Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = differential mode delay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4890 KB  
Article
Distributed Active Support from Photovoltaics via State–Disturbance Observation and Dynamic Surface Consensus for Dynamic Frequency Stability Under Source–Load Asymmetry
by Yichen Zhou, Yihe Gao, Yujia Tang, Yifei Liu, Liang Tu, Yifei Zhang, Yuyan Liu, Xiaoqin Zhang, Jiawei Yu and Rui Cao
Symmetry 2025, 17(10), 1672; https://doi.org/10.3390/sym17101672 - 7 Oct 2025
Viewed by 283
Abstract
The power system’s dynamic frequency stability is affected by common-mode ultra-low-frequency oscillation and differential-mode low-frequency oscillation. Traditional frequency control based on generators is facing the problem of capacity reduction. It is urgent to explore new regulation resources such as photovoltaics. To address this [...] Read more.
The power system’s dynamic frequency stability is affected by common-mode ultra-low-frequency oscillation and differential-mode low-frequency oscillation. Traditional frequency control based on generators is facing the problem of capacity reduction. It is urgent to explore new regulation resources such as photovoltaics. To address this issue, this paper proposes a distributed active support method based on photovoltaic systems via state–disturbance observation and dynamic surface consensus control. A three-layer distributed control framework is constructed to suppress low-frequency oscillations and ultra-low-frequency oscillations. To solve the high-order problem of the regional grid model and to obtain its unmeasurable variables, a regional observer estimating both system states and external disturbances is designed. Furthermore, a distributed dynamic frequency stability control method is proposed for wide-area photovoltaic clusters based on the dynamic surface control theory. In addition, the stability of the proposed distributed active support method has been proven. Moreover, a parameter tuning algorithm is proposed based on improved chaos game theory. Finally, simulation results demonstrate that, even under a 0–2.5 s time-varying communication delay, the proposed method can restrict the frequency deviation and the inter-area frequency difference index to 0.17 Hz and 0.014, respectively. Moreover, under weak communication conditions, the controller can also maintain dynamic frequency stability. Compared with centralized control and decentralized control, the proposed method reduces the frequency deviation by 26.1% and 17.1%, respectively, and shortens the settling time by 76.3% and 42.9%, respectively. The proposed method can effectively maintain dynamic frequency stability using photovoltaics, demonstrating excellent application potential in renewable-rich power systems. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry Studies in Modern Power Systems)
Show Figures

Figure 1

24 pages, 3425 KB  
Article
A Dynamical Systems Model of Port–Industry–City Co-Evolution Under Data Constraints
by Huajiang Xu and Changxin Xu
Mathematics 2025, 13(18), 2911; https://doi.org/10.3390/math13182911 - 9 Sep 2025
Viewed by 522
Abstract
This study develops a dynamical systems framework for analyzing the co-evolution of port–industry–city (PIC) systems, with particular attention to the data-limited contexts often encountered in developing coastal regions. The model integrates time-delay differential equations and stochastic disturbances to capture nonlinear behaviors such as [...] Read more.
This study develops a dynamical systems framework for analyzing the co-evolution of port–industry–city (PIC) systems, with particular attention to the data-limited contexts often encountered in developing coastal regions. The model integrates time-delay differential equations and stochastic disturbances to capture nonlinear behaviors such as investment cycles, policy lags, and external shocks. By introducing dimensionless indicators and dynamic parameter adjustment, the framework reduces dependence on extensive datasets and enhances cross-regional applicability. The Kribi Deep Seaport in Cameroon serves as an illustrative case, demonstrating how the approach can reveal emergent trajectories under alternative development regimes. Simulation results identify three distinct pathways: capital-driven expansion with risks of premature overinvestment, industrial clustering modes requiring coordinated urban services, and policy-led strategies constrained by ecological thresholds and institutional inertia. Compared with conventional static or equilibrium-based models, this approach provides a mathematically rigorous tool for examining delay-driven, nonlinear interactions in complex socio-ecological systems. The framework highlights the value of dynamical systems analysis for scenario exploration, policy design, and sustainable governance in resource-constrained environments. Full article
(This article belongs to the Special Issue Dynamical Systems and Complex Systems)
Show Figures

