Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = diesel fuel performance characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3845 KB  
Review
Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques
by Zehao Feng, Junlong Zhang, Jiechong Gu, Xianyin Leng, Zhixia He and Keiya Nishida
Processes 2025, 13(8), 2527; https://doi.org/10.3390/pr13082527 - 11 Aug 2025
Viewed by 381
Abstract
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression [...] Read more.
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression ignition (CI) engines. The primary objective of this research is to review the application of biodiesel in CI engines, with a focus on enhancing fuel properties and improving atomization performance. This article examines the spray and atomization characteristics of biodiesel fuels and conducts a comparative analysis with diesel fuel. The results show that biodiesel has a longer spray tip penetration, smaller spray cone angle, larger Sauter mean diameter (SMD) and faster droplet velocity due to its higher viscosity and surface tension. Blending with other fuels, such as ethanol, butanol, dimethyl ether (DME) and di-n-butyl ether, results in reduced viscosity and surface tension in these mixed fuels, representing a simple and effective approach for improving biodiesel atomization performance. A comprehensive analysis of spray and droplet impingement is also conducted. The findings reveal that biodiesel exhibits a higher probability of fuel–wall impingement, suggesting that future research should focus on two key directions: first, developing combined strategies to enhance impact-induced secondary atomization while minimizing fuel deposition; and second, investigating single-droplet impingement, specifically that of microscale biodiesel droplets and blended fuel droplets under real engine operating conditions. This paper also presents several advanced techniques, including air-assisted atomization, dual-fuel impingement, nano-biodiesel, and water-emulsified biodiesel, aimed at mitigating the atomization limitations of biodiesel, thereby facilitating the broader adoption of biodiesel in compression ignition engines. Full article
Show Figures

Figure 1

24 pages, 4757 KB  
Article
Effect of Port-Injecting Isopropanol on Diesel Engine Performance and Emissions by Changing EGR Ratio and Charge Temperature
by Horng-Wen Wu, Po-Hsien He and Ting-Wei Yeh
Processes 2025, 13(7), 2224; https://doi.org/10.3390/pr13072224 - 11 Jul 2025
Viewed by 309
Abstract
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated [...] Read more.
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated exhaust gas (EGR). This study’s novel approach combines critical elements, such as the mass fraction of port-injected IPA, EGR ratio, and charge temperature, to improve combustion characteristics and lessen emissions from a diesel engine. The results demonstrated that the injection of IPA and the installation of EGR at the inlet reduced NOx, smoke, and PM2.5. On the contrary, HC and CO increased with the port-injection of IPA and EGR. Preheating air at the inlet can suppress the emissions of HC and CO. Under 1500 rpm and 60% load, when compared to diesel at the same EGR ratio and charge temperature, the maximum smoke decrease rate (26%) and PM2.5 decrease rate (21%) occur at 35% IPA, 45 °C, and 10% EGR, while the maximum NOx decrease rate (24%) occurs at 35% IPA, 60 °C, and 20% EGR. These findings support the novelty of the research. Conversely, it modestly increased CO and HC emissions. However, port-injecting IPA increased thermal efficiency by up to 24% at 60 °C, 1500 rpm, and 60% load with EGR. Full article
Show Figures

Figure 1

22 pages, 7206 KB  
Article
The Impact of Diesel Injection Strategy and In-Cylinder Temperature on the Combustion and Emissions of Ammonia/Diesel Dual-Fuel Marine Engine
by Wei Guan, Songchun Luo, Jie Wu, Hua Lou, Lei Wang, Feng Wu, Li Li, Fuchuan Huang and Haibin He
Energies 2025, 18(14), 3631; https://doi.org/10.3390/en18143631 - 9 Jul 2025
Viewed by 357
Abstract
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant [...] Read more.
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant allows the kinetic energy of diesel to remain at a higher level. This results in an increase in combustion efficiency and indicated the thermal efficiency of the engine, while also reducing CO2 and soot emissions. However, when the ammonia energy ratio increases to more than 50%, the indicated thermal efficiency starts to decrease along with the increase in the emissions of N2O and unburned ammonia. To address these issues, one of the potential means is to improve the in-cylinder combustion environment by increasing the in-cylinder gas temperature. This can enhance combustion efficiency and ultimately optimize the performance and emission characteristics of dual-fuel engines, which results in an increase in the combustion efficiency to 98% and indicated thermal efficiency to 54.47% at a relatively high ammonia energy ratio of 60%. Emission results indicate that N2O emissions decrease from 1099 ppm to 25 ppm, while unburned ammonia emissions drop from 16016 ppm to 100 ppm. Eventually, the greenhouse gas emissions were reduced by about 85.3% in comparison with the baseline case. Full article
Show Figures

