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Abstract: Lake Baikal was studied as a model for elucidating the general pattern of o-phthalic acid
diester (PAE) distributions in surface waters with background pollution levels. The influence of
factors including congeners, concentrations, sampling points, seasons, years, and potential sources
was considered and the environmental risk for various hydrobionts was established. Priority PAEs in
Baikal waters are represented by dimethyl phthalate (DMP), diethyl phthalates (DEP), di-n-butyl ph-
thalate (DnBP) and di-(2-ethylhexyl)phthalate (DEHP). Statistically valuable average concentrations
and ranges for DMP, DEP, DnBP, and DEHP were 0.02 (0.01–0.02), 0.07 (0.06–0.09), 0.55 (0.47–0.66),
and 0.30 (0.26–0.34) µg/L, respectively. The main factors determining PAE concentrations were the
year and season of sampling, whereas sampling points were not among the factors influencing PAE
levels. The distribution of PAEs in the water body was characterized by (i) an even distribution of
minor hydrophilic DMP and DEP congeners in the whole water body, (ii) a maximum concentration
of hydrophobic DnBP and DEHP congeners in the upper and near-bottom layers of the water column,
and (iii) a low concentration of hydrophobic congeners in the near-shore area. The main PAE source
was found to be the atmospheric transfer of polluted air masses, while the supply of PAEs from coastal
sources to the pelagic zone was low. The contribution of biogenic sources to the background level
of PAEs in the surface waters of Lake Baikal was established. The ecological risk of the background
concentration level of PAEs for Lake Baikal biota was estimated. It was found that (i) DMP and
DEP congeners do not represent a risk, or represent a very low risk, (ii) the concentration levels of
dominant DnBP and DEHP congeners represent a low risk for crustaceans and fishes but (iii) a rather
high risk for algae at a DEHP concentration of 0.30 µg/L.

Keywords: priority PAEs; surface waters; concentration levels; anthropogenic and biogenic sources;
environmental risk; Lake Baikal

1. Introduction

Ortho-phthalic acid diesters (PAEs) are some of the most important products of the
chemical industry, and their global production volume reaches 6–8 million tons per year [1,
2]. PAEs are used as plasticizers and added to polymer materials in order to obtain the
required characteristics in plastics. The absence of chemical bonding between a polymer
matrix and plasticizers results in the gradual migration of PAEs from plastic products
into the environment during their exploitation and utilization. Stationary sources of PAEs
(wastewater treatment plants of urban agglomerations, emission of industrial enterprises,
areas of stock and treatment of industrial wastes and household plastics) determine a high
content of these pollutants in the surface and underground waters of local sites. The number
of PAEs can reach up to sixteen congeners, and their ratio and concentration depend on
the sampling point and the presence of natural sources. In Lake Taihu (China), sixteen
PAE congeners were found [3]. The range of PAE total concentrations (Σ16PAEs) was from
0.02 to 16 µg/L, and the dominant among them were DnBP, DEHP, and di-i-butyl phthalate
(DiBP). In the water of the Kaveri River (India), six PAE congeners ranging in concentrations
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(Σ6PAEs) from 0.31 to 4.6 µg/L were established, and the dominant congeners were DEHP,
DEP, and DnBP [4].

In background areas, traces of PAEs are detected in atmospheric aerosol and sur-
rounding air, in surface waters, and in bottom sediments [5–12]. Atmospheric transport
of polluted air masses and pollutant precipitation from the atmosphere are primary PAE
sources in background areas, including waters in the central Arctic, the Norwegian coastal
zone [13], and high mountains in China [14]. In the atmosphere, PAE congeners are dis-
tributed among aerosol particles and the gas phase of the surrounding air; the gas phase
includes congeners containing short alkyl chains, while congeners with long ones are
adsorbed in solid aerosol particles. From the atmosphere, PAEs accumulate on a spreading
surface, whether land or water, through dry precipitation or through atmospheric precipita-
tion of aerosol particles with adsorbed hydrophobic substances [6]. In surface waters with
background levels of PAE pollution, DnBP and DEHP congeners are dominant, and changes
in their source drastically influence both PAE compositions and total concentrations.

PAEs are biologically active compounds and manifest hepo-, neuro-, and cytotoxicity.
Toxic effects of PAEs, such as the disturbance of endocrine and reproductive functions,
are found out not only in humans but also in various types of wildlife, such as mollusks,
crustaceans, fishes, and invertebrates [15–17]. Taking into account the biological prop-
erties of PAEs and polymer material production volumes of up to 390 million tons per
year [2], PAEs as industrial chemicals are included in the list of persistent organic pollutants
(POPs) [18]. Among all PAEs, six congeners, namely dimethyl phthalate (DMP), diethyl ph-
thalate (DEP), di-n-butyl phthalate (DnBP), benzyl butyl phthalate (BBP), di-(2-ethylhexyl)
phthalate (DEHP), and di-n-octyl phthalate (DOP), are considered priority pollutants and
are to be permanently monitored in the environment.

