Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = dielectric increment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9483 KB  
Article
Abnormal Angle-Dependent Multi-Channel Filtering in Photonic Crystals Containing Hyperbolic Metamaterials
by Mingyan Xie, Yuanda Huang, Haoyuan Qin and Guiqiang Du
Nanomaterials 2025, 15(14), 1122; https://doi.org/10.3390/nano15141122 - 19 Jul 2025
Viewed by 2853
Abstract
Tunneling modes in all-dielectric one-dimensional photonic crystals can be utilized for multi-channel filtering. However, these tunneling modes generally blue shift upon increasing the incident angle. When hyperbolic metamaterials are introduced into one-dimensional photonic crystals, the competition between the propagation phase shifts in the [...] Read more.
Tunneling modes in all-dielectric one-dimensional photonic crystals can be utilized for multi-channel filtering. However, these tunneling modes generally blue shift upon increasing the incident angle. When hyperbolic metamaterials are introduced into one-dimensional photonic crystals, the competition between the propagation phase shifts in the dielectric materials and hyperbolic metamaterials can result in different angle dependencies, including blue shift, abnormal zero shift, and abnormal red shift. When the reduction in the propagation phase in the dielectric layer exceeds the increment in the propagation phase in the hyperbolic metamaterial, the tunneling modes are blue-shifted; conversely, when the phase increment in the hyperbolic metamaterial exceeds the phase reduction in the dielectric layer, the tunneling modes are abnormally red-shifted. When the phase changes in the two materials are the same, the tunneling modes are angle independent. In this study, we investigated the multiple filtering effects of one-dimensional photonic structures composed of hyperbolic metamaterials. These composed structures exhibited multiple tunneling modes based on one-, two-, or three-angle dependencies and can be applied in novel optical devices with different angle-dependence requirements. Full article
Show Figures

Figure 1

18 pages, 3446 KB  
Review
Mechanics of Surface Instabilities in Soft Dielectrics Subject to Electromechanical Loading
by Jiangfei Li, Zehua Wang and Jianyou Zhou
Polymers 2024, 16(24), 3612; https://doi.org/10.3390/polym16243612 - 23 Dec 2024
Cited by 1 | Viewed by 1015
Abstract
As a category of polymeric materials, soft dielectrics, such as most elastomers and rubber-like materials, have shown great potential for extensive applications in various fields. Owing to their intriguing electromechanical coupling behaviors, the morphological instabilities in soft dielectrics have been an active research [...] Read more.
As a category of polymeric materials, soft dielectrics, such as most elastomers and rubber-like materials, have shown great potential for extensive applications in various fields. Owing to their intriguing electromechanical coupling behaviors, the morphological instabilities in soft dielectrics have been an active research field in recent years. In this work, the recent progress in experimental and theoretical research on their electromechanical morphological instabilities is reviewed, especially regarding the theoretical aspect. First, we revisit the theoretical framework for the electroelasticity of soft dielectrics. Then, the typical configurations of soft dielectric membranes used to generate two typical types of surface instabilities, namely wrinkles and creases, are introduced. Three commonly used modeling approaches (i.e., the stress balance method, the incremental method, and the energy method) for surface instabilities are reviewed with specific examples. Moreover, discussions on the difference between these methods and the corresponding critical loading conditions are presented. Furthermore, this review also covers the relation and transition between wrinkling and creasing phenomena. Full article
(This article belongs to the Special Issue Mechanic Properties of Polymer Materials)
Show Figures