Figure 1

25 pages, 3176 KB  
Article
Error Correction Methods for Accurate Analysis of Milling Stability Based on Predictor–Corrector Scheme
by Yi Wu, Bin Deng, Qinghua Zhao, Tuo Ye, Wenbo Jiang and Wenting Ma
Machines 2025, 13(9), 821; https://doi.org/10.3390/machines13090821 - 6 Sep 2025
Viewed by 398
Abstract
Chatter vibration in machining operations has been identified as one of the major obstacles to improving surface quality and productivity. Therefore, efficiently and accurately predicting stable cutting regions is becoming increasingly important, especially in high-speed milling processes. In this study, on the basis [...] Read more.
Chatter vibration in machining operations has been identified as one of the major obstacles to improving surface quality and productivity. Therefore, efficiently and accurately predicting stable cutting regions is becoming increasingly important, especially in high-speed milling processes. In this study, on the basis of a predictor–corrector scheme, the following three error correction methods are developed for milling stability analysis: the Correction Hamming–Milne-based method (CHM), the Correction Adams–Milne-based method (CAM) and the Predictor–Corrector Hamming–Adams–Milne-based method (PCHAM). Firstly, we employ the periodic delay differential equations (DDEs), which are usually adopted to describe mathematical models of milling dynamics, and the time period of the coefficient matrix is divided into two unequal subintervals based on an analysis of the vibration modes. Then, the Hamming method and the fourth-order implicit Adams–Moulton method are separately utilized to predict the state term, and the Milne method is adopted to correct the state term. Based on local truncation error, combining the Hamming and Milne methods creates a CHM that can more precisely approximate the state term. Similarly, combining the fourth-order implicit Adams–Moulton method and the Milne method creates a CAM that can more accurately approximate the state term. More importantly, the CHM and the CAM are employed together to acquire the state transition matrix. Thereafter, the effectiveness and applicability of the three error correction methods are verified by comparing them with three existing methods. The results demonstrate that the three error correction methods achieve higher prediction accuracy without sacrificing computational efficiency. Compared with the 2nd SDM, the calculation times of the CHM, CAM and PCHAM are reduced by around 56%, 56% and 58%, respectively. Finally, verification experiments are carried out using a CNC machine (EMV650) to further validate the reliability of the proposed methods, where ten groups of cutting tests illustrate that the stability lobes predicted by the three error correction methods exhibit better agreement with the experimental results. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

16 pages, 5068 KB  
Technical Note
VGOS Dual Linear Polarization Data Processing Techniques Applied to Differential Observation of Satellites
by Jiangying Gan, Fengchun Shu, Xuan He, Yidan Huang, Fengxian Tong and Yan Sun
Remote Sens. 2025, 17(13), 2319; https://doi.org/10.3390/rs17132319 - 7 Jul 2025
Viewed by 637
Abstract
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio [...] Read more.
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio source observation regularly. However, these VGOS stations have not yet been used to observe Earth satellites or deep-space probes. In addition, suitable systems for processing VGOS satellite data are unavailable. In this study, we explored a data processing pipeline and method suitable for VGOS data observed in the dual linear polarization mode and applied to the differential observation of satellites. We present the VGOS observations of the Chang’e 5 lunar orbiter as a pilot experiment for VGOS observations of Earth satellites to verify our processing pipeline. The interferometric fringes were obtained by the cross-correlation of Chang’e 5 lunar orbiter signals. The data analysis yielded a median delay precision of 0.16 ns with 30 s single-channel integration and a baseline closure delay standard deviation of 0.14 ns. The developed data processing pipeline can serve as a foundation for future Earth-orbiting satellite observations, potentially supporting space-tie satellite missions aimed at constructing the terrestrial reference frame (TRF). Full article
(This article belongs to the Special Issue Space Geodesy and Time Transfer: From Satellite to Science)
Show Figures