Recent studies suggest a probable biosynthesis of PAEs by different plants, freshwater
algae, cyanobacteria, and fungi [15]. PAEs are reported to possess allopathic activity and
antimicrobial and insecticide properties, which increase the competitiveness of plants,
algae, and microorganisms [19]. PAEs detected in surface water at trace levels are evidently
related not just to anthropogenic pollutants, as they can accumulate from both abiogenic and
biogenic sources, and the contributions of these two may be comparable in magnitude. We
chose Lake Baikal (Russia) as a model for studies of the general pattern of PAE distributions
in surface waters at background pollution levels. The chosen location is characterized by a
huge water body volume, reaching up to 23,600 km3, a water surface area of 31,700 km2,
a depth reaching up to 1642 m, the sharply continental climate of East Siberia, and the
availability of potential POP sources on the shore. Lake Baikal is the largest natural reservoir
of fresh water, containing up to 20% of the world’s freshwater reserves, and is characterized
by a minimal content of suspended organic matter, a low degree of mineralization, and
a background level of POPs [20–23]. To control PAEs in surface waters at background
pollution levels, it is necessary to know the general pattern of their distribution.

The goals of the present study include (i) the identification and assessment of current
PAE concentration levels in the waters of Lake Baikal, (ii) the determination of main factors
influencing PAE concentrations, (iii) the analysis of PAE distributions in the water area
and in deep horizons, (iv) the identification of PAE sources, and (v) the assessment of the
environmental risk of PAEs in surface waters with a background level of pollution. In
order to accomplish the aforementioned tasks, the long-term monitoring data of PAEs in
the lake waters during the period from 2015 to 2022, particularly in the upper water layers
of pelagic sites, deep horizons, the near-shore zone and bays of the lake, and the water of
the south Baikal tributaries, were analyzed using a comparative statistical analysis.

2. Materials and Methods
2.1. Reagents and Instruments

The extraction of PAEs from water samples and the preparation of standard solutions
for GC-MS analysis were carried out using n-hexane (HPLC grade, Cryochrom, Saint
Petersburg, Russia) and acetone (reagent grade, EKOS-1, Old Kupavna, Russia). The



Toxics 2023, 11, 869 3 of 16

extract aliquots were analyzed using Agilent 7890 B GC System 7000 C GC–MS Triple
Quad equipment (Agilent Technologies, Santa Clara, CA, USA) and the HT-8 capillary
column (30 m × 0.25 mm, 0.25 µm, SCE Analytical Science, Melbourne, Australia). The
Phthalate Esters Mix EPA 606 M (Supelco, Darmstadt, Germany) and deuterated phthalates,
dimethyl phthalate (DMP-d4), dipropyl phthalate (DPP-d4), and dihexyl phthalate (DHP-
d4) (Witega, Berlin, Germany), were used as reference material and surrogate internal
standards, respectively. The content of PAEs in organic solvents was controlled by a GC-MS
prior analysis. The assessment of the 13C/12C ratio in PAEs from water samples was
performed using HPLC-ESI-HRMS-TOF equipment. The concentration step was carried
out using the C18 reversed phase column (75 × 2 mm, Nucleosil 100-5-C18, Macherey-
Nagel, Duren, Germany) at a flow rate of 0.2 mL/min for 50 min. Phthalates were eluted
and detected using high-resolution time-of-fight mass spectrometer (Agilent 6210, Agilent,
USA) in the ESI+ mode; the mass range m/z from 60 to 600; the carrier gas (nitrogen, 99.8%)
flow and temperature were set at 5 L/min and 325 ◦C, respectively; the nozzle pressure
was 45 psi and the capillary voltage was 3.5 kV. The device calibration was performed
using the ESI-L Low Concentration Tuning Mix (P/N G1969-85000, Agilent, Santa Clara,
USA) monthly.

2.2. Water Sampling

Water samples were taken from under ice (March) after the disappearance of the
ice cover on the lake (late May–early June) and in the beginning of the autumn season
(September) during the period from 2015 to 2022. The water samples from pelagic site
and deep horizons of the lake (Figure 1) were collected using the SBE-32 cassette sampler
(Carousel Water Sampler, Sea-Bird Electronics, Bellevue, WA, USA). The water samples
from Baikal tributaries were taken from the upper river mouth layers (0 m). In the near-
shore zone, the samples were collected from the upper water layer (0 m) at a distance of
more than 50 m from the shore and at a depth of no more than 20 m. At each station, two
water samples of ca. 1 L each were bottled into amber glass tare, and 0.5 mL of a 1 M
aqueous solution of sodium azide (Merck, Germany) was added as a preservative. The
bottles were closed using a lid with the aluminium foil gasket and stored at 5 ◦C before
laboratory analysis.