Figure 1

15 pages, 9392 KB  
Article
Electrical Properties at Multi-Frequencies for Analysis of Physical and Anatomical Properties of Fast-Growing Standing Teak Trees at Various Ages
by Dyah Ayu Agustiningrum, Iskandar Zulkarnaen Siregar, Ratih Damayanti, Warsito Purwo Taruno, Harisma Nugraha, Rohmadi and Lina Karlinasari
Forests 2024, 15(4), 669; https://doi.org/10.3390/f15040669 - 7 Apr 2024
Cited by 1 | Viewed by 1776
Abstract
Fast-growing teak trees are cultivated extensively in Indonesia to meet the growing demand for teak wood. However, it is necessary to assess the conditions of teak stands throughout their growth period. The nondestructive testing of wood utilizing dielectric spectroscopy approaches based on electrical [...] Read more.
Fast-growing teak trees are cultivated extensively in Indonesia to meet the growing demand for teak wood. However, it is necessary to assess the conditions of teak stands throughout their growth period. The nondestructive testing of wood utilizing dielectric spectroscopy approaches based on electrical properties is currently under development, particularly for evaluating tree stands. This study aimed to analyze the dielectric values of fast-growing teak tree stands within a frequency range of 250 kHz to 60 MHz and to understand the relationship between their physical and anatomical properties. A capacitance measurement system was employed to collect dielectric spectroscopy data directly from trees aged 4, 5, and 7 years. Simultaneously, physical and anatomical samples were obtained using a 0.5 cm diameter increment borer. The results revealed significant differences in the fiber length, lumen diameter, and wall thickness at each age. The optimal dielectric frequency for distinguishing wood properties in standing trees was identified to be within a range of 18 MHz to 23 MHz. In the linear model, a moderate relationship was observed with a correlation coefficient of (r)0.403, although the coefficient of determination (r2) was weak at 0.162 for green density. However, a robust relationship was observed in the linear model for specific gravity with r = 0.826 and r2 = 0.682. A weak but significant relationship was also identified with r = 0.2, a coefficient of determination of r2 = 0.04, and a significance level < 0.05 in the predictive model of wood anatomy properties (vessel diameter and fiber wall thickness). Models with low r2 but high significance indicate that the independent variables still noticeably contribute to explaining the dependent variable. Further analysis and data processing can be enhanced by identifying the crucial variables in the capacitance measurement system. Full article
Show Figures

Figure 1

19 pages, 7518 KB  
Article
A Multidisciplinary Approach toward CMOS Capacitive Sensor Array for Droplet Analysis
by Hamed Osouli Tabrizi, Saghi Forouhi, Tayebeh Azadmousavi and Ebrahim Ghafar-Zadeh
Micromachines 2024, 15(2), 232; https://doi.org/10.3390/mi15020232 - 1 Feb 2024
Cited by 5 | Viewed by 2155
Abstract
This paper introduces an innovative method for the analysis of alcohol–water droplets on a CMOS capacitive sensor, leveraging the controlled thermal behavior of the droplets. Using this sensing method, the capacitive sensor measures the total time of evaporation (ToE), which can be influenced [...] Read more.
This paper introduces an innovative method for the analysis of alcohol–water droplets on a CMOS capacitive sensor, leveraging the controlled thermal behavior of the droplets. Using this sensing method, the capacitive sensor measures the total time of evaporation (ToE), which can be influenced by the droplet volume, temperature, and chemical composition. We explored this sensing method by introducing binary mixtures of water and ethanol or methanol across a range of concentrations (0–100%, with 10% increments). The experimental results indicate that while the capacitive sensor is effective in measuring both the total ToE and dielectric properties, a higher dynamic range and resolution are observed in the former. Additionally, an array of sensing electrodes successfully monitors the droplet–sensor surface interaction. However practical considerations such as the creation of parasitic capacitance due to mismatch, arise from the large sensing area in the proposed capacitive sensors and other similar devices. In this paper, we discuss this non-ideality and propose a solution. Also, this paper showcases the benefits of utilizing a CMOS capacitive sensing method for accurately measuring ToE. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