Figure 1

40 pages, 3030 KB  
Article
Optimizing Sustainable Energy Transitions in Small Isolated Grids Using Multi-Criteria Approaches
by César Berna-Escriche, Lucas Álvarez-Piñeiro, David Blanco and Yago Rivera
Appl. Sci. 2025, 15(14), 7644; https://doi.org/10.3390/app15147644 - 8 Jul 2025
Viewed by 374
Abstract
The ambitious goals of decarbonization of the European economy by mid-century pose significant challenges, especially when relying heavily on resources whose nature is inherently intermittent, specifically wind and solar energy. The situation is even more serious in isolated regions with limited connections to [...] Read more.
The ambitious goals of decarbonization of the European economy by mid-century pose significant challenges, especially when relying heavily on resources whose nature is inherently intermittent, specifically wind and solar energy. The situation is even more serious in isolated regions with limited connections to larger power grids. Using EnergyPLAN software, three scenarios for 2023 were modeled: a diesel-only system, the current hybrid renewable system, and an optimized scenario. This paper evaluates the performance of the usual generation system existing in isolated systems, based on fossil fuels, and proposes an optimized system considering both the cost of the system and the penalties for emissions. All this is applied to the case study of the island of El Hierro, but the findings are applicable to any location with similar characteristics. This system is projected to reduce emissions by over 75% and cut costs by one-third compared to the current configuration. A system has been proposed that preserves the economic viability and reliability of diesel-based systems while achieving low emission levels. This is accomplished primarily through the use of renewable energy generation, supported by pumped hydro storage. The approach is specifically designed for remote regions with small isolated grids, where reliability is critical. Importantly, the system relies on appropriately sized renewable installations, avoiding oversizing, which—although it could further reduce emissions—would lead to significant energy surpluses and require even more efficient storage solutions. This emphasizes the importance of implementing high emission penalties as a key policy measure to phase out fossil fuel generation. Full article
Show Figures

Figure 1

15 pages, 2528 KB  
Article
Testing of JTD Engine Fueled with Hemp and Rapeseed Oil Esters
by Adam Koniuszy, Małgorzata Hawrot-Paw, Wojciech Golimowski, Tomasz Osipowicz, Konrad Prajwowski, Filip Szwajca, Damian Marcinkowski and Wojciech Andrew Berger
Energies 2025, 18(13), 3526; https://doi.org/10.3390/en18133526 - 3 Jul 2025
Viewed by 393
Abstract
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. [...] Read more.
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. The aim of the research undertaken was to compare the performance characteristics of a 1.3 JTD engine fueled with methyl esters from hemp compared to biofuels made from rapeseed and fossil fuels. Energy parameters and exhaust emissions were measured. The fuels used were 100% biofuels obtained from vegetable oils by transesterification using methanol and KOH. It was shown to be possible to use HME (hemp methyl esters) biofuels as an alternative fuel to RME (rapeseed methyl esters) or DF (diesel fuel) without significant changes in engine performance. The density and heat of combustion of such fuels results in a 6% reduction in power and 17% in NOx emissions, as well as a decrease in HC (hydrocarbons), CO2, and smoke emissions. Full article
Show Figures

