Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = dimethyl phthalate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 216 KiB  
Article
Migration of Phthalates and Bisphenol A from Polyethylene Terephthalate Bottles into Beer During Storage at Controlled Temperatures
by Krešimir Mastanjević, Brankica Kartalović, Dragan Kovačević, Vinko Krstanović and Kristina Habschied
Foods 2025, 14(15), 2689; https://doi.org/10.3390/foods14152689 - 30 Jul 2025
Viewed by 267
Abstract
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily [...] Read more.
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily intakes for humans. This study aimed to establish the changes, types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate, di-n-octyl phthalate), and bisphenol A concentrations in beer packaged in PET bottles and stored at two temperatures (4 °C and 20 °C) for four months. Beers were obtained from a local brewery after packaging into PET bottles and stored at the designated temperatures. GC-MS analysis was performed to determine phthalates and bisphenol A. Obtained data show that beers packaged in PET bottles can contain significant amounts of bisphenol A, and that their concentration increases with storage time. Phthalates were also identified in the samples, with the highest concentration of bis(2-ethylhexyl) phthalate found in the sample kept at 20 °C after 1 month of storage, sample P5; this concentration was 164.814 µg/L. BPA was recorded with the highest concentration in sample P11, which underwent 4 months of storage at a temperature of 20 °C. Full article
15 pages, 2997 KiB  
Article
Contribution to Distribution and Toxicity Prediction of Organic Pollutants in Receiving Waters from Wastewater Plant Tailwater: A Case Study of the Yitong River, China
by Xiaoyu Zhang, Mingxuan Bai, Ang Dong, Xinrong Du, Yuzhu Ding and Ke Zhao
Water 2025, 17(14), 2061; https://doi.org/10.3390/w17142061 - 10 Jul 2025
Viewed by 324
Abstract
Urban river ecosystems are increasingly threatened by anthropogenic activities, with wastewater discharge being a significant contributor. The complex nature and diverse sources of wastewater pose challenges in assessing its impact on water quality and ecological health. This study investigated the distribution, toxicity, and [...] Read more.
Urban river ecosystems are increasingly threatened by anthropogenic activities, with wastewater discharge being a significant contributor. The complex nature and diverse sources of wastewater pose challenges in assessing its impact on water quality and ecological health. This study investigated the distribution, toxicity, and ecological effects of organic pollutants in an urban river system during the dry season. A comprehensive analysis was conducted of 16 phthalate esters (PAEs), 16 polycyclic aromatic hydrocarbons (PAHs), and 8 antibiotics, with a focus on several key pollutants. The results revealed distinct pollutant profiles: Dibutyl phthalate (DBP), Dimethyl phthalate (DEHP), and Diisobutyl phthalate (DIBP) were the predominant PAEs, while Chrysene was the most abundant PAH. Among antibiotics, Oxytetracycline and Norfloxacin were the dominant compounds. Wastewater treatment plant (WWTP) effluents significantly altered the composition of organic pollutants in receiving waters. Although dilution reduced the concentrations of some pollutants, certain organic compounds were detected for the first time downstream of the WWTP, and some specific compounds exhibited increased concentrations. Toxicity prediction using the Concentration Addition (CA) model identified DBP as the primary contributor to overall toxicity, accounting for the highest toxic load among all detected pollutants. Furthermore, WWTP effluents induced significant shifts in microbial community structure downstream, with incomplete recovery to upstream conditions. Integrated analysis of 16S rRNA gene sequencing, water quality assessment, and toxicity prediction elucidated the multifaceted impacts of pollution sources on aquatic ecosystems. This study provides critical insights into the composition, spatial distribution, and toxicity characteristics of organic pollutants in urban rivers, as well as their effects on bacterial community structure. The findings offer a scientific foundation for urban river water quality management and ecological protection strategies. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1698 KiB  
Article
Metabolite Monomethyl Phthalate (MMP) Induces Oxidative Damage in Rat Erythrocytes: Role of Vitamins C and E
by Xuxin Zhang, Xu Gao and Zhenxing Chi
Toxics 2025, 13(5), 379; https://doi.org/10.3390/toxics13050379 - 7 May 2025
Viewed by 471
Abstract
Dimethyl phthalate (DMP) can enter the human body and be absorbed into the bloodstream to produce monomethyl phthalate (MMP). MMP in the environment can also enter the bloodstream. However, little is known about the toxicity of the phthalate metabolite MMP in most organisms. [...] Read more.
Dimethyl phthalate (DMP) can enter the human body and be absorbed into the bloodstream to produce monomethyl phthalate (MMP). MMP in the environment can also enter the bloodstream. However, little is known about the toxicity of the phthalate metabolite MMP in most organisms. In this study, the erythrocyte toxicity of MMP and a preventive approach were investigated using Sprague–Dawley (SD) rats as the model animal under MMP concentrations of 5–250 mg/kg (sub-chronic exposure in vivo) and 1.25–100 μg/mL (acute exposure in vitro). The experimental results indicate that the interaction of MMP with erythrocytes caused oxidative damage, which decreased the number of red blood cells and the hemoglobin content and increased the content of methemoglobin and the iron release of hemoglobin in rat blood. However, the above results were not observed when MMP directly interacted with hemoglobin. The antioxidants vitamin C and vitamin E improved the above blood indicators in rats. The results of this study provide certain theoretical guidance for the evaluation of the potential risks of phthalate metabolites. Full article
(This article belongs to the Special Issue Toxicity of Phthalate Esters (PAEs))
Show Figures