16 pages, 15983 KB  
Article
A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations
by Yilun Yan, Jiangfeng Wang, Jianying Lan and Keyu Li
Energies 2024, 17(1), 201; https://doi.org/10.3390/en17010201 - 29 Dec 2023
Cited by 3 | Viewed by 1342
Abstract
The efficiency of supersonic combustion is largely dependent on inlet and injection parameters. Additional energy input is required in some off-design conditions, and nanosecond discharge actuation can be a solution. In the present study, a phenomenological model of a nanosecond-pulsed surface dielectric barrier [...] Read more.
The efficiency of supersonic combustion is largely dependent on inlet and injection parameters. Additional energy input is required in some off-design conditions, and nanosecond discharge actuation can be a solution. In the present study, a phenomenological model of a nanosecond-pulsed surface dielectric barrier discharge (NS-SDBD) actuator was developed to analyze the combustion enhancement effect for a supersonic combustor with transverse H2 injection. A seven-reaction H2–air combustion model was adopted for the numerical simulation. Dynamic mode decomposition (DMD) was employed to acquire temperature perturbation in spatial and temporal domains. The results show that the actuator provides additional temperature-increment and species transportation through compression waves. The combustion enhancement effect is mainly attributed to the flow perturbation in the shear layer, which promotes the turbulent diffusion of fuel. Given the same power input, the combustion efficiency at the shockwave reflection point is increased by 17.5%, and the flame height is increased by 15.4% at its maximum. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2023)
Show Figures

Figure 1

19 pages, 6513 KB  
Article
Effect of the Electric Field on the Biomineralization of Collagen
by Fiorella Ortiz, Antonio Díaz-Barrios, Zoraya E. Lopez-Cabaña and Gema González
Polymers 2023, 15(14), 3121; https://doi.org/10.3390/polym15143121 - 22 Jul 2023
Cited by 5 | Viewed by 2757
Abstract
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite [...] Read more.
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite migration of ions into collagen membranes to form hydroxyapatite (HA) on the collagen membrane. Two physically separated solutions were used for the incubation medium, one rich in phosphate ions and the other in calcium ions, and their effects were evaluated against the traditional mineralization in Simulated Body Fluid (SBF). Pre-polarization of the organic membranes and the effect of incubation time on the biomineralization process were also assessed by FTIR and Raman spectroscopies.Our results demonstrated that the membrane pre-polarization significantly accelerated the mineralization process on collagen. On the other side, it was found that the application of the electric field influenced the collagen structure and its interactions with the mineral phase. The increment of the mineralization degree enhanced the photoluminescence properties of the collagen/HA materials, while the conductivity and the dielectric constant were reduced. These results might provide a useful approach for future applications in manufacturing biomimetic bone-like materials. Full article
Show Figures

Figure 1

12 pages, 4536 KB  
Article
Insight into over Repair of Hot Carrier Degradation by GIDL Current in Si p-FinFETs Using Ultra-Fast Measurement Technique
by Hao Chang, Guilei Wang, Hong Yang, Qianqian Liu, Longda Zhou, Zhigang Ji, Ruixi Yu, Zhenhua Wu, Huaxiang Yin, Anyan Du, Junfeng Li, Jun Luo, Chao Zhao and Wenwu Wang
Nanomaterials 2023, 13(7), 1259; https://doi.org/10.3390/nano13071259 - 3 Apr 2023
Viewed by 3419
Abstract
In this article, an experimental study on the gate-induced drain leakage (GIDL) current repairing worst hot carrier degradation (HCD) in Si p-FinFETs is investigated with the aid of an ultra-fast measurement (UFM) technique (~30 μs). It is found that increasing GIDL bias from [...] Read more.
In this article, an experimental study on the gate-induced drain leakage (GIDL) current repairing worst hot carrier degradation (HCD) in Si p-FinFETs is investigated with the aid of an ultra-fast measurement (UFM) technique (~30 μs). It is found that increasing GIDL bias from 3 V to 4 V achieves a 114.7% VT recovery ratio from HCD. This over-repair phenomenon of HCD by UFM GIDL is deeply discussed through oxide trap behaviors. When the applied gate-to-drain GIDL bias reaches 4 V, a significant electron trapping and interface trap generation of the fresh device with GIDL repair is observed, which greatly contributes to the approximate 114.7% over-repair VT ratio of the device under worst HCD stress (−2.0 V, 200 s). Based on the TCAD simulation results, the increase in the vertical electric field on the surface of the channel oxide layer is the direct cause of an extraordinary electron trapping effect accompanied by the over-repair phenomenon. Under a high positive electric field, a part of channel electrons is captured by oxide traps in the gate dielectric, leading to further VT recovery. Through the discharge-based multi-pulse (DMP) technique, the energy distribution of oxide traps after GIDL recovery is obtained. It is found that over-repair results in a 34% increment in oxide traps around the conduction energy band (Ec) of silicon, which corresponds to a higher stabilized VT shift under multi-cycle HCD-GIDL tests. The results provide a trap-based understanding of the transistor repairing technique, which could provide guidance for the reliable long-term operation of ICs. Full article
(This article belongs to the Special Issue Memory Nanomaterials: Growth, Characterization and Device Fabrication)
Show Figures

