Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Water Sampling
2.3. Sample Processing
2.4. Environmental Risk Assessment
2.5. Statistical Methods
3. Results and Discussion
3.1. Identification and Assessment of Current PAE Concentration Level in Lake Baikal Waters
3.2. Main Factors Affecting PAE Concentration Levels
3.3. Distribution of PAEs in Water Area and in Deep Horizons of Lake Baikal
3.4. Origin of PAEs in the Water of Lake Baikal
3.4.1. Anthropogenic Sources
3.4.2. Biogenic Sources of PAEs
3.5. Ecological Rick Assessment of PAEs in Surface Waters
Area | DMP | DEP | DnBP | BBP | DEHP | DnOP | ƩPAEs | Reference |
---|---|---|---|---|---|---|---|---|
Lakes in Hanoi metropolitan area, Vietnam | 0.11–2.9 | 0.64–14 | 0.78–34 | 0.18–21 | 1.0–49 | ˂0.02–7.3 | Ʃ10 19–130 | [43] |
Lake Victoria, Uganda | 0.006–0.40 | 0.04–1.1 | 0.35–16 | - | 0.21–23 | – | Ʃ4 0.67–50 | [44] |
Yangtze River, China | ˂0.01 | ˂0.01 | 0.22–20 | ˂0.01–0.02 | 0.02–7.0 | ˂0.01 | Ʃ16 0.44–20 | [45] |
Lake Taihu, China | ˂0.02–0.80 | ˂0.02–0.12 | ˂0.02–0.19 | ˂0.02–1.3 | ˂0.02–3.3 | ˂0.02–0.65 | Ʃ16 0.02–16 | [3] |
Kaveri River, India | ˂0.01–0.01 | 0.04–0.52 | ˂0.01–0.37 | ˂0.01–0.14 | ˂0.01–0.82 | ˂0.01–0.08 | Ʃ6 0.04–4.6 | [4] |
Lake Large Xingkai, China | 0.003–0.026 | 0.003–0.018 | 0.11–0.52 | 0.11–0.52 | 0.22–3.4 | nd –0.007 | Ʃ8 0.35–3.8 | [46] |
Lake Asan, Korea | ˂0.02–0.18 | ˂0.02–0.05 | ˂0.02–0.34 | ˂0.02 | ˂0.02–1.3 | ˂0.02–0.02 | Ʃ14 0.02–1.9 | [47] |
Lakes in Summer Palace, China | 0.04–0.08 | ˂0.01–0.01 | 0.03–0.04 | ˂0.01–0.01 | 0.14–0.39 | ˂0.01–0.02 | Ʃ15 0.58 –1.4 | [48] |
Changjiang River Estuary, China | 0.04–0.28 | 0.02–0.18 | 0.03–2.4 | ˂0.01 | ˂0.01–0.01 | ˂0.01–0.01 | Ʃ16 0.27–1.3 | [49] |
Mediterranean Sea, Bay of Marseilles, France | ˂0.01 | ˂0.01–0.05 | 0.06–0.46 | ˂0.01 | 0.10–0.30 | ˂0.01 | Ʃ8 0.24–1.2 | [11] |
Lake Baikal, Russia | 0.01–0.02 | 0.06–0.08 | 0.47–0.66 | ˂0.01 | 0.26–0.34 | ˂0.01 | Ʃ4 0.66–0.87 1 | This study |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvin, E. Plasticizer Market Update. SPI Vinyl Produts Division 22nd Vinyl Compounding Conference 10–13 July 2011, PhD BASF Corporation. Available online: http://www.cpsc.gov/PageFiles/126090/spi.pdf (accessed on 17 March 2022).
- Annual Production of Plastics Worldwide. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed on 3 November 2022).
- Luo, X.; Shu, S.; Feng, H.; Zou, H.; Zhang, Y. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China. Sci. Total Environ. 2021, 768, 144517. [Google Scholar] [CrossRef]
- Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations. Environ. Geochem. Health 2015, 37, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.V.; Krishnan, S.; Sethulekshmi, S.; Shriwastav, A. Phthalate Esters in the Environment: An Overview on the Occurrence, Toxicity, Detection, and Treatment Options. In New Trends in Emerging Environmental Contaminants; Springer Nature Singapore Pte Ltd.: Singapore, 2022; p. 131. [Google Scholar]
- Net, S.; Sempéré, R.; Delmont, A.; Palusell, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.-W.; Wen, Z.-D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.L.; Fan, C.Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 2008, 72, 1567–1572. [Google Scholar] [CrossRef]
- Pei, X.Q.; Song, M.; Guo, M.; Mo, F.F.; Shen, X.Y. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos. Environ. 2013, 68, 17–23. [Google Scholar] [CrossRef]
- Li, T.; Yin, P.; Zhao, L.; Wang, G.; Yu, Q.J.; Li, H.; Duan, S. Spatial-temporal distribution of phthalate esters from riverine outlets of Pearl River Delta in China. Water Sci. Technol. 2015, 71, 183–190. [Google Scholar] [CrossRef]
- Paluselli, A.; Aminot, Y.; Galgani, F.; Net, S.; Sempéré, R. Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean Sea and the Rhone River. Prog. Oceanogr. 2018, 163, 221–231. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, H.; Wang, Q.; Li, J.; Liu, M.; Zhang, K.; Xu, S.; Huang, G.; Ruan, Y.; Wu, J.; et al. Significant riverine inputs of typical plastic additives-phthalate esters from the Pearl River Delta to the northern South China Sea. Sci. Total Environ. 2022, 849, 157744. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Ebinghaus, R.; Temme, C.; Lohmann, R.; Caba, A.; Ruck, W. Occurrence and air-sea exchange of phthalates in the Arctic. Environ. Sci. Technol. 2007, 41, 4555–4560. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-H.; Jia, H.-Y.; Wang, Y.; Li, T.; Wang, L.; Li, Q.-Q.; Yang, M.-M.; Yue, J.-J.; Yi, X.-L.; Guo, L.-Q. Characterization of PM2.5-bound phthalic acid esters (PAEs) at regional background site in northern China: Long-range transport and risk assessment. Sci. Total Environ. 2019, 659, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins 2021, 13, 495. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Rowdhwal, S.S.S.; Chen, J. Toxic effects of di-2-ethylhexyl phthalate: An overview. BioMed Res. Int. 2018, 2018, 1750368. [Google Scholar] [CrossRef] [PubMed]
- Priority Pollutant List EPA USA. 2015. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/priority-pollutant-list-epa.pdf (accessed on 8 June 2023).
- Maksimova, L.A.; Shafikova, T.N. Endogenous phthalates as a potent regulator of interspecific relationships in biocenoses. Proc. Univ. Appl. Chem. Biotechnol. 2022, 12, 424–437. (In Russian) [Google Scholar] [CrossRef]
- Yoshioka, N.; Ueda, S.; Khodzher, T.; Bashenkaeva, N.; Korovyakova, I.; Sorokovikova, L.; Gorbunova, L. Distribution of dissolved organic carbon in Lake Baikal and its watershed. Limnology 2002, 3, 159–168. [Google Scholar] [CrossRef]
- Domysheva, V.M.; Sorokovikova, L.M.; Sinyukovich, V.N.; Onishchuk, N.A.; Sakirko, M.V.; Tomberg, I.V.; Zhuchenko, N.A.; Golobokova, L.P.; Khodzher, T.V. Ionic Composition of Water in Lake Baikal, Its Tributaries, and the Angara River Source during the Modern Period. Russ. Meteorol. Hydrol. 2019, 44, 687–694. [Google Scholar] [CrossRef]
- Samsonov, D.P.; Kochetkov, A.I.; Pasynkova, E.M.; Zapevalov, M.A. Levels of Persistent Organic Pollutants in the Components of the Lake Baikal Unique Ecosystem. Russ. Meteorol. Hydrol. 2017, 42, 345–352. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Kustova, O.V.; Izosimova, O.N.; Babenko, T.A. POPs Monitoring System in Lake Baikal—Impact of Time or the First Need? Limnol. Freshwater Biol. 2018, 1, 43–48. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Babenko, T.A.; Kustova, O.N.; Izosimova, O.N.; Shishlyannikov, S.M. Priority phthalates in the Lake Baikal pelagic zone and coastal area. Chem. Sustain. Dev. 2017, 25, 375–383. [Google Scholar] [CrossRef]
- Kuzmin, A.; Grigorieva, T.; Gorshkov, A. Assessment of stable carbon isotopes 13C/12C ratio in phthalates from surface waters using HPLC-HRMS-TOF approach. Environ. Sci. Pollut. Res. 2023, 30, 87734–87742. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II; European Commission: Brussels, Belgium, 1996. [Google Scholar]
- Bazarsadueva, S.V.; Taraskin, V.V.; Budaeva, O.D.; Nikitina, E.P.; Zhigzhitzhapova, S.V.; Shiretorova, V.G.; Bazarzhapov, T.Z.; Radnaeva, L.D. First Data on PAE Levels in Surface Water in Lakes of the Eastern Coast of Baikal. Int. J. Environ. Res. Public Health 2023, 20, 1173. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liang, J.; Gong, Z.; Zhang, N.; Duan, H. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci. Total Environ. 2017, 580, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. Package “gplots”: Various R Programming Tools for Plotting Data, R Package Version 2.17.0; Science Open: Berlin, Germany, 2015; Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 24 June 2022).
- Grzymala-Busse, J.W.; Goodwin, L.K.; Grzymala-Busse, W.J.; Zheng, X. Handling missing attribute values in preterm birth data sets. In Proceedings of the International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Regina, SK, Canada, 31 August–3 September 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 342–351. Available online: https://sci2s.ugr.es/keel/pdf/specific/congreso/grzymala_busse_goodwin05.pdf (accessed on 23 January 2022).
- Mondal, T.; Mondal, S.; Ghosh, S.-K.; Pal, P.; Soren, T.; Pandey, S.; Maiti, T.-K. Phthalates—A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. Environ. Res. 2022, 214, 114059. [Google Scholar] [CrossRef]
- Cartwright, C.D.; Owen, S.A.; Thompson, I.P.; Burns, R.G. Biodegradation of diethyl phthalate in soil by a novel pathway. Microbiol. Lett. 2000, 186, 27–34. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K.A. Survey of Phthalates and Parabens in Personal Care Products from the United States and Its Implications for Human Exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef]
- Benjamin, S.; Pradeep, S.; Josh, M.S.; Kumar, S.; Masai, E. A monograph on the remediation of hazardous phthalates. J. Hazard. Mater. 2015, 298, 58–72. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Obolkin, V.A.; Molozhnikova, Y.V.; Netsvetaeva, O.G.; Golobokova, L.P. Distribution and transformation of air pollution in the atmospheric boundary layer of the southern basin of lake Baikal, potential risks for the lake ecosystem. In Proceedings of the 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russian, 5–9 July 2021; SPIE 11916. p. 119165H. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization: Geneva, Switerland, 2004; Volume 1. [Google Scholar]
- The European Parliament and the Council of the European Union. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy. Off. J. Eur. Union 2008, 348, 84–97. [Google Scholar]
- SanPiN, 2021, 1.2.3685-21. Hygienic Standards and Requirements to Ensure Safety and (or) Harmful for Human Environmental Factors. Available online: https://faolex.fao.org/docs/pdf/taj183394.pdf (accessed on 8 June 2023).
- IARC. Agents Classified by the IARC Monographs; IARC: Geneva, Switzerland, 2011; Volumes 1–102. [Google Scholar]
- Chernykh, E.A.; Semenov, A.A. Chemical structure of brown sugar. Separation bis-2(R)-ethylhexylphthalate. Chem. Nat. Compd. 1980, 2, 247–248. (In Russian) [Google Scholar]
- Semenov, A.A.; Enikeev, A.G.; Snetkova, L.V.; Permyakov, A.V.; Sokolova, L.A.; Dudareva, L.V. Ortophthalic acid esters in lipophilic extract from the cell culture of Aconitum baicalense Turcz ex Rapaics 1907. Doklady Biochem. Biophys. 2016, 471, 421–422. [Google Scholar] [CrossRef]
- Semenov, A.A.; Enikeev, A.G.; Babenko, T.A.; Shafikova, T.N.; Gorshkov, A.G. Phthalates—A strange delusion of ecologists. Their. Appl. Ecol. 2021, 1, 16–21. [Google Scholar] [CrossRef]
- Le, T.M.; Nguyen, H.M.N.; Nguyen, V.K.; Nguyen, A.V.; Vu, N.D.; Yen, N.T.H.; Hoang, A.Q.; Minh, T.B.; Kannan, K.; Tran, T.M. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Sci. Total Environ. 2021, 788, 147831. [Google Scholar] [CrossRef] [PubMed]
- Nantaba, F.; Pa, W.-U.; Wassw, J.; Bouwman, H.; Kylin, H.; Kümmerer, K. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere 2021, 262, 127716. [Google Scholar] [CrossRef]
- Ren, J.-N.; Zhu, N.-Z.; Meng, X.-Z.; Gao, C.-J.; Li, K.; Jin, L.-M.; Shang, T.-T.; Ai, F.-T.; Cai, M.-H.; Zhao, J.-F. Occurrence and ecological risk assessment of 16 phthalates in surface water of the mainstream of the Yangtze River, China. Environ. Sci. Pollut. Res. 2023, 30, 66936–66946. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Huang, X.; Wen, Z.; Shang, Y.; Wang, X.; Fang, C.; Song, K. Evaluating the spatial distribution and source of phthalate esters in the surface water of Xingkai Lake, China during summer. J. Great Lakes Res. 2021, 47, 437–446. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lee, J.-E.; Choe, W.; Kim, T.; Lee, J.-Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ. Int. 2019, 126, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, B.-T.; Teng, Y. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities. Sci. Total Environ. 2014, 476–477, 107–113. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Zhang, H.-H.; Li, J.-L.; Yang, G.-P. Determination of Phthalic Acid Esters in Seawater and Sediment by Solid-phase Microextraction and Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2017, 45, 348–356. [Google Scholar] [CrossRef]
- Lertsirisopon, R.; Soda, S.; Sei, K.; Ike, M. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J. Environ. Sci. 2009, 21, 285–290. [Google Scholar] [CrossRef]
Factor | R2 Value | p Value |
---|---|---|
Year (2015–2022) | 0.0428 | 0.0009 |
Season (spring, autumn) | 0.0348 | 0.0009 |
Ecotope (pelagic, coastal, bay, river) | 0.0237 | 0.0049 |
Sampling site (central zone or other) | 0.0224 | 0.0009 |
Basin (southern, central, northern) | 0.0067 | 0.2297 |
Sample points | 0.0024 | 0.2437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorshkov, A.; Grigoryeva, T.; Bukin, Y.; Kuzmin, A. Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution. Toxics 2023, 11, 869. https://doi.org/10.3390/toxics11100869
Gorshkov A, Grigoryeva T, Bukin Y, Kuzmin A. Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution. Toxics. 2023; 11(10):869. https://doi.org/10.3390/toxics11100869
Chicago/Turabian StyleGorshkov, Alexander, Tatyana Grigoryeva, Yurij Bukin, and Anton Kuzmin. 2023. "Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution" Toxics 11, no. 10: 869. https://doi.org/10.3390/toxics11100869