Graphical abstract

14 pages, 5161 KiB  
Article
Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters
by Wenjian Li, Qiuju Shi, Jiaxin Wang, Ruize Ma, Yanpeng Gao and Yuemeng Ji
Toxics 2025, 13(4), 272; https://doi.org/10.3390/toxics13040272 - 2 Apr 2025
Viewed by 448
Abstract
Oligomerization of glyoxal (GL) and methylglyoxal (MG) plays a vital role in secondary organic aerosol (SOA) formation in aqueous aerosols. However, the influence of emerging contaminants on the oligomerization of GL and MG remains unclear. Therefore, using quantum chemical and kinetic calculations, we [...] Read more.
Oligomerization of glyoxal (GL) and methylglyoxal (MG) plays a vital role in secondary organic aerosol (SOA) formation in aqueous aerosols. However, the influence of emerging contaminants on the oligomerization of GL and MG remains unclear. Therefore, using quantum chemical and kinetic calculations, we investigated the oligomerization of GL and MG in the presence of phthalate esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), and dibutyl phthalate (DBP), and the role of PAEs in the oligomerization. Our findings indicate that the direct PAE-mediated oligomerization of GL and MG is hindered due to the lack of reactive sites. However, the oligomerization of GL and MG is readily mediated by the hydrolysates of PAEs, which are the preferred forms of PAEs in weakly acidic aerosols, attributable to the additional -OH groups. The mechanisms show that the indirect PAE-mediated oligomerization proceeds via three-step reactions, including nucleophilic attack on carbenium ions, hydration, and deprotonation, which are thermodynamically and kinetically favorable. Our results reveal that the role of PAEs in the GL/MG oligomerization needs to be emphasized, particularly in conditions with a pH value approaching neutrality. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Near-Infrared Spectroscopy Detection of Off-Flavor Compounds in Tench (Tinca tinca) After Depuration in Clean Water
by Daniel Martín-Vertedor, Juan Carlos Ramírez-López, Ricardo S. Aleman, Elisabet Martín-Tornero and Ismael Montero-Fernández
Foods 2025, 14(5), 739; https://doi.org/10.3390/foods14050739 - 21 Feb 2025
Viewed by 606
Abstract
Tench (Tinca tinca) is a warm-temperate, freshwater benthic fish with often unpleasant odors and flavors which result from its natural habitat. These characteristics may deter consumers; therefore, their removal would enhance the fish’s palatability and market appeal. Thus, tench were grown [...] Read more.
Tench (Tinca tinca) is a warm-temperate, freshwater benthic fish with often unpleasant odors and flavors which result from its natural habitat. These characteristics may deter consumers; therefore, their removal would enhance the fish’s palatability and market appeal. Thus, tench were grown in an aquaculture center and subjected to a clean water depuration system in which six sampling points were carried out at 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h. An analysis was conducted using gas chromatography–mass spectrometry and near-infrared spectroscopy (NIRS), revealing acid derivatives as the predominant families of volatile organic compounds (VOCs). The main off-flavor VOCs were 3,5,5-trimethyl-1-hexene, dimethyl-8-hydronaphtalen, 1-octen-3-ol, diethyl phthalate, 2-methylisoborneol, and a-isomethylionone. Maximum concentrations were observed at 0 h, exceeding 300 μg/g for diethyl phthalate and being less than 55 μg/g for the remaining VOCs. The content progressively decreased from that point on. The spectra obtained by NIRS highlighted differences between the cleaning depuration treatments, exhibiting discrimination among the samples studied (PC1 = 77.8%; PC2 = 11.3%). Finally, dimethyl-8-hydronaphtalen and 2-methylisoborneol were linearly correlated with NIRS data, with RCV2  values of 0.94 and 0.96, respectively, and RMSECV values of 1.00 and 3.62 μg/g, respectively. Therefore, a clean water depuration system is appropriate to obtain fish with fewer off-flavor characteristics. Moreover, NIRS represents an accurate, inexpensive, and non-destructive technique to determine the optimal time for the water depuration of fish. Full article
Show Figures