Figure 1

11 pages, 2025 KB  
Article
Complete Dispersion Measurement for Few-Mode Fibers with Large Mode Numbers Enabled by Multiplexer-Assisted S2
by Bingyi Zhao, Zhiqun Yang, Zhongze Lv, Huihui Wang, Yaping Liu, Zhanhua Huang and Lin Zhang
Photonics 2025, 12(6), 561; https://doi.org/10.3390/photonics12060561 - 3 Jun 2025
Viewed by 525
Abstract
With the widespread use and increasing importance of few-mode fibers (FMFs), comprehensive dispersion measurement for FMFs with large mode numbers is in urgent demand. Among existing methods, spatially and spectrally resolved (S2) imaging technique offers distinct advantages for measuring differential mode [...] Read more.
With the widespread use and increasing importance of few-mode fibers (FMFs), comprehensive dispersion measurement for FMFs with large mode numbers is in urgent demand. Among existing methods, spatially and spectrally resolved (S2) imaging technique offers distinct advantages for measuring differential mode group delay (DMGD) and chromatic dispersion (CD) parameters. However, it suffers from several limitations such as uncontrollable mode excitation and an inability to measure absolute CD. In this study, we enhance the traditional S2 method, making it possible to effectively measure the complete dispersion for high-mode-count FMFs. By introducing a mode multiplexer (MMUX), selectively and proportionally mode excitation can be realized. Combined with a tunable delay line array, the misalignment of the MMUX’s fiber pigtail lengths is canceled. Additionally, with the help of a reference path capable of generating planar light, the measurement of the absolute CD is enabled. Based on the enhanced MMUX-assisted S2, a simultaneous DMGD and absolute CD measurement for an FMF supporting up to six LP modes is conducted, which has not been previously demonstrated with a single S2-based system. The proposed paradigm significantly expands the mode number of FMF measurable by S2, enriches the parameters that S2 can cover, and even has great inspiration for other measurement methods. Full article
Show Figures

Figure 1

22 pages, 1130 KB  
Article
Two-Mode Hereditary Model of Solar Dynamo
by Evgeny Kazakov, Gleb Vodinchar and Dmitrii Tverdyi
Mathematics 2025, 13(10), 1669; https://doi.org/10.3390/math13101669 - 20 May 2025
Viewed by 404
Abstract
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating [...] Read more.
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating feedback. An important role in dynamo is played by memory (hereditary), when a change in the current state of a physical system depends on its states in the past. Taking these effects into account may provide a more accurate description of the generation of the Sun’s magnetic field. This paper generalizes classical dynamo models by including hereditary feedback effects. The feedback parameters such as the presence or absence of delay, delay duration, and memory duration are additional degrees of freedom. This can provide more diverse dynamic modes compared to classical memoryless models. The proposed model is based on the kinematic dynamo problem, where the large-scale velocity field is predetermined. The field in the model is represented as a linear combination of two stationary predetermined modes with time-dependent amplitudes. For these amplitudes, equations are obtained based on the kinematic dynamo equations. The model includes two generators of a large-scale magnetic field. In the first, the field is generated due to large-scale flow of the medium. The second generator has a turbulent nature; in it, generation occurs due to the nonlinear interaction of small-scale pulsations of the magnetic field and velocity. Memory in the system under study is implemented in the form of feedback distributed over all past states of the system. The feedback is represented by an integral term of the type of convolution of a quadratic form of phase variables with a kernel of a fairly general form. The quadratic form models the influence of the Lorentz force. This integral term describes the turbulent generator quenching. Mathematically, this model is written with a system of integro-differential equations for amplitudes of modes. The model was applied to a real space object, namely, the solar dynamo. The model representation of the Sun’s velocity field was constructed based on helioseismological data. Free field decay modes were chosen as components of the magnetic field. The work considered cases when hereditary feedback with the system arose instantly or with a delay. The simulation results showed that the model under study reproduces dynamic modes characteristic of the solar dynamo, if there is a delay in the feedback. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamical Systems of Mathematical Physics)
Show Figures