2.3. Sample Processing

In order to decrease the number of sample preparation stages and to assess the con-
tribution of biota, non-filtered water samples were analyzed. Deuterated phthalates were
added to water samples prior to extraction and quantification of analytes by means of
GC-MC. The content of PAEs in water samples was estimated by approach described in [24]
including liquid–liquid extraction of PAEs by n-hexane. For analysis, an aliquot was taken
from the extract (single extraction) and analyzed by GC-MS. The temperature program
for the GC oven was started from 50 ◦C and then increased up to 300 ◦C at the rate of
25 ◦C/min, and finally held for 5 min. The sample injector temperature was set up at 280 ◦C,
and 2.0 µL of the sample solution was injected using the splitless mode. The ion source and
quadrupole temperatures were maintained at 230 ◦C and 150 ◦C, respectively. The electron
impact ionization energy was 70 eV. An ultra-pure helium (99.999%) at a constant pressure
of 25 psi was used as a carrier gas. PAE peaks were recorded using the SIM mode and the
reference ions m/z 149, 153, 163, 167. The peak assignment was performed by comparing
their retention times with those of standard solution. PAE congeners were quantitated
using the method of internal standards. The GC-MS device was calibrated in the range
of expected PAEs concentrations from 0.01 to 10 µg/L. The reliability of approximation
of calibration dependences Sa/Sst = k(ma/mst) corresponded to the condition R2 ≥ 0.99.
The concentrations of PAE in water samples were calculated as the average value of two
parallel samples. The secondary contamination of the analyzed samples by PAEs from the
laboratory background was evaluated by the procedure of blank experiment and subtracted
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accordingly. The PAE limit of determination was estimated as 0.008–0.20 µg/L, and the
relative standard deviation (RSDRl) was 7.0–20% for individual congeners.
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The ratio of stable carbon isotopes 13C/12C in the composition of DEHP from sur-
face waters was estimated using an approach proposed by us earlier [25]. Briefly, the
13C/12C ratio in DEHP is calculated as a ratio of the peak areas of the monoisotopic masses
[M + 1 + H]+ and [M + H]+. The value of ∆13C (should not be compared with δ13C mea-
sured according to the international VPDB scale) in DEHP is estimated relatively to the
13C/12C ratio in the commercial DEHP standard. The values of ∆13C in DEHP of tentatively
biogenic and anthropogenic sources were used as the lower and upper frontier limits on
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the ∆13C scale, respectively. The DEHP from Baikal phytoplankton (∆13C = −46‰) and
cell culture of Aconitum baicalense Turcz ex Rapaics 1907 (∆13C = −50‰) was assigned as
an isotopologue of biogenic origin. The DEHP isotopologue from just fallen snow on an
urban territory (∆13C = +5.2‰) and that from treated sewage water (∆13C = +0.2‰) were
assigned as the congeners from an anthropogenic source. The minimal concentration of
DEHP in water required for reliable determination of 13C/12C value was estimated at the
level of ca. 0.2 µg/L.

The PAE content in phytoplankton biomass samples was assessed using the method
described in [25], which includes the use of an Apstein net (cell diameter 30 µm) for
sampling, further samples drying at room temperature, homogenization and double ex-
traction by 10 mL of a n-hexane–acetone (1:1, by volume) mixture followed by GC-MS and
HPLC-HRMS-TOF analyses of 1 mL aliquots.

2.4. Environmental Risk Assessment

According to the European technical guidance document on risk assessment [26], the
risk coefficients (RQ) were calculated using the average concentration of PAE congeners
(CPAE, µg/L) and the predicted no effect concentration (PNEC, µg/L); Equation (1):

RQ = CPAE/PNEC. (1)

In the present work, the PAE concentrations measured in Baikal biota [27] and those
from [28] were selected as PNEC values (refer to Table S2).

2.5. Statistical Methods

Pairwise correlations between two replicates of measurements and the average con-
centration of PAEs over the entire concentration range for priority congeners in samples
of Baikal water were estimated with Spearman’s r correlation coefficient. p values for
the correlation coefficients were calculated using Spearman’s “W” statistics. Unreliable
values of correlation coefficients (p values > 0.05) were replaced with 0 values. Pairwise
correlations were visualized with a heat map generated using “gplots” in [29]. Lines and
columns in the correlation matrix were clustered and grouped in order of similarity (i.e.,
the Euclidean distance metric and the complete-link clustering method).