Figure 1

16 pages, 10963 KiB  
Article
Electron Beam Irradiation-Induced Defects Enhance Pt-TiO2 Photothermal Catalytic Degradation in PAEs: A Performance and Mechanism Study
by Fukun Bi, Yaofei Zhang, Zhuoxuan Zhou, Lei Guo, Ziqiao Zhu, Baolin Liu and Xiaodong Zhang
Molecules 2025, 30(3), 697; https://doi.org/10.3390/molecules30030697 - 5 Feb 2025
Cited by 9 | Viewed by 864
Abstract
Phthalic acid esters (PAEs), ubiquitous semi-volatile organic compounds (SVOCs) in indoor environments, pose adverse effects on human health. However, their degradation mechanisms and pathways remain unclear. Herein, we developed an efficient photothermal catalyst by introducing defects (oxygen vacancies, OVs) on TiO [...] Read more.
Phthalic acid esters (PAEs), ubiquitous semi-volatile organic compounds (SVOCs) in indoor environments, pose adverse effects on human health. However, their degradation mechanisms and pathways remain unclear. Herein, we developed an efficient photothermal catalyst by introducing defects (oxygen vacancies, OVs) on TiO2 (P25) surfaces via electron beam irradiation technology with different irradiation doses (100, 300, 500, and 700 kGy). The TiO2 with defects was employed as a support to prepare Pt-TiO2 catalysts for the photothermal degradation of di (2-ethylhexyl) phthalate (DEMP) and dimethyl phthalate (DMP), two representative PAEs. TiO2 pre-treated with a 300 kGy irradiation dose supported the Pt catalyst (Pt-Ti-P-300) and presented the optimal catalytic performance for DEMP and DMP degradation. Characterization results confirmed that OVs were successfully introduced to the catalysts. Meanwhile, OVs induced by electron beam irradiation expanded the light absorption range and improved the generation and separation of photogenerated carriers, which significantly enhanced the catalytic activity of the catalysts for PAE degradation. Importantly, the degradation mechanism and pathway of DMP were further explored by using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and gas chromatography–mass spectrometry (GC-MS). These findings provide important insights into the electron beam irradiation-mediated regulation of catalysts and the photothermal catalytic removal of PAEs in indoor environments. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