Figure 1

16 pages, 6441 KB  
Article
Experimental Investigation of Motion Control of a Closed-Kinematic Chain Robot Manipulator Using Synchronization Sliding Mode Method with Time Delay Estimation
by Tu T. C. Duong, Charles C. Nguyen and Thien Duc Tran
Appl. Sci. 2025, 15(9), 5206; https://doi.org/10.3390/app15095206 - 7 May 2025
Cited by 1 | Viewed by 942
Abstract
Closed-Kinematic Chain Manipulators (CKCM) have gained attention due to their precise Cartesian motion capability through coordinated active joint movements. Furthermore, ensuring synchronization among the joints of CKCMs is critical for reliable operation. An advanced control scheme for CKCMs that combines Nonsingular Fast Terminal [...] Read more.
Closed-Kinematic Chain Manipulators (CKCM) have gained attention due to their precise Cartesian motion capability through coordinated active joint movements. Furthermore, ensuring synchronization among the joints of CKCMs is critical for reliable operation. An advanced control scheme for CKCMs that combines Nonsingular Fast Terminal Sliding Mode Control (NFTSMC) with Time Delay Estimation (TDE) while utilizing synchronization errors, namely Syn-TDE-NFTSMC, to effectively address joint errors in CKCMs was developed. NFTSMC enables fast convergence through nonlinear terminal sliding while TDE eliminates the need for prior knowledge of the robot’s dynamics, thereby simplifying its implementation and reducing its computational requirements. It is known that the inclusion of TDE reduces about 98% of the computational requirement of control schemes without TDE. The newly developed control scheme was rigorously evaluated using computer simulation and its control performance was compared with that of existing control methods. This paper presents an experimental study where the newly developed control scheme and other existing control schemes were applied to a real CKCM with 2 degrees of freedom (DOF). The experimental results confirm that the control scheme performed much better than other existing control schemes in terms of synchronization and control performance, achieving a reduction in maximum tracking errors of up to 81% as compared to other existing control schemes. The results confirm the efficacy of the newly developed control scheme in enhancing control precision and system stability, making it a promising solution for improving CKCM control strategies in real-world applications. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

23 pages, 5670 KB  
Article
A Conceptual Study of Rapidly Reconfigurable and Scalable Optical Convolutional Neural Networks Based on Free-Space Optics Using a Smart Pixel Light Modulator
by Young-Gu Ju
Computers 2025, 14(3), 111; https://doi.org/10.3390/computers14030111 - 20 Mar 2025
Cited by 2 | Viewed by 707
Abstract
The smart-pixel-based optical convolutional neural network was proposed to improve kernel refresh rates in scalable optical convolutional neural networks (CNNs) by replacing the spatial light modulator with a smart pixel light modulator while preserving benefits such as an unlimited input node size, cascadability, [...] Read more.
The smart-pixel-based optical convolutional neural network was proposed to improve kernel refresh rates in scalable optical convolutional neural networks (CNNs) by replacing the spatial light modulator with a smart pixel light modulator while preserving benefits such as an unlimited input node size, cascadability, and direct kernel representation. The smart pixel light modulator enhances weight update speed, enabling rapid reconfigurability. Its fast updating capability and memory expand the application scope of scalable optical CNNs, supporting operations like convolution with multiple kernel sets and difference mode. Simplifications using electrical fan-out reduce hardware complexity and costs. An evolution of this system, the smart-pixel-based bidirectional optical CNN, employs a bidirectional architecture and single lens-array optics, achieving a computational throughput of 8.3 × 1014 MAC/s with a smart pixel light modulator resolution of 3840 × 2160. Further advancements led to the two-mirror-like smart-pixel-based bidirectional optical CNN, which emulates 2n layers using only two physical layers, significantly reducing hardware requirements despite increased time delay. This architecture was demonstrated for solving partial differential equations by leveraging local interactions as a sequence of convolutions. These advancements position smart-pixel-based optical CNNs and their derivatives as promising solutions for future CNN applications. Full article
(This article belongs to the Special Issue Emerging Trends in Machine Learning and Artificial Intelligence)
Show Figures

Graphical abstract

24 pages, 2621 KB  
Article
Nonlinear Robust Control for Missile Unsupported Random Launch Based on Dynamic Surface and Time Delay Estimation
by Xiaochuan Yu, Hui Sun, Haoyang Liu, Xianglong Liang, Xiaowei Yang and Jianyong Yao
Actuators 2025, 14(3), 142; https://doi.org/10.3390/act14030142 - 13 Mar 2025
Viewed by 670
Abstract
Due to the difficulty in ensuring launch safety under unfavorable launch site conditions, restrictions regarding the selection of launch sites significantly weaken the maneuverability of the unsupported random vertical launch (URVL) mode. In this paper, a nonlinear robust control strategy is proposed to [...] Read more.
Due to the difficulty in ensuring launch safety under unfavorable launch site conditions, restrictions regarding the selection of launch sites significantly weaken the maneuverability of the unsupported random vertical launch (URVL) mode. In this paper, a nonlinear robust control strategy is proposed to control the missile attitude by actively adjusting the oscillation of the launcher through the hydraulic actuator, enhancing the launching safety and the adaptability of the VMLS to the launching site. Firstly, considering the interaction among the launch canister, adapters, and missile, a 6-DOF dynamic model of the launch system is established, in combination with the dynamics of the hydraulic actuator. Then, in order to facilitate the nonlinear controller design, the seventh-order state-space equation is constructed, according to the dynamic model of the launch system. Subsequently, in view of the problem of “differential explosion” in the backstepping controller design of the seventh-order nonlinear system, a nonlinear dynamic surface control (DSC) framework is proposed. Meanwhile, the time delay estimation (TDE) technique is introduced to suppress the influence of the complex nonlinearities of the launch system on the missile attitude control, and a nonlinear robust control (NRC) is introduced to attenuate the TDE error. Both of these are integrated into the DSC framework, which can achieve asymptotic output tracking. Finally, numerical simulations are conducted to validate the superiority of the proposed control strategy in regards to missile launch response control. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