For further analysis, these missing data were replaced with averages for these con-
geners according to recommendations [30]. Water samples that contained concentrations of
congeners (at least one congener) outside the limits of three differences between the first
(Q1) and third (Q3) quartiles from the median concentration values were considered outliers
and excluded from the analysis. PERMANOVA uses the Euclidean distance metric and
1000 permutations for p value calculations. Before PERMANOVA analysis, all concentration
values were transformed to eliminate the physical dimensions by ranging from 0 to 1.

Confidence intervals for the mean values of PAE concentrations, grouped according to
the explanatory parameter (year, season (spring, autumn), ecotope (pelagic, coastal, bay,
river, sampling site (pelagic or other), basin (southern, central, northern), sample points),
were estimated using the bootstrap method in the “boot” package and the R programming
language (1000 bootstrap replicas).

3. Results and Discussion
3.1. Identification and Assessment of Current PAE Concentration Level in Lake Baikal Waters

In Lake Baikal waters (pelagic sites, deep horizons, near-shore zones, Chivyrkuisky
and Barguzinsky Bays, and the Maloye Morye, Figure 1), five PAE congeners, namely
DMP, DEP, DiBP, DnBP and DEHP, were found. All of these congeners except DiBP are
among priority substances in accordance with the system of POPs control in surface waters.
The DOP congener from the priority list was not detected in Baikal waters at the level of
>0.01 µg/L (Figure 2).
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Figure 2. Mass fragmentograms: (a) Analyte Mix #3 (Dr. Ehrenstorfer Reference Material); (b) Extract
of the upper water layer of Lake Baikal (5 m). Peak Nos. (m/z): 1—DMP (163); 2—DEP (149);
3—benzoic acid–benzyl ester (105); 4—DiBP (149); 5—DnBP (149); 6—dimethyl glycol ester (59);
7—bis-4-methyl-2-pentyl ester, two conformers (149); 8—bis-2-ethoxyethyl ester (72); 9—bis-n-pentyl
ester (149); 10—bis-hexyl ester (149); 11—BBP (149); 12—hexyl-2-ethylhexyl ester (149); 13—bis-2-n-
butoxyethyl ester (57); 14—bis-cyclohexyl ester (149); 15—DEHP (149); 16—DOP (149); 17—bis-nonyl
phthalate (149).

Concentration levels of priority PAE in Lake Baikal were assessed as following sta-
tistically valuable average values and concentration ranges, µg/L: 0.02 (0.01–0.02), 0.07
(0.06–0.09), 0.55 (0.47–0.66), 0.30 (0.26–0.34) for DMP, DEP, DnBP and DEHP, respectively.
The dominant contribution of both DnBP and DEHP congeners of up to 90% into total PAE
content (Σ4PAEs) was observed (Table S1). The data of correlational analysis (Figure 3)
confirmed a high convergence between results of PAE determination in two parallel sam-
ples collected at the same station. Therefore, a subsequent analysis of monitoring data was
performed using average values of PAE concentrations. It is worth noting that there was
no statistically valuable correlation between concentrations of DMP congener and other
priority PAEs. In contrast, moderately positive correlational links between concentrations
of DEP, DnBP and DEHP (p value from 0.47 to 0.51) were observed.

3.2. Main Factors Affecting PAE Concentration Levels

The analysis of PAE monitoring results in water samples of Lake Baikal using the
PERMANOVA approach showed that the concentration of this group of POPs is reliably
related to a sampling year (the most valuable factor among considered ones) and to sam-
pling season, spring or autumn (second factor by its validity), whereas sample points and
basin are not among the factors influencing PAE concentration levels (Table 1).

Average concentrations of both DMP and DEP congeners were low and practically
did not depend on a season and on the lake basin. In contrast, the concentrations of DnBP
and DEHP congeners were higher by one order of magnitude. Their seasonal variability
is drastic and individual for different monitoring years (Figure 4a,b). Correlational links
between concentrations of priority PAEs are absent or moderately positive (Figure 3). For
example, the increase of DMP congener concentration was detected in 2021 and 2022, DEP
congener in 2017, while maximum concentration level of DnBP congener was observed in
2017 and 2020 and that of DEHP congener in 2015 and 2018.
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Table 1. Results of PERMANOVA statistical analysis of PAE monitoring data in Lake Baikal *.

Factor R2 Value p Value

Year (2015–2022) 0.0428 0.0009

Season (spring, autumn) 0.0348 0.0009

Ecotope (pelagic, coastal, bay, river) 0.0237 0.0049

Sampling site (central zone or other) 0.0224 0.0009

Basin (southern, central, northern) 0.0067 0.2297

Sample points 0.0024 0.2437

* The greater the R2 value, the greater the influence of the factor on the distribution of PAE concentration. If
p value ≤ 0.05, the factor influences reliably the level of PAE concentrations in Lake Baikal water.

