the lighting. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop