Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,115)

Search Parameters:
Keywords = digital world

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2687 KiB  
Article
A Multimodal Framework for Advanced Cybersecurity Threat Detection Using GAN-Driven Data Synthesis
by Nikolaos Peppes, Emmanouil Daskalakis, Theodoros Alexakis and Evgenia Adamopoulou
Appl. Sci. 2025, 15(15), 8730; https://doi.org/10.3390/app15158730 (registering DOI) - 7 Aug 2025
Abstract
Cybersecurity threats are becoming increasingly sophisticated, frequent, and diverse, posing a major risk to critical infrastructure, public trust, and digital economies. Traditional intrusion detection systems often struggle with detecting novel or rare attack types, particularly when data availability is limited or heterogeneous. The [...] Read more.
Cybersecurity threats are becoming increasingly sophisticated, frequent, and diverse, posing a major risk to critical infrastructure, public trust, and digital economies. Traditional intrusion detection systems often struggle with detecting novel or rare attack types, particularly when data availability is limited or heterogeneous. The current study tries to address these challenges by proposing a unified, multimodal threat detection framework that leverages the combination of synthetic data generation through Generative Adversarial Networks (GANs), advanced ensemble learning, and transfer learning techniques. The research objective is to enhance detection accuracy and resilience against zero-day, botnet, and image-based malware attacks by integrating multiple data modalities, including structured network logs and malware binaries, within a scalable and flexible pipeline. The proposed system features a dual-branch architecture: one branch uses a CNN with transfer learning for image-based malware classification, and the other employs a soft-voting ensemble classifier for tabular intrusion detection, both trained on augmented datasets generated by GANs. Experimental results demonstrate significant improvements in detection performance and false positive reduction, especially when multimodal outputs are fused using the proposed confidence-weighted strategy. The findings highlight the framework’s adaptability and practical applicability in real-world intrusion detection and response systems. Full article
(This article belongs to the Special Issue Data Mining and Machine Learning in Cybersecurity)
Show Figures

Figure 1

28 pages, 1319 KiB  
Article
Beyond the Prompt: Investigating Retrieval-Based Monitoring in Self-Regulated Learning
by Mengjiao Wu and Christopher A. Was
J. Intell. 2025, 13(8), 99; https://doi.org/10.3390/jintelligence13080099 (registering DOI) - 6 Aug 2025
Abstract
Metacognitive monitoring plays a crucial role in self-regulated learning, as accurate monitoring enables effective control, which in turn impacts learning outcomes. Most studies on metacognitive monitoring have focused on learners’ monitoring abilities when they are explicitly prompted to monitor. However, in real-world educational [...] Read more.
Metacognitive monitoring plays a crucial role in self-regulated learning, as accurate monitoring enables effective control, which in turn impacts learning outcomes. Most studies on metacognitive monitoring have focused on learners’ monitoring abilities when they are explicitly prompted to monitor. However, in real-world educational settings, learners are more often prompted to control their learning, such as deciding whether to allocate additional time to a learning target. The primary goal of this study was to investigate whether retrieval is engaged when learners are explicitly prompted to control their learning processes by making study decisions. To address this, three experiments were conducted. In Experiment 1, participants (N = 39) studied 70 Swahili–English word pairs in a learning task. Each trial displayed a word pair for 8 s, followed by a distractor task (a two-digit mental addition) and a study decision intervention (choose “Study Again” or “Next”). After learning, participants provided a global judgment of learning (JOL), estimating their overall recall accuracy. Finally, they completed a cued recall test (Swahili cue). Responses were scored for accuracy and analyzed alongside study decisions, study decision reaction time (RT), and metacognitive judgments. Reaction times (RTs) for study decisions correlated positively with test accuracy, global judgments of learning (JOLs), and judgments of confidence (JOCs), suggesting retrieval likely underlies these decisions. Experiment 2 (N = 74, between-subjects) compared memory performance and intervention response time between single-study, restudy, retrieval (explicit recall prompt), and study decision (study decision prompt) groups to have better control over study time and cognitive processes. Although no significant group differences in test accuracy emerged, the retrieval group took longer to respond than the study decision group. Within-subject analyses revealed similar recall accuracy patterns: participants recalled successfully retrieved or “no restudy” items better than failed-retrieval or “restudy” items, implying shared cognitive processes underlying retrieval and study decision interventions. Experiment 3 (N = 74, within-subject, three learning conditions: single-study, retrieval, and study decision) replicated these findings, with no condition effects on test accuracy but longer RT for retrieval than study decisions. The similar recall accuracy patterns between retrieval and study decision interventions further supported shared cognitive processes underlying both tasks. Self-reports across experiments confirmed retrieval engagement in both retrieval and study decision interventions. Collectively, the results suggest that retrieval likely supports study decisions but may occur less frequently or less deeply than under explicit monitoring prompts. Additionally, this study explored objective, online measures to detect retrieval-based metacognitive monitoring. Full article
(This article belongs to the Section Studies on Cognitive Processes)
Show Figures

