Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,938)

Search Parameters:
Keywords = diet-deficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 634 KiB  
Article
Comparative Analysis of a Rapid Quantitative Immunoassay to the Reference Methodology for the Measurement of Blood Vitamin D Levels
by Gary R. McLean, Samson Soyemi, Oluwafunmito P. Ajayi, Sandra Fernando, Wiktor Sowinski-Mydlarz, Duncan Stewart, Sarah Illingworth, Matthew Atkins and Dee Bhakta
Methods Protoc. 2025, 8(4), 85; https://doi.org/10.3390/mps8040085 (registering DOI) - 1 Aug 2025
Abstract
Vitamin D is the only vitamin that is conditionally essential, as it is synthesized from precursors after UV light exposure, whilst also being obtained from the diet. It has numerous health benefits, with deficiency becoming a major concern globally, such that dietary supplementation [...] Read more.
Vitamin D is the only vitamin that is conditionally essential, as it is synthesized from precursors after UV light exposure, whilst also being obtained from the diet. It has numerous health benefits, with deficiency becoming a major concern globally, such that dietary supplementation has more recently achieved vital importance to maintain satisfactory levels. In recent years, measurements made from blood have, therefore, become critical to determine the status of vitamin D levels in individuals and the larger population. Tests for vitamin D have routinely relied on laboratory analysis with sophisticated equipment, often being slow and costly, whilst rapid immunoassays have suffered from poor specificity and sensitivity. Here, we have evaluated a new rapid immunoassay test on the market (Rapi-D & IgLoo) to quickly and accurately measure vitamin D levels in small capillary blood specimens and compared this to measurements made using the standard laboratory method of liquid chromatography and mass spectrometry. Our results show that vitamin D can be measured very quickly and over a broad range using the new method, as well as correlate relatively well with standard laboratory testing; however, it cannot be fully relied upon currently to accurately diagnose deficiency or sufficiency in individuals. Our statistical and comparative analyses find that the rapid immunoassay with digital quantification significantly overestimates vitamin D levels, leading to diminished diagnosis of vitamin D deficiency. The speed and simplicity of the rapid method will likely provide advantages in various healthcare settings; however, further calibration of this rapid method and testing parameters for improving quantification of vitamin D from capillary blood specimens is required before integration of it into clinical decision-making pathways. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

20 pages, 815 KiB  
Study Protocol
Can Dietary Supplements Be Linked to a Vegan Diet and Health Risk Modulation During Vegan Pregnancy, Infancy, and Early Childhood? The VedieS Study Protocol for an Explorative, Quantitative, Cross-Sectional Study
by Wolfgang Huber-Schneider, Karl-Heinz Wagner and Ingrid Kiefer
Int. J. Environ. Res. Public Health 2025, 22(8), 1210; https://doi.org/10.3390/ijerph22081210 - 31 Jul 2025
Abstract
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, [...] Read more.
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, and social environments, that affect the diet of vegan pregnant women, parents, and their children, as well as their approach towards dietary supplementation, have not yet been investigated. Various sources of information, combined with a lack of expertise, sparse food and nutritional health literacy, and qualitatively heterogeneous information provision by medical experts, unsettle vegan pregnant women and parents and affect their dietary choices and potentially the health of their children. The VedieS study aims to investigate potential connections between external influences and associated impacts on a vegan diet and the intake of dietary supplements (DS) of pregnant women and children. Two surveys are being conducted within the study: one targeting 1000 vegan pregnant women and parents, and another targeting 60 experts in each of five healthcare groups: gynecologists, pediatricians, general practitioners, pharmacists, and dietitians. This study is the first to examine how socio-economic, social, and further informational factors influence dietary practices during vegan pregnancy and childhood. It highlights the need for reliable, expert-led guidance, as current information sources are often inconsistent and may put these vulnerable groups at risk. Full article
(This article belongs to the Special Issue Holistic Approach to Pregnancy, Childbirth and Postpartum Period)
34 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 (registering DOI) - 31 Jul 2025
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