The analysis of PAE monitoring data (Table 1 and Figure 4c) revealed the division of
sampling points in two groups: (i) the central zone of the pelagic section of the lake (Stations
3, 6, 8, 10, 13, 17), and (ii) the coastal zone, large bays and river mouths. Both of them
significantly influence the range of PAE concentrations. Therefore, one can conclude that the
PAE concentrations in the central section of the pelagic zone of Lake Baikal vary irrespective
of the PAE concentrations in other ecotopes of the coastal zone. The concentrations in the
central zone of the pelagic area are not influenced by local coastal sources of PAEs. Thus,
the PAE concentrations in the central zone of the lake characterize their level in the lake,
which can be represented by the statistically significant range and average value. This
conclusion is very important for organizing a PAE monitoring system.
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3.3. Distribution of PAEs in Water Area and in Deep Horizons of Lake Baikal

Along the water area and deep horizons, PAEs are distributed according to their
hydrophobicity. The constant logKow for priority congeners is estimated within the range
from 1.60 to 8.10 [31]. DMP and DEP congeners are characterized by high hydrophilicity
and are evenly distributed in the whole water body in the range of average concentrations
from 0.01 to 0.09 µg/L. Hydrophobic congeners are adsorbed on suspended particles
presented in water column and are transferred into bottom sediments. Due to this fact,
in the near-shore zone, which is characterized by a high content of suspended particles,
intensive stirring and thinner water layer, a lower average concentrations of both DnBP
and DEHP congeners than in the central zone of the pelagic site are found (Figure 4c). The
concentrations of these congeners in the central zone are assessed by statistically valuable
average concentrations equal to 0.78 and 0.36 µg/L, respectively, which are up to two
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times higher compared with that in the near-shore zone (Table S1). This result is rather
unexpected taking into account PAE accumulation from sources located on the shore and,
consequently, an increase in PAE concentrations at some near-shore sites is expected. For
example, at Station 29 (2017, spring) and Station 28 (2017, autumn), anomalously high
concentrations of Σ4PAEs, 7.4–9.0 µg/L, were observed. On the other hand, the results of
statistical analysis indicate that lower values of the average concentrations of both DnBP
and DEHP congeners in the coastal zone did not affect PAE levels in the central zone of
the lake.

The distribution of PAEs in the water column is perfectly reflected by the concen-
trations of congeners at central basin stations of Lake Baikal at a depth of up to 1600 m
(Figure 5). During the spring season, the highest concentrations (Σ4PAEs) were detected in
upper and near-bottom water layers with the predominant contribution of hydrophobic
DnBP and DEHP congeners. As a result of biodegradation and transfer of DnBP and
DEHP congeners into bottom sediments during the summer season, the total concentration
(Σ4PAEs) was decreased by three- to fourfold. In the autumn season, the concentration of
priority PAEs did not depend on water sampling depth and reflected a background level of
water pollution by phthalates.
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As noted above, the concentration of PAEs in the water of the coastal zone was not
influenced by its level in the pelagic zone of the lake. Nevertheless, in case of large bays,
where recreational areas are located on the shore, a rather high level of PAEs was observed.
For example, in the water of the Maloye Morye (Station 19), priority congeners were
found in concentration range from 0.58 to 1.8 µg/L (Σ4PAEs), the latter value up to three
times higher than an average concentration of Σ4PAEs in the lake waters. At Chivyrkuy
Bay (Station 20), no dependence between the Σ4PAE average concentration and season
(0.82–0.77 µg/L, spring–autumn) was found, while at Barguzinsky Bay (St. 21) as well as
in case of the pelagic sites of the central basin (St. 21, 10), the concentration of Σ4PAEs was
characterized by a threefold decrease in autumn.

3.4. Origin of PAEs in the Water of Lake Baikal
3.4.1. Anthropogenic Sources

One of the main sources of PAEs is attributed to atmospheric transport of air masses
contaminated by these compounds and their accumulation in the surface layer of water
along with aerosol particles on which hydrophobic compounds were initially adsorbed.
The dominance of hydrophobic DnBP and DEHP congeners in the upper water layer of the
pelagic zone of the lake confirms this conclusion. During the winter season, PAEs from the
atmosphere are accumulated in the ice as well as in the snow cover on the shore. It results
in the migration of PAEs into the lake in spring along with melt waters (total concentration
of priority PAEs in the snow cover of the southern shore of Lake Baikal were in the range
from 0.46 to 3.9 µg/L). Such a source of PAEs is obviously referred as the one determining
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the sharp seasonal variability of DnBD and DEHP levels. The monitoring of PAEs in the
water of south Baikal tributaries, having water drainage basins on the territory of natural
reserves, confirms this assumption.