15 pages, 1576 KB  
Case Report
Kenny–Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization
by Kyriaki Hatziagapiou, Amalia Sertedaki, Vasiliki Dermentzoglou, Nataša Čurović Popović, George I. Lambrou, Louis Papageorgiou, Trias Thireou, Christina Kanaka-Gantenbein and Sophia D. Sakka
J. Clin. Med. 2025, 14(1), 118; https://doi.org/10.3390/jcm14010118 - 28 Dec 2024
Viewed by 1918
Abstract
Background/Objectives: Kenny–Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the FAM111A gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. Methods: [...] Read more.
Background/Objectives: Kenny–Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the FAM111A gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. Methods: The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. Results: The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years. Biochemical evaluation at several ages revealed persistent hypocalcemia, high normal phosphorous, and inappropriately low normal PTH. To exclude other causes of short stature, the diagnostic approach revealed low levels of IGF-1, and on CNS MRI, small pituitary gland and empty sella. Nocturnal levels of growth hormone were normal. MRI also revealed bilateral symmetrical microphthalmia and torturous optic nerves. Skeletal survey was compatible with cortical thickening and medullary stenosis of the long bones. Genomic data analysis revealed a well-known pathogenic variant of the FAM111A gene (c.1706G>A, p. R569H), which is linked with KCS2 or nanophthalmos. Conclusions: KCS2, although a rare disease, should be included in the differential diagnosis of hypoparathyroidism and short stature. Understanding the association of pathogenic variants with KCS2 phenotypic variability will allow the advancement of clinical genetics and personalized long-term follow-up and will offer insights into the role of the FAM111A gene in the disease pathogenesis and normal embryogenesis of implicated tissues and organs. Full article
(This article belongs to the Special Issue Endocrine Disorders in Children)
Show Figures

Figure 1

19 pages, 7546 KB  
Article
Ultra-Wideband Common-Mode Rejection Structure with Autonomous Phase Balancing for Ultra-High-Speed Digital Transmission
by Byung-Cheol Min, Jeong-Sik Choi, Hyun-Chul Choi and Kang-Wook Kim
Sensors 2024, 24(19), 6180; https://doi.org/10.3390/s24196180 - 24 Sep 2024
Cited by 1 | Viewed by 1646
Abstract
For ultra-high-speed digital transmission, required by 5G/6G communications, ultra-wideband common-mode rejection (CMR) structures with autonomous phase-balancing capability are proposed. Common-mode noise, caused by phase and amplitude unbalances, is one of the most undesired disturbances affecting modern digital circuits. According to the circuit design [...] Read more.
For ultra-high-speed digital transmission, required by 5G/6G communications, ultra-wideband common-mode rejection (CMR) structures with autonomous phase-balancing capability are proposed. Common-mode noise, caused by phase and amplitude unbalances, is one of the most undesired disturbances affecting modern digital circuits. According to the circuit design guides with a typically used differential line (DL) for high-speed digital transmission, common-mode rejection is achieved using CMR filters, and the unbalanced phase, caused by a length difference between the two signal lines of a DL, is compensated by inserting an additional delay line. However, due to nonlinear phase interactions between the two DLs and unbalanced electromagnetic (EM) interferences, the conventional compensation method is frequency-limited at around 10 GHz. To significantly enhance the common-mode rejection level and extend the phase recovery bandwidth, the proposed CMR structure utilizes a planar balanced line (BL), such as a coplanar stripline (CPS) or a parallel stripline (PSL), along with additional conductor strips arranged laterally near the BL. To demonstrate the performance of the proposed BL-based CMR structures, various types of CMR structures are fabricated, and the measurement results are compared with the 3D EM simulation results. As a result, it is proven that the proposed BL-based CMR structures have the capability to reject the common-mode noise with suppression levels of more than 10 dB and to simultaneously recover the phase balance from near DC to over 40 GHz. Full article
(This article belongs to the Special Issue Advanced Interface Circuits for Sensor Systems (Volume II))
Show Figures