Figure 1

24 pages, 19539 KB  
Article
Effects of Circumferential and Interaction Angles of Hydrogen Jets and Diesel Sprays on Combustion Characteristics in a Hydrogen–Diesel Dual-Fuel CI Engine
by Qiang Zhang, Zhipeng Li, Yang Xu and Xiangrong Li
Sustainability 2025, 17(13), 6059; https://doi.org/10.3390/su17136059 - 2 Jul 2025
Viewed by 388
Abstract
This study investigates the impact of circumferential angle (φ) and interaction angle (θ) between hydrogen jets and diesel sprays in a co-axial hydrogen–diesel injector on combustion and emissions in a hydrogen–diesel dual-fuel engine using 3D CFD simulations. The results demonstrate that a co-axial [...] Read more.
This study investigates the impact of circumferential angle (φ) and interaction angle (θ) between hydrogen jets and diesel sprays in a co-axial hydrogen–diesel injector on combustion and emissions in a hydrogen–diesel dual-fuel engine using 3D CFD simulations. The results demonstrate that a co-axial dual-layer nozzle design significantly enhances combustion performance by leveraging hydrogen jet kinetic energy to accelerate fuel–air mixing. Specifically, a co-axial alignment (φ = 0°) between hydrogen and diesel sprays achieves optimal combustion characteristics, including the highest in-cylinder pressure (20.92 MPa), the earliest ignition timing (−0.3° CA ATDC), and the maximum indicated power of the high-pressure cycle (47.26 kW). However, this configuration also results in elevated emissions, with 29.6% higher NOx and 34.5% higher soot levels compared to a φ = 15° arrangement. To balance efficiency and emissions, an interaction angle of θ = 7.5° proves most effective, further improving combustion efficiency and increasing indicated power to 47.69 kW while reducing residual fuel mass. For applications prioritizing power output, the φ = 0° and θ = 7.5° configuration is recommended, whereas a φ = 15° alignment with a moderate θ (5–7.5°) offers a viable compromise, maintaining over 90% of peak power while substantially lowering NOx and soot emissions. Full article
(This article belongs to the Special Issue Green Shipping and Operational Strategies of Clean Energy)
Show Figures