The level of Σ4PAEs increases in the water of lake tributaries in the spring season,
sometimes by one order of magnitude compared with that found in autumn. Average
concentration of Σ4PAEs in the mouth of tributaries was equal to 0.79 µg/L and in the
range from 0.56 to 1.1 µg/L (autumn–spring). It is noteworthy that the contribution of both
DnBP and DEHP congeners in the water of tributaries is comparable (the DnBP/DEHP
ratio is in the range from 0.99 to 1.1). In the central zone of the lake, the ratio is equal to 2.2,
indicating the migration of a part of PAEs from tributary watersides to the former.

Thus, a potential anthropogenic source of PAEs may be attributed to the lake tribu-
taries, the water of which may contain treated sewage water from wastewater treatment
plants of cities located on the shore. For example, the concentration of Σ4PAEs in the
wastewaters from Slyudyanka City purification facilities is within the range from 21 to
29 µg/L, and the content of DMP and DEP congeners is 20 and 46%, respectively. In the wa-
ter from the mouth of the Pokhabikha River (Slyudyanka City, Station 34) and the Mysovka
River (Babushkin settlement, Station 31), the concentrations of Σ4PAEs did not exceed
2.6–3.0 µg/L, while the content of hydrophilic DMP and DEP congeners was up to 7–20%
of the total concentration of Σ4PAEs, respectively. In the Selenga River, shallow water area
(a part of Lake Baikal, Station 24) opposite to the river delta with a depth ≤ 400 m, the
concentration of Σ4PAEs did not exceed 0.77 µg/L (Station 24, 2021, autumn). The content
of the DEP congener was high and equal to 20% of Σ4PAEs, evidently due to the phthalate
accumulation along with wastewaters drained into the Selenga River.

Besides wastewaters, household wastes on the shore consisting mainly of plastics
(bottles, containers, package material, etc.) are also related to the anthropogenic source
of PAEs. In water samples from the littoral close to the recreation center (Station 28,
2017, September) the concentration of Σ4PAEs was equal to 7.4 µg/L, and the dominant
congener was DEP (78% of Σ4PAEs). It is worth noting that a high concentration of DEP
occurs as a result of biodegradation of PAEs containing long alkyl groups [32] or due to
direct accumulation from cosmetic packages and personal hygiene products [33]. The
pollution of water bodies by household plastics is considered as one of the probable PAE
sources in aquatic environment. Previous model experiments showed [34] that colonies of
microorganisms on plastic surfaces may recycle PAEs in water bodies. Due to the fact that
the rates of PAE diffusion and biodegradation are comparable, only a fraction of phthalates
enters into the water.

3.4.2. Biogenic Sources of PAEs

The atmospheric transport of polluted air masses provides the way for anthropogenic
PAEs entering into water of Lake Baikal. When the lake is ice covered, the atmospheric
transport of PAEs is rather limited and cannot influence the composition of PAEs under
the ice. In water samples taken from under the ice, wide variations in PAE composition
are observed. The concentrations of Σ4PAEs in the range from 1.8 to 6.1 µg/L were found.
The contribution of DMP, DEP and DnBP congeners into it did not exceed 0.33 µg/L, while
extreme levels of DEHP congener of up to 5.8 µg/L were found.