Figure 1

11 pages, 2946 KB  
Article
Experimental Formation and Mechanism Study for Super-High Dielectric Constant AlOx/TiOy Nanolaminates
by Jiangwei Liu, Masayuki Okamura, Hisanori Mashiko, Masataka Imura, Meiyong Liao, Ryosuke Kikuchi, Michio Suzuka and Yasuo Koide
Nanomaterials 2023, 13(7), 1256; https://doi.org/10.3390/nano13071256 - 2 Apr 2023
Cited by 2 | Viewed by 2348
Abstract
Super-high dielectric constant (k) AlOx/TiOy nanolaminates (ATO NLs) are deposited by an atomic layer deposition technique for application in next-generation electronics. Individual multilayers with uniform thicknesses are formed for the ATO NLs. With an increase in AlOx [...] Read more.
Super-high dielectric constant (k) AlOx/TiOy nanolaminates (ATO NLs) are deposited by an atomic layer deposition technique for application in next-generation electronics. Individual multilayers with uniform thicknesses are formed for the ATO NLs. With an increase in AlOx content in each ATO sublayer, the shape of the Raman spectrum has a tendency to approach that of a single AlOx layer. The effects of ATO NL deposition conditions on the electrical properties of the metal/ATO NL/metal capacitors were investigated. A lower deposition temperature, thicker ATO NL, and lower TiOy content in each ATO sublayer can lead to a lower leakage current and smaller loss tangent at 1 kHz for the capacitors. A higher deposition temperature, larger number of ATO interfaces, and higher TiOy content in each ATO sublayer are important for obtaining higher k values for the ATO NLs. With an increase in resistance in the capacitors, the ATO NLs vary from semiconductors to insulators and their k values have a tendency to decrease. For most of the capacitors, the capacitances reduce with increments in absolute measurement voltage. There are semi-circular shapes for the impedance spectra of the capacitors. By fitting them with the equivalent circuit, it is observed that with the increase in absolute voltage, both parallel resistance and capacitance decrease. The variation in the capacitance is explained well by a novel double-Schottky electrode contact model. The formation of super-high k values for the semiconducting ATO NLs is possibly attributed to the accumulation of charges. Full article
(This article belongs to the Special Issue Nanoscale Thin Film Transistors and Application Exploration)
Show Figures

Figure 1

19 pages, 3125 KB  
Article
Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties
by Miks Bleija, Oskars Platnieks, Jan Macutkevič, Jūras Banys, Olesja Starkova, Liga Grase and Sergejs Gaidukovs
Polymers 2023, 15(3), 515; https://doi.org/10.3390/polym15030515 - 18 Jan 2023
Cited by 26 | Viewed by 3300
Abstract
To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.% in order to create a sustainable and affordable solution. Multiwall carbon nanotubes [...] Read more.
To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.% in order to create a sustainable and affordable solution. Multiwall carbon nanotubes (MWCNT) and iron oxide (Fe3O4) nanoparticles were mixed in nine ratios from 0.1 to 0.6 vol.% and 8.0 to 12.0 vol.%, respectively. With the addition of surfactant, excellent particle dispersion was achieved (examined with SEM micrographs) in a bio-based and biodegradable poly(butylene succinate) (PBS) matrix. Hybrid design synergy was assessed for EMI shielding using dielectric spectroscopy in the microwave region and transmittance in the terahertz range. The shielding effectiveness (20–52 dB) was dominated by very high absorption at 30 GHz, while in the 0.1 to 1.0 THz range, transmittance was reduced by up to 6 orders of magnitude. Frequency-independent AC electrical conductivity (from 10−2 to 107 Hz) was reached upon adding 0.6 vol.% MWCNT and 10 vol.% Fe3O4, with a value of around 3.1 × 10−2 S/m. Electrical and thermal conductivity were mainly affected by the content of MWCNT filler. The thermal conductivity scaled with the filler content and reached the highest value of 0.309 W/(mK) at 25 °C with the loading of 0.6 vol.% MWCNT and 12 vol.% Fe3O4. The surface resistivity showed an incremental decrease with an increase in MWCNT loading and was almost unaffected by an increase in iron oxide loading. Thermal conductivity was almost independent of temperature in the measured range of 25 to 45 °C. The nanocomposites serve as biodegradable alternatives to commodity plastic-based materials and are promising in the field of electromagnetic applications, especially for EMI shielding. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Graphical abstract