Figure 1

22 pages, 3923 KB  
Article
Optimizing Fuel Efficiency and Emissions of Marine Diesel Engines When Using Biodiesel Mixtures Under Diverse Load/Temperature Conditions: Predictive Model and Comprehensive Life Cycle Analysis
by Kwang-Sik Jo, Kyeong-Ju Kong and Seung-Hun Han
J. Mar. Sci. Eng. 2025, 13(6), 1192; https://doi.org/10.3390/jmse13061192 - 19 Jun 2025
Viewed by 549
Abstract
Marine transportation contributes approximately 2.5% of global greenhouse gas emissions. While previous studies have examined biodiesel effects on automotive engines, research on marine applications reveals critical gaps: (1) existing studies focus on single-parameter analysis without considering the complex interactions between biodiesel ratio, engine [...] Read more.
Marine transportation contributes approximately 2.5% of global greenhouse gas emissions. While previous studies have examined biodiesel effects on automotive engines, research on marine applications reveals critical gaps: (1) existing studies focus on single-parameter analysis without considering the complex interactions between biodiesel ratio, engine load, and operating conditions; (2) most research lacks comprehensive lifecycle assessment integration with real-time operational data; (3) previous optimization models demonstrate insufficient accuracy (R2 < 0.80) for practical marine applications; and (4) no adaptive algorithms exist for dynamic biodiesel ratio adjustment based on operational conditions. These limitations prevent effective biodiesel implementation in maritime operations, necessitating an integrated multi-parameter optimization approach. This study addresses this research gap by proposing an integrated optimization model for fuel efficiency and emissions of marine diesel engines using biodiesel mixtures under diverse operating conditions. Based on extensive experimental data from two representative marine engines (YANMAR 6HAL2-DTN 200 kW and Niigatta Engineering 6L34HX 2471 kW), this research analyzes correlations between biodiesel blend ratios (pure diesel, 20%, 50%, and 100% biodiesel), engine load conditions (10–100%), and operating temperature with nitrogen oxides, carbon dioxide, and carbon monoxide emissions. Multivariate regression models were developed, allowing prediction of emission levels with high accuracy (R2 = 0.89–0.94). The models incorporated multiple parameters, including engine characteristics, fuel properties, and ambient conditions, to provide a comprehensive analytical framework. Life cycle assessment (LCA) results show that the B50 biodiesel ratio achieves optimal environmental efficiency, reducing greenhouse gases by 15% compared to B0 while maintaining stable engine performance across operational profiles. An adaptive optimization algorithm for operating conditions is proposed, providing detailed reference charts for ship operators on ideal biodiesel ratios based on load conditions, ambient temperature, and operational priorities in different maritime zones. The findings demonstrate significant potential for emissions reduction in the maritime sector through strategic biodiesel implementation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 3181 KB  
Article
Experimental Investigation of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions in Biodiesel-2-Methylfuran Blend for Diesel Engine
by Balla M. Ahmed, Maji Luo, Hassan A. M. Elbadawi, Nasreldin M. Mahmoud and Pang-Chieh Sui
Energies 2025, 18(11), 2730; https://doi.org/10.3390/en18112730 - 24 May 2025
Viewed by 863
Abstract
Biodiesel and 2-methylfuran (MF) exhibit significant potential as alternative fuels due to advancements in their production techniques. Despite this potential, the low cetane number (CN) of biodiesel–MF (BMF) blends limits their practical use in diesel engines due to poor auto-ignition characteristics and extended [...] Read more.
Biodiesel and 2-methylfuran (MF) exhibit significant potential as alternative fuels due to advancements in their production techniques. Despite this potential, the low cetane number (CN) of biodiesel–MF (BMF) blends limits their practical use in diesel engines due to poor auto-ignition characteristics and extended ignition delays. This study addresses this issue by investigating the impact of the cetane improver 2-ethylhexyl nitrate (2-EHN) on the performance and emissions of a BMF30 blend. The blend consists of 70% biodiesel and 30% MF, with 2-EHN added at concentrations of 1% and 1.5% to enhance ignition properties. The experiments were conducted on a four-cylinder, four-stroke, direct-injection compression ignition (DICI) engine at a constant speed of 1800 rpm with brake mean effective pressures (BMEP) ranging from 0.13 to 1.13 MPa. The results showed that 2-EHN improved the CN of the BMF30 blend, leading to earlier combustion initiation and longer combustion duration. At low BMEP (0.13 MPa), 2-EHN increased the peak rate of heat release and in-cylinder pressure, whereas at higher BMEP (0.88 MPa), these parameters decreased. The key findings include a reduction in brake-specific fuel consumption (BSFC) by 5.49–7.33% and an increase in brake thermal efficiency (BTE) by 3.30–4.69%. Additionally, NOx emissions decreased by 9.4–17.48%, with the highest reduction observed at 1.5% 2-EHN. CO emissions were reduced by 45.1–85.5% and soot emissions also declined. Hydrocarbon (HC) emissions decreased by 14.56–24.90%. These findings demonstrate that adding 2-EHN to BMF30 blends enhances engine performance, reduces key emissions, and offers a promising alternative fuel for diesel engines. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 6513 KB  
Article
Sustainable MgO Nanocatalyst Additives for Boosting Performance and Mitigating Emissions of Used Cooking Oil Biodiesel–Diesel Blends in Compression Ignition Engines
by Kiran Chaudhari, Nilesh Salunke, Shakeelur Raheman Ateequr Raheman, Khursheed B. Ansari, Kapil Ashokrao Saner, Vijay Kashinath Suryawanshi and Mumtaj Shah
Catalysts 2025, 15(5), 489; https://doi.org/10.3390/catal15050489 - 17 May 2025
Cited by 1 | Viewed by 1014
Abstract
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce [...] Read more.
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce emissions of used cooking oil (UCO) biodiesel–diesel blends in CI engines. MgO nanoparticles were biosynthesized using Citrus aurantium peel extract, offering an environmentally friendly production method. A single-cylinder CI engine was used to test the performance of diesel fuel (B0), a 20% biodiesel blend (B20), and B20 blends with 30 ppm (B20M30) and 60 ppm (B20M60) MgO nanoparticles. Engine performance parameters (brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and exhaust gas temperature (EGT)) and emission characteristics (CO, NOx, unburnt hydrocarbons (HCs), and smoke opacity) were measured. The B20M60 blend showed a 2.38% reduction in BSFC and a 3.38% increase in BTE compared to B20, with significant reductions in unburnt HC, CO, and smoke opacity. However, NOx emissions increased by 6.57%. The green synthesis method enhances sustainability, offering a promising pathway for cleaner and more efficient CI engine operation using UCO biodiesel, demonstrating the effectiveness of MgO nanoparticles. Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
Show Figures