12 pages, 1734 KiB  
Article
Lipid-Modulating Effects of Sargassum fulvellum Fermented by Lactococcus lactis KCCM12759P and Leuconostoc mesenteroides KCCM12756P in Ovariectomized Mice
by Hyun-Sol Jo, Young-Eun Cho and Sun-Mee Hong
Nutrients 2025, 17(15), 2527; https://doi.org/10.3390/nu17152527 - 31 Jul 2025
Abstract
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate [...] Read more.
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate the effects of fermented S. fulvellum (SfLlLm), prepared using Lactococcus lactis and Leuconostoc mesenteroides, on lipid metabolism and adipose tissue remodeling in an ovariectomized (OVX) mouse model of estrogen deficiency. Methods: Female C57BL/6 mice underwent ovariectomy and were fed an AIN-76A diet supplemented with either unfermented Sf or SfLlLm for eight weeks. Sham-operated and 17β-estradiol-treated OVX groups served as controls. Serum lipid levels—total cholesterol, triglycerides, LDL-C, and HDL-C—were assessed, and histological analysis of visceral adipose tissue was conducted to evaluate adipocyte morphology. Results: OVX-induced estrogen deficiency led to increased total cholesterol, triglycerides, and LDL-C, along with hypertrophic changes in visceral adipocytes. Supplementation with fermented Sargassum fulvellum (SfLlLm) markedly improved these parameters, reducing total cholesterol by 6.7%, triglycerides by 9.3%, and LDL-C by 52.9%, while increasing HDL-C by 17.5% compared to the OVX controls. SfLlLm also normalized visceral adipocyte size and distribution. These effects were comparable to or exceeded those of 17β-estradiol treatment. Conclusions: Fermented SfLlLm ameliorated dyslipidemia and visceral adiposity under estrogen-deficient conditions. These findings support its potential as a functional dietary intervention for managing postmenopausal lipid disorders and associated metabolic complications. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Figure 1

17 pages, 1315 KiB  
Review
The Shuttling of Methyl Groups Between Folate and Choline Pathways
by Jonathan Bortz and Rima Obeid
Nutrients 2025, 17(15), 2495; https://doi.org/10.3390/nu17152495 - 30 Jul 2025
Viewed by 115
Abstract
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient [...] Read more.
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient diet in rats produces a 31–40% reduction in liver folate content, 50% lower hepatic SAM levels, and a doubling of plasma homocysteine. Similarly, folate deficiency results in decreased total hepatic choline. Thus, sufficient intakes of both folate and choline (or betaine) contribute to safeguarding the methyl balance in the body. A significant amount of choline (as phosphatidylcholine) is produced in the liver via the SAM-dependent phosphatidylethanolamine methyltransferase. Experimental studies using diets deficient in several methyl donors have shown that supplemental betaine was able to rescue not only plasma betaine but also plasma folate. Fasting plasma homocysteine concentrations are mainly determined by folate intake or status, while the effect of choline or betaine on fasting plasma homocysteine is minor. This appears to contradict the finding that approximately 50% of cellular SAM is provided via the betaine-homocysteine methyltransferase (BHMT) pathway, which uses dietary choline (after oxidation to betaine) or betaine to convert homocysteine to methionine and then to SAM. However, it has been shown that the relative contribution of choline and betaine to cellular methylation is better reflected by measuring plasma homocysteine after a methionine load test. Choline or betaine supplementation significantly lowers post-methionine load homocysteine, whereas folate supplementation has a minor effect on post-methionine load homocysteine concentrations. This review highlights the interactions between folate and choline and the essentiality of choline as a key player in C1-metabolism. We further address some areas of interest for future work. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