16 pages, 5763 KiB  
Article
Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD)
by Muhammad M. Poyil, Mohammed H. Karrar Alsharif, Mahmoud H. El-Bidawy, Salman Bin Dayel, Mohammed Sarosh Khan, Zainab Mohammed M. Omar, Alaaeldin Ahmed Mohamed, Reda M. Fayyad, Tarig Gasim Mohamed Alarabi, Hesham A. Khairy, Nasraddin Othman Bahakim, Mohamed A. Samhan and Abd El-Lateef Saeed Abd El-Lateef
Life 2025, 15(1), 35; https://doi.org/10.3390/life15010035 - 30 Dec 2024
Cited by 1 | Viewed by 1633
Abstract
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, [...] Read more.
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant—Eclipta prostrata (L.) L.—for its anti-inflammatory activity alone and in combination with a non-steroidal anti-inflammatory drug (NSAID), diclofenac. The plant extract was used to make a cream formulation for treating atopic dermatitis and as an antibacterial agent against Staphylococcus aures, the major infectious agent associated with AD. The phytochemical analysis of the E. prostrata extract showed the presence of various phytochemicals, including flavonoids, Tannin, saponin, terpenoids, glycosides, phenol, alkaloids, quinone, and protein. The GC-MS profiling of methanolic E. prostrata extract was performed predicted the presence of twenty important phytochemicals, including 2-[5-(2-Hydroxypropyl) oxolan-2-yl]propanoic acid, dl-Menthol, dodecane, undecane, 4,7-dimethyl-, dodecane, 2,6,10-trimethyl-, decane, 2,3,5,8-tetramethyl-, cholest-5-en-3-ol, (3.alpha.)-, TMS derivative, cyclopropane carboxylic acid, 1-hydroxy-, (2,6-di-t-butyl-4-methylphenyl) ester, alpha.-farnesene, propanoic acid, 2-methyl-, 2-ethyl-1-propyl-1,3-propanediyl ester, diethyl phthalate, corticosterone, 2-methylpropionate, hentriacontan-13-ol, O-TMS, phthalic acid, 2,4-dimethylpent-3-yl dodecyl ester, hexasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11-dodecamethyl-, acetic acid, 4-t-butyl-4-hydroxy-1,5-dimethyl-hex-2-ynyl ester, octadecane, 2-methyl- octacosane, 1-iodo-, nonacosane, and eicosyl isopropyl ether. Using an egg albumin denaturation inhibition assay, the anti-inflammatory activities of E. prostrata alone and in combination with diclofenac were investigated, and they showed 93% and 99% denaturation inhibition at 5 mg concentration of E. prostrata in alone and combination with diclofenac, respectively. Heat-induced haemolysis showed 2.5% and 2.4% of haemolysis at 5 mg of E. prostrata alone and in combination with diclofenac, respectively. An MTT assay performed using L929 cells proved that the extract has no cytotoxic effect. The plant extract displayed potential antibacterial activity against Staphylococcus aureus; the growth was inhibited at 1 mg/mL of E. prostrata extract. Thus, based on this evidence, the authors suggest that E. prostrata extract should be studied further for its anti-inflammatory and antibacterial activities and topical application in the treatment of atopic dermatitis. Full article
Show Figures

Figure 1

13 pages, 3827 KiB  
Article
Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species
by Hui Chen, Jin Xu, Dengke Shao, Chunfang Zhao, Xiaohong Xu, Xihui Xu and Chen Chen
J. Fungi 2024, 10(11), 754; https://doi.org/10.3390/jof10110754 - 30 Oct 2024
Cited by 1 | Viewed by 1067
Abstract
Plant–endophytic fungi are widely distributed and highly diverse, with many of them capable of influencing plant growth and development, which is related to the production of volatile organic compounds (VOCs). While certain fungal VOCs have been found to stimulate plant growth, others exhibit [...] Read more.
Plant–endophytic fungi are widely distributed and highly diverse, with many of them capable of influencing plant growth and development, which is related to the production of volatile organic compounds (VOCs). While certain fungal VOCs have been found to stimulate plant growth, others exhibit inhibitory effects. Importantly, the impact of fungal VOCs extends beyond host plants to affect non-host plants as well. In this study, we isolated two plant–endophytic fungi, Clonostachys sp. CC1 and Clonostachys sp. CC2, from healthy rice roots. These strains were co-cultured with both rice and Arabidopsis thaliana. Our results demonstrated that both strains significantly enhanced the growth of both rice and A. thaliana. Specifically, they increased the length and biomass of rice and A. thaliana seedlings, as well as the chlorophyll content, while decreasing the H2O2 content in the leaves of both plants. The VOCs produced by these strains were analyzed using gas chromatography–mass spectrometry (GC-MS), which identified a total of 10 main ingredients. Among these compounds, 1-pentanol, ethylbenzene, and dimethyl phthalate inhibited the growth of rice while promoting the growth of A. thaliana, highlighting the variability in the effects of these compounds on different plant species and the complexity of plant–fungal interactions. Full article
(This article belongs to the Special Issue Fungal Endophytes in Agriculture)
Show Figures

Figure 1

25 pages, 2569 KiB  
Review
Environmental Stress-Induced Alterations in Embryo Developmental Morphokinetics
by Dorit Kalo, Shira Yaacobi-Artzi, Shir Manovich, Ariel Michaelov, Alisa Komsky-Elbaz and Zvi Roth
J. Xenobiot. 2024, 14(4), 1613-1637; https://doi.org/10.3390/jox14040087 - 21 Oct 2024
Viewed by 2045
Abstract
The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the [...] Read more.
The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development. However, less is known about the effect of environmental stressors on embryo morphokinetics. The current review discusses the effect of the most concerning environmental stressors on embryo morphokinetics. These stresses include heat stress and human-made chemicals such as phthalates (e.g., bis-(2-ethylhexyl phthalate, dibutyl phthalate, dimethyl phthalate, and their primary metabolites), herbicides (e.g., diaminochlorotriazine, the primary metabolite of atrazine), pharmaceutical compounds (e.g., carbamazepine, nocodazole) and pro-oxidant agents (cumene hydroperoxide, Triton X-100), as well as naturally occurring toxins such as mycotoxin (e.g., aflatoxin B1 and its metabolite, and ochratoxin A). In addition, this review discusses the effect of ionizing or non-ionizing radiation and viral infections (e.g., SARS-CoV-2, papillomavirus). Finally, it points out some potential mechanisms that underlie the impairment of embryo morphokinetics, and it suggests protective compounds, mainly the supplementation of antioxidants to improve the morphokinetics, and consequently, the embryo developmental competence. Full article
Show Figures

Figure 1

9 pages, 2450 KiB  
Communication
Metabolic Patterns of Fluconazole Resistant and Susceptible Candida auris Clade V and I
by Robab Ebrahimi Barough, Javad Javidnia, Ali Davoodi, Fereshteh Talebpour Amiri, Maryam Moazeni, Shahabeddin Sarvi, Reza Valadan, Ali Siahposht-Khachaki, Mahmood Moosazadeh, Mohsen Nosratabadi, Iman Haghani, Jacques F. Meis, Mahdi Abastabar and Hamid Badali
J. Fungi 2024, 10(8), 518; https://doi.org/10.3390/jof10080518 - 25 Jul 2024
Cited by 1 | Viewed by 1826
Abstract
Candida auris, an emerging non-albicans multidrug-resistant yeast, has become a significant cause of invasive candidiasis in healthcare settings. So far, data on the metabolites of C. auris in different clades are minimal, and no studies have focused on clade V metabolites. [...] Read more.
Candida auris, an emerging non-albicans multidrug-resistant yeast, has become a significant cause of invasive candidiasis in healthcare settings. So far, data on the metabolites of C. auris in different clades are minimal, and no studies have focused on clade V metabolites. Therefore, Gas chromatography–mass spectrometry (GC-MS) was used for the metabolomic profiling of clade I C. auris compared with fluconazole-resistant and susceptible C. auris in clade V strains. GC-MS chromatography revealed 28, 22, and 30 compounds in methanolic extracts of the fluconazole-susceptible and fluconazole-resistant C. auris clade V and C. auris clade I strain, respectively. Some compounds, such as acetamide and metaraminol, were found in fluconazole-susceptible and resistant C. auris clade V and clade I. N-methyl-ethanamine and bis(2-ethylhexyl) phthalate metabolites were found in both fluconazole -susceptible and resistant C. auris clade V, as well as 3-methyl-4-isopropylphenol, 3,5-bis(1,1-dimethyl)-1,2-benzenediol, and diisostyl phthalate metabolites in both fluconazole resistant C. auris clade V and I. Identifying these metabolites contributes to understanding the morphogenesis and pathogenesis of C. auris, highlighting their potential role in antifungal drug resistance and the control of fungal growth. However, further experiments are warranted to fully comprehend the identified metabolites’ regulatory responses, and there may be potential challenges in translating these findings into clinical applications. Full article
Show Figures

Figure 1

11 pages, 1399 KiB  
Article
Assessing the Conformity of Plasticizer-Free Polymers for Foodstuff Packaging Using Solid Phase Microextraction Coupled to Gas Chromatography/Mass Spectrometry
by Nicoletta De Vietro, Antonella Maria Aresta, Jennifer Gubitosa, Vito Rizzi and Carlo Zambonin
Separations 2024, 11(1), 25; https://doi.org/10.3390/separations11010025 - 9 Jan 2024
Cited by 3 | Viewed by 3683
Abstract
Phthalates are the synthetic chemical plasticizers with the most varied uses and are a source of concern due to their toxicity and ubiquity, so much so that even plasticizer-free polymers can contain them as non-intentionally added substances (NIAS). Food packaging is among the [...] Read more.
Phthalates are the synthetic chemical plasticizers with the most varied uses and are a source of concern due to their toxicity and ubiquity, so much so that even plasticizer-free polymers can contain them as non-intentionally added substances (NIAS). Food packaging is among the materials with the greatest impact. In this study, a simple protocol is proposed for the location and identification of dimethyl phthalate, diethyl phthalate, dipropyl phthalate, and dibutyl phthalate which is applicable to compliance studies of food packaging materials and for the associated risk assessment. Solid phase microextraction gas chromatography/mass spectrometry was used to evaluate the migration of four NIAS from food packaging to release media simulating food substrates. Three plasticizer-free polymers were used: two that were lab-made and based on sodium alginate and a commercial polyethylene film. Linearity ranged from the LOQ to 10 µg/mL; within-day and between-day precision values were between 12.3–25.7% and 21.9–35.8%, respectively; the LOD and LOQ were in the range 0.029–0.073 µg/mL and 0.122–0.970 µg/mL. Migration tests were conducted for different periods of time at room temperature and at 8 °C. Exposure to microwaves (MW) was also evaluated. All packaging materials tested had global migration limits lower than 10 mg/dm2 of material surface. Full article
Show Figures

Figure 1

12 pages, 1462 KiB  
Article
Coupled Photocatalysis and Microalgal–Bacterial Synergy System for Continuously Treating Aquaculture Wastewater Containing Real Phthalate Esters
by Ying-Chien Chung and Chih-Yu Chen
Environments 2023, 10(12), 215; https://doi.org/10.3390/environments10120215 - 5 Dec 2023
Cited by 6 | Viewed by 2304
Abstract
We developed a system combining visible-light photocatalysis with biological treatment for the continuous removal of phthalate esters (PAEs) from both synthetic and real aquaculture wastewater. We investigated the effects of different operating factors, including the coexistence of glucose or PAEs, on individual PAE [...] Read more.
We developed a system combining visible-light photocatalysis with biological treatment for the continuous removal of phthalate esters (PAEs) from both synthetic and real aquaculture wastewater. We investigated the effects of different operating factors, including the coexistence of glucose or PAEs, on individual PAE removal by using a photobiological system (PBS). In wastewater containing a mixture of PAEs, that is, containing di-(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), and dimethyl phthalate (DMP), a coimmobilized bioreactor system comprising the bacterium Pseudomonas putida and the microalga Chlorella vulgaris demonstrated a higher removal efficiency than immobilized P. putida alone or a coculture of immobilized P. putida and suspended C. vulgaris did. The PBS employed for the continuous treatment of real aquaculture wastewater containing DEHP (0.62 ± 0.05 mg/L), DBP (8.7 ± 0.9 mg/L), and DMP (17.4 ± 1.5 mg/L) achieved at least 99.5% PAE removal and 99.2% mineralization efficiency under optimal operating conditions. After 42 days of treatment, inoculated Pseudomonas (98.12%) remained the predominant genus in the bioreactor. The results reveal that the symbiotic microalgal–bacterial system is a feasible alternative to a pure P. putida immobilized bioreactor for reducing CO2 emissions from mineralized PAEs through microalgal activity. Full article
(This article belongs to the Special Issue Photocatalytic Applications in Wastewater Treatment)
Show Figures

Figure 1

16 pages, 5712 KiB  
Article
Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution
by Alexander Gorshkov, Tatyana Grigoryeva, Yurij Bukin and Anton Kuzmin
Toxics 2023, 11(10), 869; https://doi.org/10.3390/toxics11100869 - 19 Oct 2023
Cited by 11 | Viewed by 2111
Abstract
Lake Baikal was studied as a model for elucidating the general pattern of o-phthalic acid diester (PAE) distributions in surface waters with background pollution levels. The influence of factors including congeners, concentrations, sampling points, seasons, years, and potential sources was considered and [...] Read more.
Lake Baikal was studied as a model for elucidating the general pattern of o-phthalic acid diester (PAE) distributions in surface waters with background pollution levels. The influence of factors including congeners, concentrations, sampling points, seasons, years, and potential sources was considered and the environmental risk for various hydrobionts was established. Priority PAEs in Baikal waters are represented by dimethyl phthalate (DMP), diethyl phthalates (DEP), di-n-butyl phthalate (DnBP) and di-(2-ethylhexyl)phthalate (DEHP). Statistically valuable average concentrations and ranges for DMP, DEP, DnBP, and DEHP were 0.02 (0.01–0.02), 0.07 (0.06–0.09), 0.55 (0.47–0.66), and 0.30 (0.26–0.34) µg/L, respectively. The main factors determining PAE concentrations were the year and season of sampling, whereas sampling points were not among the factors influencing PAE levels. The distribution of PAEs in the water body was characterized by (i) an even distribution of minor hydrophilic DMP and DEP congeners in the whole water body, (ii) a maximum concentration of hydrophobic DnBP and DEHP congeners in the upper and near-bottom layers of the water column, and (iii) a low concentration of hydrophobic congeners in the near-shore area. The main PAE source was found to be the atmospheric transfer of polluted air masses, while the supply of PAEs from coastal sources to the pelagic zone was low. The contribution of biogenic sources to the background level of PAEs in the surface waters of Lake Baikal was established. The ecological risk of the background concentration level of PAEs for Lake Baikal biota was estimated. It was found that (i) DMP and DEP congeners do not represent a risk, or represent a very low risk, (ii) the concentration levels of dominant DnBP and DEHP congeners represent a low risk for crustaceans and fishes but (iii) a rather high risk for algae at a DEHP concentration of 0.30 µg/L. Full article
(This article belongs to the Special Issue Ecotoxicity of Contaminants in Water and Sediment)
Show Figures