Figure 1

17 pages, 2712 KB  
Article
The Effect of ZnO and CNT Nanoparticles on the Combustion Characteristics and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel and Biodiesel
by Vida Jokubynienė and Stasys Slavinskas
Energies 2025, 18(10), 2564; https://doi.org/10.3390/en18102564 - 15 May 2025
Viewed by 471
Abstract
This article presents the test results of a turbocharged Common Rail Direct Injection (CRDI) diesel engine operating on diesel fuel and methyl ester biodiesel with nanoparticle additives. The use of nanomaterials has been shown to improve the combustion process. In this study, various [...] Read more.
This article presents the test results of a turbocharged Common Rail Direct Injection (CRDI) diesel engine operating on diesel fuel and methyl ester biodiesel with nanoparticle additives. The use of nanomaterials has been shown to improve the combustion process. In this study, various nanoparticles, including zinc oxide and carbon plates, were investigated as additives to enhance the combustion performance of selected fuels. The fuel of choice was conventional diesel, and a methyl ester of rapeseed oil called biodiesel. A turbocharged Common Rail Direct Injection (CRDI) diesel engine, model FIAT 192A1000, was used for the experiments. The following engine parameters were measured and recorded: torque (Ms, Nm), fuel consumption (Bd, kg/h), carbon monoxide (CO, ppm), and nitrogen oxides (NOx, ppm). The results show that nanoparticles can improve the combustion performance of the fuels studied in the engine. However, the effect of nanoparticles on engine parameters varied. In summary, the influence of nanoparticles is noticeable: the ID is shorter with diesel fuel with carbon nanotubes at 50 ppm and 100 ppm concentration, the NOx is reduced with zinc oxide and D, and CO is diminished in all load modes when using RME with carbon nanotubes. Full article
Show Figures

Figure 1

15 pages, 3232 KB  
Article
Effect of Methanol Injection Timing on Performance of Marine Diesel Engines and Emission Reduction
by Hao Guo, Veysi Başhan, Cairui Yu, Firat Bolat, Hakan Demirel and Xin Tian
J. Mar. Sci. Eng. 2025, 13(5), 949; https://doi.org/10.3390/jmse13050949 - 13 May 2025
Viewed by 679
Abstract
Methanol is a promising low-carbon fuel that can effectively reduce environmental pollution from ships compared to traditional fuels. The timing of methanol injection is a major factor affecting the performance of internal combustion engines, and either too late or too early injection can [...] Read more.
Methanol is a promising low-carbon fuel that can effectively reduce environmental pollution from ships compared to traditional fuels. The timing of methanol injection is a major factor affecting the performance of internal combustion engines, and either too late or too early injection can severely impact the combustion efficiency of an engine. This paper focused on a 4135Aca marine diesel engine produced by the Shanghai Diesel Engine Factory in China. Using CONVERGE/3.0 software for numerical simulation, the study analyzed the impact of methanol injection timing on the combustion and emission characteristics of marine diesel engines. It was found that the determination of methanol injection timing should comprehensively consider the effects of the combustion start point, mixture quality, flame front propagation speed, and evaporation heat absorption. Appropriate methanol injection timing can improve the combustion duration, cylinder pressure, and heat release rate, enhancing the power performance of marine diesel engines. This study shows that methanol injection at −30 °CA can effectively control the in-cylinder combustion process, improve combustion efficiency, and significantly reduce the emissions of pollutants such as soot (by 60.5%), HC (by 3.6%), CO (by 95.3%), etc. However, it can lead to an increase in NOx (by 3.7%) generation under high-temperature conditions. This research can provide a certain reference for the engineering application of methanol direct injection engines for ships. Full article
Show Figures