14 pages, 893 KiB  
Article
Unhealthy Ultra-Processed Food, Diet Quality and Adherence to the Mediterranean Diet in Children and Adolescents: The DELICIOUS Project
by Francesca Giampieri, Alice Rosi, Evelyn Frias-Toral, Osama Abdelkarim, Mohamed Aly, Achraf Ammar, Raynier Zambrano-Villacres, Juancho Pons, Laura Vázquez-Araújo, Nunzia Decembrino, Alessandro Scuderi, Alice Leonardi, Lorenzo Monasta, Fernando Maniega Legarda, Ana Mata, Adrián Chacón, Pablo Busó and Giuseppe Grosso
Foods 2025, 14(15), 2648; https://doi.org/10.3390/foods14152648 - 28 Jul 2025
Viewed by 237
Abstract
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and [...] Read more.
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and adolescents from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) involved in the DELICIOUS project and to assess the association with dietary quality indicators. Methods: A survey was conducted with a sample of 2011 parents of children and adolescents aged 6 to 17 years to evaluate their dietary habits. Diet quality was assessed using the Youth Healthy Eating Index (Y-HEI), the KIDMED index to determine adherence to the Mediterranean diet, and compliance with national dietary guidelines. Results: Increased UPF consumption was not inherently associated with healthy or unhealthy specific food groups, although children and adolescents who consumed UPF daily were less likely to exhibit high overall diet quality and adherence to the Mediterranean diet. In all five countries, greater UPF intake was associated with poorer compliance with dietary recommendations concerning fats, sweets, meat, and legumes. Conclusions: Increased UPF consumption among Mediterranean children and adolescents is associated with an unhealthy dietary pattern, possibly marked by a high intake of fats, sweets, and meat, and a low consumption of legumes. Full article
(This article belongs to the Special Issue Food Habits, Nutritional Knowledge, and Nutrition Education)
Show Figures

Figure 1

12 pages, 1712 KiB  
Case Report
Severe Reproductive Disorders After Abdominal Fat Necrosis in Dairy Cattle
by Vasilică Gotu, Sorin Aurelian Pașca, Ștefan Gregore Ciornei, Dragoș Constantin Anița, Daniela Porea, Geta Pavel, Răzvan Nicolae Mălăncuș, Gheorghe Savuța, Mariana Ioniță, Gheorghe Solcan and Ioan Liviu Mitrea
Life 2025, 15(8), 1182; https://doi.org/10.3390/life15081182 - 25 Jul 2025
Viewed by 429
Abstract
Abdominal fat necrosis is a dystrophic–necrotic process that is relatively common in dairy cows. It is determined by productive strain (excess fat in the diet), negative energy balance after calving, a lack of physical activity, vitamin E and selenium deficiency, etc. Lipomatous masses [...] Read more.
Abdominal fat necrosis is a dystrophic–necrotic process that is relatively common in dairy cows. It is determined by productive strain (excess fat in the diet), negative energy balance after calving, a lack of physical activity, vitamin E and selenium deficiency, etc. Lipomatous masses are predominantly located in the omentum and mesentery in cattle, potentially causing intestinal obstruction. We report on an outbreak of abdominal fat necrosis that affected 135 of 220 cows and heifers (61.36%); this involved massive fat accumulation in the uterine and salpingian ligaments and severe reproductive disorders (reducing fertility to 20% in cows and 10% in heifers) caused by a hyperenergetic diet (supplementation with saturated fats). A transrectal ultrasound examination of the genital apparatus—both in heifers and in cows in the puerperium—revealed a diffuse pathological hyperechogenicity of the cervical folds, suggesting lipid infiltration, proliferation of the endocervical folds and hyperechogenic lipogranulomas located paracervically or in the uterine ligaments. An ultrasound examination of the ovaries showed the presence of parasalpingial lipogranulomas on the mesovarium, with a uniformly pixelated greasy appearance, that altered the topography of the salpinx, leading to the impossibility of oocyte retrieval. At the histopathological examination, in addition to the necrosis of adipocytes and the subacute–chronic inflammation of the abdominal and retroperitoneal adipose tissue, lipid infiltration of the uterine walls was also observed in the uterine ligaments and lymph nodes. Additionally, lipid infiltration was observed in the wall of the uterine artery. All muscular-type branches of the ovarian artery exhibited subendothelial (subintimal) amyloid deposits, severely reducing their lumen and leading to ischaemia. Amyloidosis was secondary to the systemic inflammatory process triggered by lipid deposition and necrosis. Fertility returned to normal 45–60 days after the exclusion of fat supplements from the diet and their replacement with a vitamin–mineral supplement rich in antioxidants. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