Figure 1

28 pages, 1622 KiB  
Article
Trusting Humans or Bots? Examining Trust Transfer and Algorithm Aversion in China’s E-Government Services
by Yifan Song, Takashi Natori and Xintao Yu
Adm. Sci. 2025, 15(8), 308; https://doi.org/10.3390/admsci15080308 - 6 Aug 2025
Abstract
Despite the increasing integration of government chatbots (GCs) into digital public service delivery, their real-world effectiveness remains limited. Drawing on the literature on algorithm aversion, trust-transfer theory, and perceived risk theory, this study investigates how the type of service agent (human vs. GCs) [...] Read more.
Despite the increasing integration of government chatbots (GCs) into digital public service delivery, their real-world effectiveness remains limited. Drawing on the literature on algorithm aversion, trust-transfer theory, and perceived risk theory, this study investigates how the type of service agent (human vs. GCs) influences citizens’ trust of e-government services (TOE) and e-government service adoption intention (EGA). Furthermore, it explores whether the effect of trust of government (TOG) on TOE differs across agent types, and whether perceived risk (PR) serves as a boundary condition in this trust-transfer process. An online scenario-based experiment was conducted with a sample of 318 Chinese citizens. Data were analyzed using the Mann–Whitney U test and partial least squares structural equation modeling (PLS-SEM). The results reveal that, within the Chinese e-government context, citizens perceive higher risk (PR) and report lower adoption intention (EGA) when interacting with GCs compared to human agents—an indication of algorithm aversion. However, high levels of TOG mitigate this aversion by enhancing TOE. Importantly, PR moderates the strength of this trust-transfer effect, serving as a critical boundary condition. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Digital Government)
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

20 pages, 1083 KiB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

38 pages, 2159 KiB  
Review
Leveraging Big Data and AI for Sustainable Urban Mobility Solutions
by Oluwaleke Yusuf, Adil Rasheed and Frank Lindseth
Urban Sci. 2025, 9(8), 301; https://doi.org/10.3390/urbansci9080301 - 4 Aug 2025
Viewed by 202
Abstract
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts [...] Read more.
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts remains underexplored. This meta-review comprised three complementary studies: a broad analysis of sustainable mobility with Norwegian case studies, and systematic literature reviews on digital twins and Big Data/AI applications in urban mobility, covering the period of 2019–2024. Using structured criteria, we synthesised findings from 72 relevant articles to identify major trends, limitations, and opportunities. The findings show that mobility policies often prioritise technocentric solutions that unintentionally hinder sustainability goals. Digital twins show potential for traffic simulation, urban planning, and public engagement, while machine learning techniques support traffic forecasting and multimodal integration. However, persistent challenges include data interoperability, model validation, and insufficient stakeholder engagement. We identify a hierarchy of mobility modes where public transit and active mobility outperform private vehicles in sustainability and user satisfaction. Integrating electrification and automation and sharing models with data-informed governance can enhance urban liveability. We propose actionable pathways leveraging Big Data and AI, outlining the roles of various stakeholders in advancing sustainable urban mobility futures. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

45 pages, 5594 KiB  
Article
Integrated Medical and Digital Approaches to Enhance Post-Bariatric Surgery Care: A Prototype-Based Evaluation of the NutriMonitCare System in a Controlled Setting
by Ruxandra-Cristina Marin, Marilena Ianculescu, Mihnea Costescu, Veronica Mocanu, Alina-Georgiana Mihăescu, Ion Fulga and Oana-Andreia Coman
Nutrients 2025, 17(15), 2542; https://doi.org/10.3390/nu17152542 - 2 Aug 2025
Viewed by 354
Abstract
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional [...] Read more.
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional medical protocols can be enhanced by digital solutions in a multidisciplinary framework. Methods: The study analyzes current clinical practices, including personalized meal planning, physical rehabilitation, biochemical marker monitoring, and psychological counseling, as applied in post-bariatric care. These established approaches are then analyzed in relation to the NutriMonitCare system, a digital health system developed and tested in a laboratory environment. Used here as an illustrative example, the NutriMonitCare system demonstrates the potential of digital tools to support clinicians through real-time monitoring of dietary intake, activity levels, and physiological parameters. Results: Findings emphasize that medical protocols remain the cornerstone of post-surgical management, while digital tools may provide added value by enhancing data availability, supporting individualized decision making, and reinforcing patient adherence. Systems like the NutriMonitCare system could be integrated into interdisciplinary care models to refine nutrition-focused interventions and improve communication across care teams. However, their clinical utility remains theoretical at this stage and requires further validation. Conclusions: In conclusion, the integration of digital health tools with conventional post-operative care has the potential to advance personalized smart nutrition. Future research should focus on clinical evaluation, real-world testing, and ethical implementation of such technologies into established medical workflows to ensure both efficacy and patient safety. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