Figure 1

21 pages, 66840 KB  
Article
Effect of Methanol Injector Bore Arrangement on Combustion and Emissions in Dual-Fuel Engines
by Xu Guo, Jiarui Chen and Xiwu Gong
Energies 2025, 18(8), 2038; https://doi.org/10.3390/en18082038 - 16 Apr 2025
Viewed by 418
Abstract
The physical and chemical properties of methanol differ significantly from those of conventional diesel, and its injection strategy plays a critical role in engine performance. In this study, a three-dimensional simulation model of a methanol–diesel dual-fuel engine integrated with chemical reaction kinetics was [...] Read more.
The physical and chemical properties of methanol differ significantly from those of conventional diesel, and its injection strategy plays a critical role in engine performance. In this study, a three-dimensional simulation model of a methanol–diesel dual-fuel engine integrated with chemical reaction kinetics was developed using CONVERGE software. The effects of methanol injection position and angle on combustion characteristics, emission performance, and engine economy were systematically investigated through numerical simulation and theoretical analysis, leading to the optimization of the methanol injection strategy. By varying the distance between the methanol nozzle and the cylinder head as well as the methanol injection angle, changes in temperature, pressure, heat release rate (HRR), and other engine parameters were analyzed. Additionally, the impact on emissions, including soot, HC, CO, and NOx, was evaluated, providing a theoretical foundation for optimizing dual-fuel engine performance and enhancing methanol utilization efficiency. The results indicate that the methanol injection position minimally affects engine performance. When the methanol spray is positioned 3 mm from the cylinder head, it facilitates the formation of a homogeneous mixture, resulting in optimal power output and enhanced environmental performance. In contrast, the injection angle has a more pronounced effect on combustion and emission characteristics. At a methanol injection angle of 65°, the mixture homogeneity reaches its optimal level, leading to a significant enhancement in combustion efficiency and engine power performance. Excessive injection angles may lead to combustion deterioration and reduced engine performance. The primary reason is that an excessive spray angle may cause methanol spray to impinge on the cylinder wall. This leads to wall wetting, which adversely affects mixture formation and combustion. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

27 pages, 9311 KB  
Article
Learning and Characterizing Chaotic Attractors of a Lean Premixed Combustor
by Sara Navarro-Arredondo and Jim B. W. Kok
Energies 2025, 18(7), 1852; https://doi.org/10.3390/en18071852 - 7 Apr 2025
Viewed by 361
Abstract
This paper is about the characteristics of and a method to recognize the onset of limit cycle thermoacoustic oscillations in a gas turbine-like combustor with a premixed turbulent methane/air flame. Information on the measured time series data of the pressure and the OH* [...] Read more.
This paper is about the characteristics of and a method to recognize the onset of limit cycle thermoacoustic oscillations in a gas turbine-like combustor with a premixed turbulent methane/air flame. Information on the measured time series data of the pressure and the OH* chemiluminescence is acquired and postprocessed. This is performed for a combustor with variation in two parameters: fuel/air equivalence ratio and combustor length. It is of prime importance to acknowledge the nonlinear dynamic nature of these instabilities. A method is studied to interpret thermoacoustic instability phenomena and assess quantitatively the transition of the combustor from a stable to an unstable regime. In this method, three-phase portraits are created on the basis of data retrieved from the measured acoustics and flame intensity in the laboratory-scale test combustor. In the path to limit cycle oscillation, the random distribution in the three-phase portrait contracts to an attractor. The phase portraits obtained when changing operating conditions, moving from the stable to the unstable regime and back, are analyzed. Subsequently, the attractor dimension is determined for quantitative analysis. On the basis of the trajectories from the stable to unstable and back in one run, a study is performed of the hysteresis dynamics in bifurcation diagrams. Finally, the onset of the instability is demonstrated to be recognized by the 0-1 criterion for chaos. The method was developed and demonstrated on a low-power atmospheric methane combustor with the aim to apply it subsequently on a high-power pressurized diesel combustor. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