The increase in DEHP concentration in under-ice water samples was also detected
during PAE monitoring in the coastal zone of the lake (Figure 6) in March–May. Sampling
there was performed from under the ice and from open water [24]. Such a change in
PAE composition could be associated with the alteration of a dominant source. The
possibility of phtalate biosynthesis implies the presence of a biogenic source, in particular
for PAEs found in the waters of Lake Baikal. Detected concentrations of DEHP in the water
during the spring season may be associated with under-ice diatom algae blooms. Indeed,
phytoplankton collected along with water samples contained 60–170 µg/g (dry biomass) of
DEHP. The main component of phytoplankton was identified as freshwater diatom Synedra
acus subsp. Radians (Küts), which could be a potential source of DEHP during the spring
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period. The value of stable carbon isotope 13C/12C (∆13C) ratio in DEHP from under-ice
water samples confirmed substantial contribution from a biogenic source to this congener
(∆13C of ca.–24‰).
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The 13C3/12C (∆13C) ratio in DEHP allowed drawing a conclusion on the contribution
of a biogenic source into the background PAE levels in Lake Baikal surface waters. In the
southern basin of the lake (central stations, Stations 3, 6), the ∆13C ratio was estimated at
−16 and −10 ‰, respectively, while in the northern basin, it was at −30 ‰ (Station 17). The
greater contribution of anthropogenic PAEs to the basin is obviously associated with POP
atmospheric transport from the industrial zone along the Angara River [35]. In the northern
basin, ice melting occurs somewhat later as well as the diatom growth compared with that
in the southern one. This fact determines a greater contribution of PAEs from the biogenic
source to their total content found in the northern part of the lake. Water samples collected
from the littoral part of the lake (Stations 22, 35—popular recreation sites) contained 0.32
and 0.78 µg/L of Σ4PAEs; the DEHP congener was dominant. At Station 22, the ∆13C
value for the congener was equal to −37‰, indicating a high contribution of a biogenic
source, while at Station 35, the ∆13C value was only −10‰, and DEHP was of a rather
anthropogenic origin. In water samples from lake tributaries, the Snezhnaya River and
the Solzan River (Stations 32 and 33), concentrations of Σ4PAEs were 0.31 and 0.43 µg/L,
respectively; DEHP was dominant. The measured ∆13C ratio of the latter showed the
presence of a notable isotopologue contribution from a biogenic source (∆13C, −20‰)
in samples from the Solzan River, while a large DEHP content of anthropogenic origin
(∆13C, 5.6‰) in samples from the Snezhnaya River was found. Taking into account a huge
drainage basin of the Snezhnaya River of ca. 3,000 km2, the transport of POPs from the
atmosphere to the water in there may saturate the latter by anthropogenic PAEs resulting
in increased ∆13C values.

3.5. Ecological Rick Assessment of PAEs in Surface Waters

The concentration of priority PAEs in Baikal waters (0.26–0.34 µg/L) is comparable
to or less than those found in other freshwater lakes and rivers worldwide (Table 2).
The level of the DEHP congener in Lake Baikal is more than one order of magnitude
lower than maximum permissible concentration (MPC): 8 µg/L for drinking water [36],
1.3 µg/L for fresh and marine waters [37], 8 µg/L for Russian water bodies [38]. The
DEHP concentrations of up to 5.8 µg/L observed under the ice are alarming, as they are
close to the MPC level. A potential environmental risk for Baikal biota from PAEs was
assessed by RQ coefficients calculated using average concentrations of priority PAEs in
waters (Table S2).

The DMP and DEP congeners found in pelagic area of the lake do not represent
or represent a very low risk for hydrobionts such as fishes, crustaceans and algae due
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to calculated RQ values being <0.01. The concentration of dominant DnBP and DEHP
congeners represent a low risk level for crustaceans and fishes and a high one for algae
at the DEHP concentration of 0.30 µg/L. Thus, the increase in the latter content in the
pelagic site of the lake in the spring season and at some sites of the near-shore zone as a
result of accumulation of hydrophobic congeners in deep horizons drastically increases the
environmental risk to average or even high one for algae (Table S3). The presence of DnBP
congener in the water of tributaries is associated with a very low risk level, while DEHP is
associated with a moderate to high one.

The extreme level of DEHP in under-ice water was estimated by the RQ coefficient
� 1.0. At the same time, the measured stable carbon isotopes 13C/12C ratio in DEHP
explains the phenomenon of its high concentration originated from a potential biotic source.
It should be noted that (i) DEHP congener is a potential carcinogenic compound [39] and
its MPC is high, equal to 8.0 µg/L; (ii) structurally, DEHP is presented by two stereoiso-
mers, the only one of which, namely bis-2R(-)ethylhexyl phthalate, has been isolated from
environmental objects so far; for example, the one isolated from the cells of the Aconitum
baicalense (Turcz ex Rapaics 1907) culture and from brown sugar [40,41]; (iii) DEHP toxico-
logical studies were conducted using a synthetic racemic product, while the natural DEHP
stereoisomer does not have to obligatory possess the same physiological properties [42];
(iv) while obtaining extreme DEHP concentrations, it is necessary to identify the source
which could be biogenic or anthropogenic, one or both, before taking any environment
protections.

Table 2. Concentrations of PAEs in surface water of recent studies, µg/L.

Area DMP DEP DnBP BBP DEHP DnOP ΣPAEs Reference

Lakes in Hanoi
metropolitan
area, Vietnam

0.11–2.9 0.64–14 0.78–34 0.18–21 1.0–49 <0.02–7.3 Σ10 19–130 [43]

Lake Victoria,
Uganda 0.006–0.40 0.04–1.1 0.35–16 - 0.21–23 – Σ4 0.67–50 [44]

Yangtze River,
China <0.01 <0.01 0.22–20 <0.01–0.02 0.02–7.0 <0.01 Σ16 0.44–20 [45]

Lake Taihu,
China <0.02–0.80 <0.02–0.12 <0.02–0.19 <0.02–1.3 <0.02–3.3 <0.02–0.65 Σ16 0.02–16 [3]