Figure 1

20 pages, 14554 KB  
Article
Key Technologies for the Efficient Development of Thick and Complex Carbonate Reservoirs in the Middle East
by Kaijun Tong, Juan He, Peiyuan Chen, Changyong Li, Weihua Dai, Futing Sun, Yi Tong, Su Rao and Jing Wang
Energies 2024, 17(18), 4566; https://doi.org/10.3390/en17184566 - 12 Sep 2024
Cited by 5 | Viewed by 1596
Abstract
In order to enhance the development efficiency of thick and complex carbonate reservoirs in the Middle East, a case study was conducted on M oilfield in Iraq. This study focused on reservoir characterization, injection-production modes, well pattern optimization, and other related topics. As [...] Read more.
In order to enhance the development efficiency of thick and complex carbonate reservoirs in the Middle East, a case study was conducted on M oilfield in Iraq. This study focused on reservoir characterization, injection-production modes, well pattern optimization, and other related topics. As a result, key techniques for the high-efficiency development of thick carbonate reservoirs were established. The research findings include the following: (1) the discovery of hidden “low-velocity” features within the thick gypsum-salt layer, which led to the development of a new seismic velocity model; (2) the differential dissolution of grain-supported limestones is controlled by lithofacies and petrophysical properties, resulting in the occurrence of “porphyritic” phenomena in core sections. The genetic mechanism responsible for reversing petrophysical properties in dolostones is attributed to “big hole filling and small hole preservation” caused by dense brine refluxing; (3) fracture evaluation technology based on anisotropy and dipole shear wave long-distance imaging was developed to address challenges associated with quantitatively assessing micro-fractures; (4) through large-scale three-dimensional physical models and numerical simulations, it was revealed that water–oil displacement mechanisms involving “horizontal breakthrough via hyper-permeability” combined with vertical differentiation due to gravity occur in thick and heterogeneous reservoirs under spatial injection-production modes; (5) a relationship model linking economic profit with well pattern density was established for technical service contracts in the Middle East. Additionally, an innovative stepwise conversion composite well patterns approach was introduced for thick reservoirs to meet production ramp-up requirements while delaying water cut rise; (6) a prediction technology for the oilfield development index, considering asphaltene precipitation, has been successfully developed. These research findings provide robust support for the efficient development of the M oilfield in Iraq, while also serving as a valuable reference for similar reservoirs’ development in the Middle East. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

24 pages, 4889 KB  
Article
SSH-MAC: Service-Aware and Scheduling-Based Media Access Control Protocol in Underwater Acoustic Sensor Network
by Hongyu Zhao, Huifang Chen and Lei Xie
Remote Sens. 2024, 16(15), 2718; https://doi.org/10.3390/rs16152718 - 24 Jul 2024
Cited by 2 | Viewed by 1426
Abstract
In the framework of the space-air-ground-ocean integrated network, the underwater acoustic sensor network (UASN) plays a pivotal role. The design of media access control (MAC) protocols is essential for the UASN to ensure efficient and reliable data transmission. From the perspective of differentiated [...] Read more.
In the framework of the space-air-ground-ocean integrated network, the underwater acoustic sensor network (UASN) plays a pivotal role. The design of media access control (MAC) protocols is essential for the UASN to ensure efficient and reliable data transmission. From the perspective of differentiated services in the UASN, a service-aware and scheduling-based hybrid MAC protocol, named the SSH-MAC protocol, is proposed in this paper. In the SSH-MAC protocol, the centralized scheduling strategy is adopted by sensor nodes with environmental monitoring service, and the distributed scheduling strategy is adopted by sensor nodes with target detection service. Considering the time-varying data generation rate of sensor nodes, the sink node will switch the scheduling mode of sensor nodes based on the specific control packet and adjust the resource allocation ratio between centralized scheduling and distributed scheduling. Simulation results show that the performance of the SSH-MAC protocol, in terms of utilization, end-to-end delay, packet delivery ratio, energy consumption, and payload efficiency, is good. Full article
Show Figures