27 pages, 3146 KB  
Article
Analysis of Cylinder Pressure and Heat Release Rate Variation in Diesel Engine Fueled with Croton Macrostachyus (CMS) Seed Oil Biodiesel as an Alternative Fuel
by Adem Siraj Mohammed, Venkata Ramayya Ancha, Samson Mekbib Atnaw, Melaku Desta and Ramchandra Bhandari
Energies 2025, 18(6), 1449; https://doi.org/10.3390/en18061449 - 15 Mar 2025
Cited by 3 | Viewed by 1388
Abstract
Despite its higher density, viscosity, and lower calorific value, biodiesel has been explored as an alternative energy source to diesel fuel. This study investigated biodiesel produced from croton macrostachyus (CMS) seed, a non-edible feedstock. The research aimed to experimentally analyze cylinder pressure, heat [...] Read more.
Despite its higher density, viscosity, and lower calorific value, biodiesel has been explored as an alternative energy source to diesel fuel. This study investigated biodiesel produced from croton macrostachyus (CMS) seed, a non-edible feedstock. The research aimed to experimentally analyze cylinder pressure, heat release rate, and ignition delay, as well as engine performance and emission characteristics, at a constant speed of 2700 rpm under varying loads (0–80%) using diesel, B10, B15, B20, and B25 blended fuels. Among the tested blends, B25 exhibited superior performance, achieving the highest peak cylinder pressure (CP) of 58.21 bar and a maximum heat release rate (HRR) of 543.9 J/CA at 80% engine load. Conversely, B20 at 60% engine load, followed by B25 and pure diesel at 80% engine load, demonstrated the shortest ignition delay (ID) and the most advanced start of combustion (SoC). Compared to the biodiesel blends, pure diesel showed: a 5.5–14% increase in brake thermal efficiency (BTE), a 17–26% decrease in brake-specific fuel consumption (BSFC), and a 7–12% reduction in exhaust gas temperature (EGT). Regarding emissions, carbon monoxide (CO) and hydrocarbon (HC) emissions were lower for pure diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) emissions were higher for biodiesel blends, attributed to their inherent oxygen content. In conclusion, CMS biodiesel displays promising characteristics, suggesting its potential suitability for use in internal combustion engines. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

18 pages, 8593 KB  
Article
Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM
by Dongsheng She, Jiangping Tian, Qingxing Zhou and Xiaolei Zhang
Processes 2025, 13(3), 751; https://doi.org/10.3390/pr13030751 - 5 Mar 2025
Viewed by 1050
Abstract
Nowadays, the use of ammonia as a green fuel for internal combustion engines has attracted wide attention. The diesel/ammonia dual direct injection mode has shown great potential, but there is still a lack of basic research on injection strategies for this mode. In [...] Read more.
Nowadays, the use of ammonia as a green fuel for internal combustion engines has attracted wide attention. The diesel/ammonia dual direct injection mode has shown great potential, but there is still a lack of basic research on injection strategies for this mode. In this study, the combustion and emission characteristics of diesel/ammonia dual direct injection mode were investigated using a rapid compression and expansion machine (RCEM) combined with CONVERGE software_v3.0. The research focuses on the effects of two injection strategies, including ammonia injection pressure, the ammonia injector nozzle hole diameter, and the compression ratio. The results indicate that minor increases in ammonia injection pressure have negligible impacts on emissions with the same nozzle hole diameter. Increasing the nozzle hole diameter significantly reduces unburned ammonia emissions while increasing HC and N2O emissions. Increasing the compression ratio enhances diesel combustion but does not significantly affect ammonia combustion. Considering the ammonia energy substitution rate and the combustion performance of the actual engine, a high ammonia injection pressure and compression ratio are necessary for engine applications, while an appropriate ammonia orifice diameter is required to meet the emission performance. Full article
Show Figures

Figure 1

Back to TopTop