Kaveri River,
India <0.01–0.01 0.04–0.52 <0.01–0.37 <0.01–0.14 <0.01–0.82 <0.01–0.08 Σ6 0.04–4.6 [4]

Lake Large
Xingkai, China 0.003–0.026 0.003–0.018 0.11–0.52 0.11–0.52 0.22–3.4 nd –0.007 Σ8 0.35–3.8 [46]

Lake Asan,
Korea <0.02–0.18 <0.02–0.05 <0.02–0.34 <0.02 <0.02–1.3 <0.02–0.02 Σ14 0.02–1.9 [47]

Lakes in
Summer

Palace, China
0.04–0.08 <0.01–0.01 0.03–0.04 <0.01–0.01 0.14–0.39 <0.01–0.02 Σ15 0.58 –1.4 [48]

Changjiang
River Estuary,

China
0.04–0.28 0.02–0.18 0.03–2.4 <0.01 <0.01–0.01 <0.01–0.01 Σ16 0.27–1.3 [49]

Mediterranean
Sea, Bay of
Marseilles,

France

<0.01 <0.01–0.05 0.06–0.46 <0.01 0.10–0.30 <0.01 Σ8 0.24–1.2 [11]

Lake Baikal,
Russia 0.01–0.02 0.06–0.08 0.47–0.66 <0.01 0.26–0.34 <0.01 Σ4 0.66–0.87

1 This study

Note: 1—for Lake Baikal waters the mean value of Σ4PAEs is assessed as 0.76 µg/L and confidence interval of
0.66–0.87 µg/L (p = 0.95).
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In the environment, PAE congeners are slowly degraded by various physico-chemical
processes. In particular, the half-life value (t 1

2 ) of phthalates under hydrolysis conditions
reaches more than 100 years. Biodegradation is considered as the most important process
of PAE removal from water. Under aerobic conditions, it occurs with a high rate, and the t 1

2
value is from 1 to 14 days [6,34,50]. The decrease in the content of PAEs in surface waters
of Lake Baikal in the summer season is obviously associated both with the degradation
of PAEs entering the lake in the spring and with the decrease in the number of their
sources. Thus, a dynamic equilibrium between PAE accumulation from different sources,
biodegradation processes and the transfer of dominant hydrophobic congeners into bottom
sediments is established, and it is the one determining the background level of PAEs in
Lake Baikal.

4. Conclusions

Lake Baikal as a model of surface waters with a background level of pollution was stud-
ied. The waters of the lake contain only four priority phtalates, PAEs, namely DEP, DMP,
DnBP, and DEHP at trace concentration levels. Statistically valuable average concentrations
and ranges of PAEs were 0.02 (0.01–0.02), 0.07 (0.06–0.09), 0.55 (0.47–0.66), 0.30 (0.26–0.34)
µg/L for DMP, DEP, DnBP, and DEHP, respectively. The dominant contribution of DnBP
and DEHP congeners into the total PAE concentration was up to 90%. The main factors
determining PAE concentrations were the year and season of sampling, whereas sampling
points were not among the factors influencing PAE levels. Under the conditions of sharply
continental climate, the PAE concentrations are characterized by seasonal variability. They
are increasing in the spring and decreasing to the background levels by the end of summer.
One of the main sources of PAEs to the waters of the lake is atmospheric transport of air
masses contaminated by POPs along with aerosol particles. The distribution of PAEs in the
water depends on their hydrophobicity. The minor hydrophilic DMP and DEP congeners
are distributed throughout both the water area and the water column; hydrophobic DnBP
and DEHP congeners are accumulated in the upper and near-bottom layers of the water
column. The contribution of PAEs from coastal sources to the pelagic zone is low due to
the rapid transport of hydrophobic congeners into coastal sediments. The ecological risk
for the Baikal biota does not represent or represents a very low level in case of DMP and
DEP congeners, while the dominant DnBP and DEHP congeners possess a low risk level
for crustaceans and fishes and a high one for algae at DEHP concentrations of 0.30 µg/L. A
confirmation of the contribution of biogenic sources to the background level of PAEs in the
surface waters of Lake Baikal was also determined. When exploring the extreme concentra-
tions of DEHP, it is highly necessary to identify its source (biogenic or anthropogenic) prior
to drawing any conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11100869/s1, Table S1: Average values (confidence intervals,
p = 0.95) for different groups of results of PAE monitoring in Lake Baikal waters. Table S2: Assessment
of environmental risk for hydrobionts by average concentrations of priority congeners PAEs. Table
S3: Assessment of environmental risk for dominant congeners of PAEs at high concentration levels
(C, µg/L) in waters of Lake Baikal and in tributary mouths.
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