13 pages, 4863 KiB  
Article
p53 Protein Stability Plays a Crucial Role in NaB-Mediated Apoptosis in Colorectal Cancer Cells
by Jeong Yeon Lee and Hyunju Kim
Curr. Issues Mol. Biol. 2025, 47(8), 579; https://doi.org/10.3390/cimb47080579 - 22 Jul 2025
Viewed by 293
Abstract
Colorectal cancer (CRC) is associated with factors such as an unhealthy diet, physical inactivity, obesity, diabetes, and chronic inflammatory conditions like inflammatory bowel disease (IBD), as well as TP53 mutations, which are observed in a broad spectrum of CRC. Additionally, alteration in the [...] Read more.
Colorectal cancer (CRC) is associated with factors such as an unhealthy diet, physical inactivity, obesity, diabetes, and chronic inflammatory conditions like inflammatory bowel disease (IBD), as well as TP53 mutations, which are observed in a broad spectrum of CRC. Additionally, alteration in the composition of the gut microbiome community and metabolism plays a significant role in the development of colorectal cancer and its therapeutic effects. It is well known that treatment with sodium butyrate (NaB), an intestinal microbial metabolite, can induce apoptosis by activating histone deacetylase (HDAC) in cancer cells. Therefore, this study examined the relationship between NaB-induced apoptosis and p53 protein level in colorectal cancer cells. Treatment with NaB triggered cell death in the HCT116 cell line. Furthermore, a notable elevation in p53 protein level was detected following treatment with a high concentration of NaB, compared to both the control group and the low concentration NaB. Furthermore, apoptotic cell death was diminished in a p53-deficient cell line (HCT 116 p53−/−) and p53 protein expression was more stabilized. Although p53 mRNA expression was not affected, acetylation of p53 protein was clearly observed by high concentration NaB treatment. To demonstrate the relationship between p53 acetylation and cell death, HT29 cells were treated with a high concentration of NaB. In HT29 cells with a mutation in the p53 gene, increased cell viability, overproduction p53 protein, and hyperacetylation of p53 were observed compared to the control. The results of this study suggest that p53 protein expression plays an important role in the effectiveness of therapy utilizing gut microbiota metabolites. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 293 KiB  
Article
Awareness and Attitudes Toward Iron Deficiency Anemia Among the Adult Population in the Northern Border Region of the Kingdom of Saudi Arabia—A Cross-Sectional Study
by Mariah N. Hafiz, Anshoo Agarwal, Nida Suhail, Zakariya M. S. Mohammed, Sanaa A. Mohammed, Hibah A. Almasmoum, Mohammed M. Jawad and Wesam Nofal
Hemato 2025, 6(3), 23; https://doi.org/10.3390/hemato6030023 - 22 Jul 2025
Viewed by 223
Abstract
Background: Iron deficiency anemia (IDA) represents a significant public health concern, particularly among female populations. Various demographic factors, including age and socioeconomic status, have a substantial impact on overall health outcomes, contributing to the prevalence of IDA. The primary objective of this study [...] Read more.
Background: Iron deficiency anemia (IDA) represents a significant public health concern, particularly among female populations. Various demographic factors, including age and socioeconomic status, have a substantial impact on overall health outcomes, contributing to the prevalence of IDA. The primary objective of this study was to assess the knowledge and awareness of iron deficiency anemia among the adult population and to examine its correlation with various sociodemographic factors. Methods: A cross-sectional study was conducted in the Northern Region of Saudi Arabia between October and December 2024. Data were collected using a structured questionnaire from 385 participants aged 18 years and older. The Chi-square test was utilized to assess the association between categorical variables. Results: In this study, 42.5% of participants demonstrated good knowledge of IDA, 48.1% had moderate knowledge, and 9.4% showed poor knowledge. Knowledge levels were significantly associated with gender, age, education, and self-perceived IDA status. Women, older individuals, and those with higher levels of education had a greater knowledge of IDA. Regarding attitude, 93% of participants had a positive attitude, while only 7% exhibited a negative attitude. Interestingly, none of the explanatory variables were significantly linked to attitude, suggesting that positive attitude toward IDA was consistent across all demographic groups. Conclusions: This study highlights the need for targeted health initiatives focusing on diet, supplementation, symptom recognition, and prevention to effectively reduce the burden of IDA. Prioritizing education through symposiums and medical programs in high-prevalence regions is crucial. Full article
Show Figures