11 pages, 1623 KB  
Article
Characterization of the Rate-Limiting Steps in the Dark-To-Light Transitions of Closed Photosystem II: Temperature Dependence and Invariance of Waiting Times during Multiple Light Reactions
by Melinda Magyar, Gábor Sipka, Wenhui Han, Xingyue Li, Guangye Han, Jian-Ren Shen, Petar H. Lambrev and Győző Garab
Int. J. Mol. Sci. 2023, 24(1), 94; https://doi.org/10.3390/ijms24010094 - 21 Dec 2022
Cited by 10 | Viewed by 2905
Abstract
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA [...] Read more.
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were effective only with sufficiently long Δτ waiting times between consecutive STSFs. Detailed studies revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented here substantiate this assignment: (i) the Δτ1/2 half-increment rise (or half-waiting) times of the diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid membranes displayed similar temperature dependences between 5 and –80 °C, with substantially increased values at low temperatures; (ii) the Δτ1/2 values in PSII CC were essentially invariant on the Fk−to-Fk+1 (k = 1–4) increments both at 5 and at −80 °C, indicating the involvement of the same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted charge-separated state and in the variable chlorophyll-a fluorescence of PSII. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Natural and Artificial Photosynthesis 2.0)
Show Figures

Figure 1

14 pages, 7610 KB  
Article
An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids
by Suhaib Ahmad Khan, Mohd Tariq, Asfar Ali Khan, Shabana Urooj and Lucian Mihet-Popa
Energies 2022, 15(23), 9127; https://doi.org/10.3390/en15239127 - 1 Dec 2022
Cited by 9 | Viewed by 2154
Abstract
The rise in power demand today necessitates its generation and transmission at high voltages. The efficient transmission of electric power requires transformers with an insulation system that exhibits excellent dielectric properties. In this paper ZnO and CuO nanomaterials are utilized to investigate the [...] Read more.
The rise in power demand today necessitates its generation and transmission at high voltages. The efficient transmission of electric power requires transformers with an insulation system that exhibits excellent dielectric properties. In this paper ZnO and CuO nanomaterials are utilized to investigate the dielectric characteristics of pure synthetic ester oil and its related nanofluids (NFs) from room temperature up to 60 °C at increments of 20 °C, including AC breakdown voltage, Dielectric Dissipation factor, and DC resistivity. The breakdown testing is carried out in accordance with experimental IEC-60156 requirements. The DC resistivity and dissipation factor of oils are measured using the Dissipation Factor meter, resistivity meter, and a heating chamber with an oil cell that follows IEC 60247 standard. The statistical analysis is performed on the breakdown voltages test values using the Weibull probability distribution model for better accuracy. From the results, it has been found that ZnO nanofluid possesses a higher breakdown voltage among all the tested liquids. Furthermore CuO nanofluid gives a minimum value of dissipation factor even at higher temperatures. Full article
Show Figures