Graphical abstract

13 pages, 4435 KB  
Article
Study on the Effects of Different Light Supply Modes on the Development and Extracellular Enzyme Activity of Ganoderma lucidum
by Yihan Liu, Yuan Luo, Wenzhong Guo, Xin Zhang, Wengang Zheng and Xiaoli Chen
Agriculture 2024, 14(6), 835; https://doi.org/10.3390/agriculture14060835 - 27 May 2024
Cited by 6 | Viewed by 2973
Abstract
Edible fungi have certain photo-sensitivity during the mushroom emergence stage, but there have been few relevant studies on the responses of Ganoderma lucidum to different light irradiation conditions. Ganoderma lucidum were planted in an environmentally controllable mushroom room with different light supply modes [...] Read more.
Edible fungi have certain photo-sensitivity during the mushroom emergence stage, but there have been few relevant studies on the responses of Ganoderma lucidum to different light irradiation conditions. Ganoderma lucidum were planted in an environmentally controllable mushroom room with different light supply modes that were, respectively, continuous white light (CK), red light (R), green light (G), blue light (B), and intermittent red light (R-), green light (G-), and blue light (B-), with a total light intensity of 15 μmol·m−2·s−1 and a light/dark (L/D) period of 12 h/12 h for each treatment. The interval in intermittent light treatments was 30 min. The optimal light supply mode suitable for the growth of Ganoderma lucidum was explored by analyzing the characteristics, nutritional quality, and extracellular enzyme activity in mushrooms exposed to different light treatments. The results showed that red light (whether in continuous or intermittent supply modes) inhibited the fruiting body differentiation of Ganoderma lucidum, showing delayed differentiation or complete undifferentiation. The highest stipe length and pileus diameter of fruiting bodies were detected under G- treatment, which were, respectively, increased by 71.3% and 3.2% relative to the control. The highest weight of fruiting bodies was detected under G treatment, which was significantly increased by 21.4% compared to the control (p < 0.05). Intermittent light mode seemed to be more conducive to the size development of the fruiting body, while continuous light mode was beneficial for increasing the weight. The highest contents of crude protein and total triterpenes in pileus were detected under G treatment (significantly 14.9% and 28.1% higher than the control, respectively), while that of the crude polysaccharide was detected under G- treatment (significantly 35.7% higher than the control) (p < 0.05). The highest activities of extracellular enzymes such as cellulase, hemicellulase, laccase, lignin peroxidase, and amylase were detected in fruiting bodies subjected to G treatment, which were significantly increased by 11.9%~30.7% in the pileus and 9.5%~44.5% in the stipe. Green light might increase the weight and nutrient accumulation in the pileus of Ganoderma lucidum via up-regulating the extracellular enzyme activities. This study provides an effective light supply strategy for regulating the light environment in the industrial production of Ganoderma lucidum. Full article
(This article belongs to the Special Issue Genetics and Breeding of Edible Mushroom)
Show Figures

Figure 1

12 pages, 4412 KB  
Article
Estimation and Compensation of the Ionospheric Path Delay Phase in PALSAR-3 and NISAR-L Interferograms
by Urs Wegmüller, Charles Werner, Othmar Frey and Christophe Magnard
Atmosphere 2024, 15(6), 632; https://doi.org/10.3390/atmos15060632 - 24 May 2024
Cited by 1 | Viewed by 2061
Abstract
Spatial and temporal variation in the free electron concentration in the ionosphere affects SAR interferograms, in particular at low radar frequencies. In this work, the identification, estimation, and compensation of ionospheric path delay phases in PALSAR-3 and NISAR-L interferograms are discussed. Both of [...] Read more.
Spatial and temporal variation in the free electron concentration in the ionosphere affects SAR interferograms, in particular at low radar frequencies. In this work, the identification, estimation, and compensation of ionospheric path delay phases in PALSAR-3 and NISAR-L interferograms are discussed. Both of these L-band sensors simultaneously acquire SAR data in a main spectral band and in an additional, spectrally separated, narrower second band to support the mitigation of ionospheric path delays. The methods presented permit separating the dispersive and the non-dispersive phase terms based on the double-difference interferogram between the two available spectral bands and the differential interferogram of the main band. The applicability of the proposed methods is demonstrated using PALSAR-3-like data that were simulated based on PALSAR-2 SM1 mode data. Full article
(This article belongs to the Special Issue Ionospheric Irregularity)
Show Figures

Figure 1

Back to TopTop