Figure 1

17 pages, 582 KiB  
Article
Dietary and Genetic Aspects of Polycystic Ovary Syndrome (PCOS) in Polish Women—Part I: Nutritional Status and Dietary Intake
by Karolina Nowosad, Małgorzata Ostrowska, Paweł Glibowski, Katarzyna Iłowiecka and Wojciech Koch
Nutrients 2025, 17(14), 2377; https://doi.org/10.3390/nu17142377 - 21 Jul 2025
Cited by 1 | Viewed by 594
Abstract
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations between the habitual nutrient intake and bioelectrical impedance analysis parameters in Polish women with PCOS and healthy controls, in order to identify potential nutritional targets for a non-pharmacological intervention. Methods: This study involved 50 women aged 18–45 years (25 with PCOS and 25 healthy). Participants kept 7-day food diaries and their body composition was assessed using the SECA mBCA 515 analyzer. The nutrient intake was compared with EFSA recommendations. Results: Women with PCOS had a higher body weight, waist circumference and body mass index, visceral adipose tissue, and fat mass index, despite no difference in their total energy intake. They consumed more omega-3 fatty acids (EPA + DHA) than the control group. Vitamin D deficiency and irregular supplementation were common in both groups. Body composition parameters such as the phase angle and ECW/TBW ratio correlated with the diet quality—especially with protein; fiber; and vitamin B2, B12, and folate levels. Conclusions: The obtained results showed significant differences in body compositions and the presence of a relationship between the nutrient intake and bioimpedance parameters in women with PCOS. These results emphasize the importance of a comprehensive nutritional and body composition assessment in planning dietary interventions in this group of patients. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

16 pages, 4128 KiB  
Article
Pemafibrate Ameliorates Steatotic Liver Disease Regardless of Endothelial Dysfunction in Mice
by Tomoyo Hara, Hiroki Yamagami, Ryoko Uemoto, Akiko Sekine, Yousuke Kaneko, Kohsuke Miyataka, Taiki Hori, Mayuko Ichimura-Shimizu, Masafumi Funamoto, Takeshi Harada, Tomoyuki Yuasa, Shingen Nakamura, Itsuro Endo, Ken-ichi Matsuoka, Yutaka Kawano, Koichi Tsuneyama, Yasumasa Ikeda and Ken-ichi Aihara
Antioxidants 2025, 14(7), 891; https://doi.org/10.3390/antiox14070891 - 20 Jul 2025
Viewed by 453
Abstract
Endothelial dysfunction contributes to the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD). Pemafibrate has been shown to ameliorate MASLD in basic and clinical studies, but it is unclear whether it is also effective in the status of endothelial dysfunction. An MASLD animal model [...] Read more.
Endothelial dysfunction contributes to the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD). Pemafibrate has been shown to ameliorate MASLD in basic and clinical studies, but it is unclear whether it is also effective in the status of endothelial dysfunction. An MASLD animal model was induced in male wild-type (WT) and endothelial nitric oxide synthase (eNOS)-deficient (eNOSKO) mice by feeding them a high-fat/cholesterol/cholate diet, and they were administered either a vehicle or pemafibrate at 0.17 mg/kg/day for 10 weeks. Although pemafibrate treatment did not change plasma lipid profiles in either WT or eNOSKO mice, pemafibrate reduced plasma AST levels in both WT and eNOSKO mice compared to the levels in the vehicle-treated mice. Histopathological analysis of the liver showed that MASLD was improved in the pemafibrate-treated groups in both WT and eNOSKO mice. Compared to vehicle treatment, pemafibrate treatment significantly reduced the expression levels of hepatic NADPH oxidase subunit genes, M1 macrophages, inflammatory-cytokine-related genes and profibrotic genes in both WT and eNOSKO mice, along with reduction in hepatic oxidative stress assessed by dihydroethidium staining and 4-hydroxynonenal protein levels. Thus, pemafibrate ameliorated MASLD with reduction in oxidative stress and inflammation even in vascular endothelial dysfunction. Full article
(This article belongs to the Special Issue Metabolic Dysfunction and Oxidative Stress)
Show Figures