Figure 1

11 pages, 3810 KiB  
Article
A Nanozymatic-Mediated Smartphone Colorimetric Sensing Platform for the Detection of Dimethyl Phthalate (DMP) and Dibutyl Phthalate (DBP)
by Wenhui Li, Xuecheng Zhang, Haojie Zhang, Cheng Zhang, Yingjie Chen, Cong Li, Yonghong Hu, Xiaoping Yu, Biao Zhang and Xiaodong Lin
Biosensors 2023, 13(10), 919; https://doi.org/10.3390/bios13100919 - 8 Oct 2023
Cited by 10 | Viewed by 2565
Abstract
Plasticizers are a type of toxic substance that may remain in food, posing significant health risks including carcinogenic, teratogenic, mutagenic, and other adverse effects. In this study, a novel strategy was employed by combining Pt@Au nanozymes with high catalytic properties to created two [...] Read more.
Plasticizers are a type of toxic substance that may remain in food, posing significant health risks including carcinogenic, teratogenic, mutagenic, and other adverse effects. In this study, a novel strategy was employed by combining Pt@Au nanozymes with high catalytic properties to created two catalytic signal probes, designated as Pt@Au@Ab1 and Pt@Au@Ab2, specifically designed for the detection of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). These catalytic signal probes served as the foundation for the development of a colorimetric immunoassay, enabling the simultaneous detection of both DMP and DBP. The colorimetric immunoassay is capable of detecting DMP in the range of 0.5–100 μg/L with a limit of detection as low as 0.1 μg/L and DBP in the range of 1–32 μg/L with a low limit of detection of 0.5 μg/L. The developed immunoassay can be used for the determination of the DMP and DBP in baijiu and plastic bottled drinks. The recovery rate is in the range of 96.4% and 100.5% and the coefficient of variation is between 1.0% and 7.2%. This innovative colorimetric immunoassay offers a robust tool for the simultaneous quantification of DMP and DBP in real samples. Full article
(This article belongs to the Special Issue Application of Nanomaterials for Biosensors)
Show Figures

Figure 1

15 pages, 3042 KiB  
Article
Dynamic Changes in Flavor and Microbiota in Traditionally Fermented Bamboo Shoots (Chimonobambusa szechuanensis (Rendle) Keng f.)
by Zhijian Long, Shilin Zhao, Xiaofeng Xu, Wanning Du, Qiyang Chen and Shanglian Hu
Foods 2023, 12(16), 3035; https://doi.org/10.3390/foods12163035 - 12 Aug 2023
Cited by 12 | Viewed by 2531
Abstract
Dissecting flavor formation and microbial succession during traditional fermentation help to promote standardized and large-scale production in the sour shoot industry. The principal objective of the present research is to elucidate the interplay between the physicochemical attributes, flavor, and microbial compositions of sour [...] Read more.
Dissecting flavor formation and microbial succession during traditional fermentation help to promote standardized and large-scale production in the sour shoot industry. The principal objective of the present research is to elucidate the interplay between the physicochemical attributes, flavor, and microbial compositions of sour bamboo shoots in the process of fermentation. The findings obtained from the principal component analysis (PCA) indicated notable fluctuations in both the physicochemical parameters and flavor components throughout the 28 day fermentation process. At least 13 volatile compounds (OAV > 1) have been detected as characteristic aroma compounds in sour bamboo shoots. Among these, 2,4-dimethyl Benzaldehyde exhibits the highest OAV (129.73~668.84) and is likely the primary contributor to the sour odor of the bamboo shoots. The analysis of the microbial community in sour bamboo shoots revealed that the most abundant phyla were Firmicutes and Proteobacteria, while the most prevalent genera were Enterococcus, Lactococcus, and Serratia. The results of the correlation analysis revealed that Firmicutes exhibited a positive correlation with various chemical compounds, including 3,6-nonylidene-1-ol, 2,4-dimethyl benzaldehyde, silanediol, dimethyl-, nonanal, and 2,2,4-trimethyl-1,3-pentylenediol diisobutyrate. Similarly, Lactococcus was found to be positively correlated with several chemical compounds, such as dimethyl-silanediol, 1-heptanol, 3,6-nonylidene-1-ol, nonanal, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, dibutyl phthalate, and TA. This study provides a theoretical basis for the standardization of traditional natural fermented sour bamboo production technology, which will help to further improve the flavor and quality of sour bamboo. Full article
Show Figures

Figure 1

Back to TopTop