21 pages, 4314 KiB  
Article
Panoptic Plant Recognition in 3D Point Clouds: A Dual-Representation Learning Approach with the PP3D Dataset
by Lin Zhao, Sheng Wu, Jiahao Fu, Shilin Fang, Shan Liu and Tengping Jiang
Remote Sens. 2025, 17(15), 2673; https://doi.org/10.3390/rs17152673 - 2 Aug 2025
Viewed by 236
Abstract
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of [...] Read more.
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of large-scale, real-world plant datasets, which are crucial for advancing this field. To address this gap, we introduce the PP3D dataset—a meticulously labeled collection of about 500 potted plants represented as 3D point clouds, featuring fine-grained annotations for approximately 20 species. The PP3D dataset provides 3D phenotypic data for about 20 plant species spanning model organisms (e.g., Arabidopsis thaliana), potted plants (e.g., Foliage plants, Flowering plants), and horticultural plants (e.g., Solanum lycopersicum), covering most of the common important plant species. Leveraging this dataset, we propose the panoptic plant recognition task, which combines semantic segmentation (stems and leaves) with leaf instance segmentation. To tackle this challenge, we present SCNet, a novel dual-representation learning network designed specifically for plant point cloud segmentation. SCNet integrates two key branches: a cylindrical feature extraction branch for robust spatial encoding and a sequential slice feature extraction branch for detailed structural analysis. By efficiently propagating features between these representations, SCNet achieves superior flexibility and computational efficiency, establishing a new baseline for panoptic plant recognition and paving the way for future AI-driven research in plant science. Full article
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 215
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 122
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

22 pages, 1968 KiB  
Article
Evaluating the Implementation of Information Technology Audit Systems Within Tax Administration: A Risk Governance Perspective for Enhancing Digital Fiscal Integrity
by Murat Umbet, Daulet Askarov, Kristina Rudžionienė, Česlovas Christauskas and Laura Alikulova
J. Risk Financial Manag. 2025, 18(8), 422; https://doi.org/10.3390/jrfm18080422 - 1 Aug 2025
Viewed by 313
Abstract
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research [...] Read more.
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research examines the relationship between tax revenue as a percentage of GDP, digital infrastructure, corruption perception, e-government development, and cybersecurity readiness. Quantitative analysis, including correlation, regression, and clustering methods, reveals a strong positive relationship between digital maturity, e-governance, and tax performance. Countries with advanced digital governance systems and robust IT audit frameworks, such as COBIT, tend to show higher tax revenues and lower corruption levels. The study finds that e-government development and anti-corruption measures explain over 40% of the variance in tax performance. Cluster analysis distinguishes between digitally advanced, high-compliance countries and those lagging in IT adoption. The findings suggest that digital transformation strengthens fiscal integrity by automating compliance and reducing human contact, which in turn mitigates bribery risks and enhances fraud detection. The study highlights the need for adopting international best practices to guide the digitalization of tax administrations, improving efficiency, transparency, and trust in public finance. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

29 pages, 1125 KiB  
Article
Orchestrating Power: The Cultural–Institutional Nexus and the Rise of Digital Innovation Ecosystems in Great Power Rivalry
by Deganit Paikowsky, Dmitry Payson and Yaacov Falkov
Systems 2025, 13(8), 643; https://doi.org/10.3390/systems13080643 - 1 Aug 2025
Viewed by 356
Abstract
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. [...] Read more.
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. Using a cultural–institutional framework, we explain how differences in strategic culture and institutional governance impact the ecosystem’s vitality and performance. A qualitative comparative analysis of the United States, China, and Russia reveals that constructive orchestration, aligning state institutions with generative, commercial-to-national innovation flows, enhances digital leadership, whereas rigid, obstructive governance limits it. This highlights ecosystem governance as a critical dimension of statecraft in the digital age. The findings underscore that the positions of great powers in the global technological hierarchy depend not only on resources or capabilities but also on the effectiveness of ecosystem governance as an evolving instrument of geopolitical power. Full article
Show Figures

Figure 1

22 pages, 4399 KiB  
Article
Deep Learning-Based Fingerprint–Vein Biometric Fusion: A Systematic Review with Empirical Evaluation
by Sarah Almuwayziri, Abeer Al-Nafjan, Hessah Aljumah and Mashael Aldayel
Appl. Sci. 2025, 15(15), 8502; https://doi.org/10.3390/app15158502 (registering DOI) - 31 Jul 2025
Viewed by 128
Abstract
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal [...] Read more.
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal biometric system that combines fingerprint (FP) and finger vein (FV) modalities to improve accuracy and security. The system explores three fusion strategies: feature-level fusion (combining feature vectors from each modality), score-level fusion (integrating prediction scores from each modality), and a hybrid approach that leverages both feature and score information. The implementation involved five pretrained convolutional neural network (CNN) models: two unimodal (FP-only and FV-only) and three multimodal models corresponding to each fusion strategy. The models were assessed using the NUPT-FPV dataset, which consists of 33,600 images collected from 140 subjects with a dual-mode acquisition device in varied environmental conditions. The results indicate that the hybrid-level fusion with a dominant score weight (0.7 score, 0.3 feature) achieved the highest accuracy (99.79%) and the lowest equal error rate (EER = 0.0018), demonstrating superior robustness. Overall, the results demonstrate that integrating deep learning with multimodal fusion is highly effective for advancing scalable and accurate biometric authentication solutions suitable for real-world deployments. Full article
Show Figures

Figure 1

40 pages, 18923 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 - 31 Jul 2025
Viewed by 135
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 482
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

Back to TopTop