Figure 1

17 pages, 3302 KiB  
Article
Effects of Ovariectomy and Low-Calcium Diet on Six Different Sites of the Rat Skeleton
by Xanthippi Dereka, Rodopi Emfietzoglou and Pavlos Lelovas
Biomimetics 2025, 10(7), 474; https://doi.org/10.3390/biomimetics10070474 - 18 Jul 2025
Viewed by 308
Abstract
The aim of this study was to evaluate structural and micro-architectural changes in the mandible, parietal bone, femur, and tibia in OVX rats at different time periods after ovariectomy. Forty-two 11-month-old female Wistar rats were used. Six rats without surgery were euthanized to [...] Read more.
The aim of this study was to evaluate structural and micro-architectural changes in the mandible, parietal bone, femur, and tibia in OVX rats at different time periods after ovariectomy. Forty-two 11-month-old female Wistar rats were used. Six rats without surgery were euthanized to serve as a baseline. Eighteen rats were ovariectomized and fed with a calcium-deficient diet, and eighteen animals were used as controls (Ctrls) and fed with a standard diet. Six OVX rats and six Ctrls were euthanized at 3, 6, and 9 months. Qualitative histology and dual-energy X-ray absorptiometry (DXA) were performed. Histological evaluation of bones harvested from the OVX groups revealed trabecular bone reduction, while no significant differences in the cortical bone of OVX and Ctrls were observed. DXA measurements of (1) femoral diaphysis showed a significant decrease in the OVX group compared to the Ctrl groups at 3 (p = 0.041), 6 (p < 0.001), and 9 months (p < 0.001); (2) the proximal tibia showed a significant decrease in the OVX group compared to the Ctrl groups (p < 0.001); (3) parietal bone showed a significant difference between OVX and Ctrls at 6 months (p = 0.012); and (4) the mandible showed no significant differences between the OVX and Ctrl groups. OVX aged rats might present reductions in the density of the femoral diaphysis, proximal tibia, parietal bone, and mandible at different time points. These findings contribute to the field of biomimetics by providing more details for the understanding of age- and hormone-related bone changes in the osteoporotic-like rat model. Such data are critical for the development of biomimetic materials and structures that attempt to simulate natural bone adaptation and deterioration, especially in the context of postmenopausal or osteoporotic conditions. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