Figure 1

17 pages, 3495 KB  
Article
Fire Retardancy and Dielectric Strength of Cyclotriphosphazene Compounds with Schiff Base and Ester Linking Units Attached to the Electron-Withdrawing Side Arm
by Siti Nur Khalidah Usri, Zuhair Jamain and Mohamad Zul Hilmey Makmud
Polymers 2022, 14(20), 4378; https://doi.org/10.3390/polym14204378 - 17 Oct 2022
Cited by 5 | Viewed by 2600
Abstract
A series of compounds with Schiff base and ester linking units attached to the electron-withdrawing side arm (Cl, NO2, and OH) have been successfully synthesized through four schemes of the chemical route. These compounds were characterized using Fourier Transform Infrared spectroscopy [...] Read more.
A series of compounds with Schiff base and ester linking units attached to the electron-withdrawing side arm (Cl, NO2, and OH) have been successfully synthesized through four schemes of the chemical route. These compounds were characterized using Fourier Transform Infrared spectroscopy (FTIR), Nuclear Magnetic Resonance spectroscopy (NMR), and Carbon, Hydrogen and Nitrogen (CHN) elemental analysis. The epoxy resin was used as a matrix of molding to observe the refinement of fire-retardant properties of the modified cyclotriphosphazene compounds. The fire-retardant testing was done using Limiting Oxygen Index (LOI). The LOI value of pure epoxy resin was increased from 22.75% to 24.71% when incorporated with 1 wt.% of hexasubstituted cyclotriphosphazene (HCCP). Interestingly, all the final compounds gave a positive increment in the LOI value and the highest LOI value was obtained from the compound containing a nitro side arm with LOI value of 26.90%. In order to understand the thermal stability of these compounds, Thermogravimetric Analysis (TGA) was carried out. The compound with the nitro group at the terminal end has the highest char residue which is 34.2% at 700 °C. This indicated that the presence of the nitro withdrawing group was able to enhance the fire retardancy of the materials. Based on SEM observation, the shape of the final compound’s char residue demonstrated the formation of a porous protective layer with a dense surface. The dielectric property was conducted according to ASTM D149 AC breakdown voltage to determine its dielectric strength. The results showed that the highest dielectric strength value belonged to the compound containing a nitro group side arm with 24.41 kV/mm−1 due to the π electron delocalization. Full article
Show Figures

Figure 1

11 pages, 2116 KB  
Article
Effect of Recombinant Antibodies and MIP Nanoparticles on the Electrical Behavior of Impedimetric Biorecognition Surfaces for SARS-CoV-2 Spike Glycoprotein: A Short Report
by Douglas Vieira Thomaz, Riccardo Goldoni, Gianluca Martino Tartaglia, Cosimino Malitesta and Elisabetta Mazzotta
Electrochem 2022, 3(3), 538-548; https://doi.org/10.3390/electrochem3030037 - 2 Sep 2022
Cited by 7 | Viewed by 3539
Abstract
Electrochemical immunosensors are often described as innovative strategies to tackle urgent epidemiological needs, such as the detection of SARS-CoV-2 main biomarker, the spike glycoprotein. Nevertheless, there is a great variety of receptors, especially recombinant antibodies, that can be used to develop these biosensing [...] Read more.
Electrochemical immunosensors are often described as innovative strategies to tackle urgent epidemiological needs, such as the detection of SARS-CoV-2 main biomarker, the spike glycoprotein. Nevertheless, there is a great variety of receptors, especially recombinant antibodies, that can be used to develop these biosensing platforms, and very few reports compare their suitability in analytical device design and their sensing performances. Therefore, this short report targeted a brief and straightforward investigation of the performance of different impedimetric biorecognition surfaces (BioS) for SARS-CoV-2, which were crafted from three commonly reported recombinant antibodies and molecularly-imprinted polymer (MIP) nanoparticles (nanoMIP). The selected NanoMIP were chosen due to their reported selectivity to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein. Results showed that the surface modification protocol based on MUDA and crosslinking with EDC/NHS was successful for the anchoring of each tested receptor, as the semicircle diameter of the Nyquist plots of EIS increased upon each modification, which suggests the increase of Rct due to the binding of dielectric materials on the conductive surface. Furthermore, the type of monoclonal antibody used to craft the BioS and the artificial receptors led to very distinct responses, being the RBD5305 and the NanoMIP-based BioS the ones that showcased the highest increment of signal in the conditions herein reported, which suggests their adequacy in the development of impedimetric immunosensors for SARS-CoV-2 spike glycoprotein. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