15 pages, 1866 KiB  
Article
A High-Fat Diet Induces Oxidative Stress in OPA1+/− Mouse Cortices: A Critical Double Challenge
by Camille Champigny, Marlène Botella, Djamaa Atamena, Sébastien Bullich, Corentin Coustham, Bruno Guiard, Pascale Belenguer and Noélie Davezac
Antioxidants 2025, 14(7), 876; https://doi.org/10.3390/antiox14070876 - 17 Jul 2025
Viewed by 303
Abstract
A high-fat diet (HFD) has significant effects on health, leading to cardiovascular, metabolic, neurodegenerative, and psychiatric conditions and contributing to obesity and type 2 diabetes. Mitochondria, essential for energy production and oxidative metabolism, are adversely affected by a HFD, causing oxidative stress and [...] Read more.
A high-fat diet (HFD) has significant effects on health, leading to cardiovascular, metabolic, neurodegenerative, and psychiatric conditions and contributing to obesity and type 2 diabetes. Mitochondria, essential for energy production and oxidative metabolism, are adversely affected by a HFD, causing oxidative stress and impaired cellular function. Mutations in the OPA1 (OPtic Atrophy 1) gene, crucial for mitochondrial dynamics and functions, are responsible for dominant optic atrophy (DOA), a mitochondrial neurodegenerative disease associated with increased reactive oxygen species (ROS). The expressivity of DOA is highly variable, even within the same family. This suggests that both modifying genetics and environmental factors could influence the penetrance of the disease. We previously demonstrated that genetic background modulates DOA expressivity and now ask if this is also the case for external cues. We thus explore how OPA1 deficiency interacts with HFD-induced metabolic disturbances, hypothesizing that long-term HFD consumption impairs brain mitochondrial function and disrupts oxidative metabolism. OPA1+/− mice were thus subjected to a HFD for a period of 12 weeks, and ROS levels and the expression of antioxidant genes were evaluated by Western blot and spectrophotometry. Cortices from high-fat diet-fed OPA1+/− mice showed lower aconitase activity than those of their wild-type (WT) litter mates, indicative of an unbalanced increase in mitochondrial ROS. Accordingly, OPA1+/− mice present lower levels of the antioxidant enzyme superoxide dismutase 2 compared to WT mice. Therefore, this study (i) reveals the onset of oxidative stress in brain cortices from OPA1+/− mice challenged with a HFD, (ii) shows that diet is a modifying factor for DOA, and (iii) suggests that food control could be used to moderate the severity of the disease. Full article
(This article belongs to the Special Issue Redox Signaling in Brain Aging and Neurodegeneration)
Show Figures

Figure 1

17 pages, 1186 KiB  
Review
Micronutrient Deficiencies and Determinants Among Pregnant Women and Children in Nigeria: Systematic Review and Meta-Analysis
by Glory Aigbedion, Pei-Ching Tseng and Shuby Puthussery
Nutrients 2025, 17(14), 2338; https://doi.org/10.3390/nu17142338 - 17 Jul 2025
Viewed by 308
Abstract
Background: Micronutrient deficiencies, particularly among pregnant women and children under five years old, remain a significant public health challenge in Nigeria. Despite existing policies and programmes, national data on prevalence and risk factors are fragmented. Objective: To synthesise the current evidence on [...] Read more.
Background: Micronutrient deficiencies, particularly among pregnant women and children under five years old, remain a significant public health challenge in Nigeria. Despite existing policies and programmes, national data on prevalence and risk factors are fragmented. Objective: To synthesise the current evidence on the prevalence of key micronutrient deficiencies and associated risk factors among pregnant women and children under five years old in Nigeria. Methods: A systematic review and meta-analysis were conducted using peer-reviewed studies that were published between 2008 and 2024. The databases searched included PubMed, Scopus, and African Journals Online. After screening 1207 studies, 37 studies were included: 27 were conducted among pregnant women and 10 were among children. A meta-analysis was conducted to estimate the anaemia prevalence using a random-effects model. A narrative synthesis was conducted to synthesise evidence on other micronutrients (i.e., magnesium, copper, and vitamins C and E) due to the limited data and risk factors. Results: The pooled prevalence of anaemia was 56% among children and 54% among pregnant women. The prevalence of other micronutrient deficiencies varied widely, with a high prevalence of zinc (86.4%), magnesium (94%), and vitamin D (73.3%) deficiencies in certain regions. The identified risk factors included poor dietary diversity, lower socioeconomic status, low maternal education, infection burden, and early or high parity. Most studies were facility-based and sub-national, limiting the generalisability. Conclusions: This review highlights a high prevalence of anaemia and micronutrient deficiencies among pregnant women and children in Nigeria. Key risk factors included a poor diet, low maternal education, infections, and reproductive health challenges. Targeted, multisectoral policies are urgently needed to address these gaps and improve health outcomes. Full article
(This article belongs to the Special Issue Maternal Nutritional Status and Infant Development)
Show Figures

Figure 1

Back to TopTop