41 pages, 7481 KB  
Review
Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications
by D. Parajuli, N. Murali, Devendra K. C., Bhishma Karki, K. Samatha, Allison A Kim, Mira Park and Bishweshwar Pant
Polymers 2022, 14(16), 3433; https://doi.org/10.3390/polym14163433 - 22 Aug 2022
Cited by 81 | Viewed by 9670
Abstract
MXenes are 2D ceramic materials, especially carbides, nitrides, and carbonitrides derived from their parent ‘MAX’ phases by the etching out of ‘A’ and are famous due to their conducting, hydrophilic, biocompatible, and tunable properties. However, they are hardly stable in the outer environment, [...] Read more.
MXenes are 2D ceramic materials, especially carbides, nitrides, and carbonitrides derived from their parent ‘MAX’ phases by the etching out of ‘A’ and are famous due to their conducting, hydrophilic, biocompatible, and tunable properties. However, they are hardly stable in the outer environment, have low biodegradability, and have difficulty in drug release, etc., which are overcome by MXene/Polymer nanocomposites. The MXenes terminations on MXene transferred to the polymer after composite formation makes it more functional. With this, there is an increment in photothermal conversion efficiency for cancer therapy, higher antibacterial activity, biosensors, selectivity, bone regeneration, etc. The hydrophilic surfaces become conducting in the metallic range after the composite formation. MXenes can effectively be mixed with other materials like ceramics, metals, and polymers in the form of nanocomposites to get improved properties suitable for advanced applications. In this paper, we review different properties like electrical and mechanical, including capacitances, dielectric losses, etc., of nanocomposites more than those like Ti3C2Tx/polymer, Ti3C2/UHMWPE, MXene/PVA-KOH, Ti3C2Tx/PVA, etc. along with their applications mainly in energy storing and biomedical fields. Further, we have tried to enlist the MXene-based nanocomposites and compare them with conducting polymers and other nanocomposites. The performance under the NIR absorption seems more effective. The MXene-based nanocomposites are more significant in most cases than other nanocomposites for the antimicrobial agent, anticancer activity, drug delivery, bio-imaging, biosensors, micro-supercapacitors, etc. The limitations of the nanocomposites, along with possible solutions, are mentioned. Full article
Show Figures

Figure 1

6 pages, 1284 KB  
Case Report
Change in Lung Fluid Volume during Exercise in Patients with Exercise-Induced Mitral Regurgitation
by Teruhiko Imamura, Masakazu Hori, Shuhei Tanaka, Nikhil Narang and Koichiro Kinugawa
Medicina 2022, 58(6), 724; https://doi.org/10.3390/medicina58060724 - 28 May 2022
Cited by 3 | Viewed by 2471
Abstract
Exercise-induced mitral regurgitation (MR) can be diagnosed during stress echocardiography testing. Remote dielectric sensing (ReDSTM) is a noninvasive electromagnetic-based modality to measure lung fluid levels. The change in lung fluid levels in patients with MR during stress echocardiography remains unknown. Patients [...] Read more.
Exercise-induced mitral regurgitation (MR) can be diagnosed during stress echocardiography testing. Remote dielectric sensing (ReDSTM) is a noninvasive electromagnetic-based modality to measure lung fluid levels. The change in lung fluid levels in patients with MR during stress echocardiography remains unknown. Patients with symptomatic MR at baseline and suspected worsening exercise-induced MR underwent stress echocardiography. ReDS values were measured before and after the tests. A total of four patients (ages ranging between 74 and 84 years old, three women) underwent stress echocardiography testing using a bicycle ergometer. In patient A, MR effective regurgitant orifice area (EROA) remained unchanged and ReDS values decreased. EROA increased significantly with a small incremental change in ReDS values in patient B and patient C, who underwent valve repair with MitraClip later. Patient D had a mild increase in MR EROA but a considerable increase in ReDS values (from 22% to 32%), and eventually received valve repair with MitraClip. The ReDS system may be a complementary tool to conventional stress echocardiography in the evaluation of clinically significant MR and considering mitral valve intervention. Full article
Show Figures

Figure 1

Back to TopTop