Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = die soldering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9452 KiB  
Article
Thermal Fatigue Behaviors of BGA Packages with an Optimized Solder Joint Layout
by Mohammed Abdel Razzaq, Michael Meilunas, Xian A. Cao, Jim Wilcox and Abdallah Ramini
Electronics 2025, 14(11), 2286; https://doi.org/10.3390/electronics14112286 - 4 Jun 2025
Viewed by 770
Abstract
Ball Grid Array (BGA) failures are often dominated by stress concentrations at the outer solder joints, particularly under thermomechanical loading. To mitigate this issue, this study investigates the mechanical and reliability implications of optimizing the BGA solder joint array by removing the outermost [...] Read more.
Ball Grid Array (BGA) failures are often dominated by stress concentrations at the outer solder joints, particularly under thermomechanical loading. To mitigate this issue, this study investigates the mechanical and reliability implications of optimizing the BGA solder joint array by removing the outermost rows and columns, positioning all connections directly beneath the silicon die. Two commonly used solder alloys—SAC305 and Sn37Pb—were selected to evaluate the effects of this optimized array design. A combined experimental and numerical approach was employed, including accelerated thermal cycling (–40 °C to 125 °C), in situ resistance monitoring, cross-sectional failure analysis, and finite element modeling (FEM) to assess fatigue behavior under the altered layout. The optimized array significantly improved performance for SAC305, yielding a 1.67× increase in mean cycles-to-failure and a 29% reduction in peak von Mises stress, with failure locations shifting from the corners to more evenly distributed areas beneath the die. Sn37Pb assemblies showed only a 1.01× improvement despite an 11% stress reduction, attributed to persistent shear-dominated failures at second-row joints. These results highlight the critical influence of joint array architecture and solder alloy selection on reliability, offering design-level guidance for applications prioritizing thermomechanical robustness with reduced I/O counts. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

12 pages, 7004 KiB  
Article
Bonding Characteristics in Air of a Decomposable Composite Sheet Containing Sn-3.0Ag-0.5Cu Particles for Formation of a Robust Metallic Solder Joint in Die Attachment
by Hye-Min Lee and Jong-Hyun Lee
J. Manuf. Mater. Process. 2025, 9(5), 161; https://doi.org/10.3390/jmmp9050161 - 15 May 2025
Viewed by 480
Abstract
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers [...] Read more.
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers on the solder and copper finish surfaces during heating. Subsequently, the resin component (polymethyl methacrylate) began to decompose thermally and gradually dissipated. Ultimately, the resulting joint formed a solder interconnection with a small amount of residual resin. This joint is expected to exhibit superior thermal conductivity compared with composite joints with a polymer matrix structure. Die-attach tests were conducted in air using the fabricated sheet between Cu finishes. Results showed that joints formed at 300 °C for 30 s and 350 °C for 10 s provided excellent shear strength values of 48.0 and 44.3 MPa, respectively, along with appropriately developed intermetallic compound (IMC) layers at the bonding interface. In contrast, bonding at 350 °C for 60 s resulted in excessive growth of IMC layers at the interface. When comparing size effects of solder particles, type 6 particles exhibited superior shear strength along with a relatively thinner total IMC layer thickness compared to when type 7 particles were used. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

19 pages, 3959 KiB  
Review
Soldering and Bonding in Contemporary Electronic Device Packaging
by Yuxuan Li, Bei Pan, Zhenting Ge, Pengpeng Chen, Bo Bi, Xin Yi, Chaochao Wu and Ce Wang
Materials 2025, 18(9), 2015; https://doi.org/10.3390/ma18092015 - 29 Apr 2025
Viewed by 1080
Abstract
Electronic packaging can transform the chip to a device for assembly. Soldering and bonding are important procedures in the process of electronic packaging. The continuous development of packaging architecture has driven the emergence of improved soldering and bonding processes. At the same time, [...] Read more.
Electronic packaging can transform the chip to a device for assembly. Soldering and bonding are important procedures in the process of electronic packaging. The continuous development of packaging architecture has driven the emergence of improved soldering and bonding processes. At the same time, conventional soldering and bonding processes are still widely used in device packaging. This paper introduces two kinds of technologies in wafer bonding, direct and indirect, expounds on five kinds of die attachment processes, and also describes the process of ball bonding and wedge bonding in wire bonding in detail. Flip chip bonding and methods for making bumps are also described in depth. Bump bonding processes are vital for 3D-SiP packages, and the bonding technology of copper bumps is a research hotspot in the field of advanced packaging. The surface mount technology and sealing technology used in some electronic devices are also briefly introduced. This paper provides insights for researchers studying soldering and bonding in contemporary electronic device packaging. Full article
Show Figures

Figure 1

22 pages, 8700 KiB  
Article
An Initial Study of Ultra High Performance Concrete as Reusable Mold Material for Aluminum Casting
by Janna Link, Fabian Teichmann, Alexander Wetzel, Sebastian Müller and Bernhard Middendorf
Materials 2025, 18(1), 153; https://doi.org/10.3390/ma18010153 - 2 Jan 2025
Cited by 1 | Viewed by 877
Abstract
The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused [...] Read more.
The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles. The thermal stability of the molds was investigated by thermogravimetric analysis, mercury intrusion porosimetry, crack segmentation, optical microscopy, and electron microscopy. Results indicate that molds fabricated from AAM-UHPC exhibit relatively better performance in terms of maintaining structural integrity and surface quality over repeated uses. AAM-UHPC molds were able to withstand up to ten casting cycles with acceptable surface degradation and no significant failure, while OPC-UHPC molds exhibited a faster degradation under similar conditions. Microstructural changes and the interaction of UHPC materials with molten aluminum were investigated, highlighting the low adhesion and defect formation. Additionally, the molds demonstrated sound casting quality, with a grain size comparable to that achieved using traditional steel molds (~ 90 µm), underscoring the potential of UHPC materials for enhancing casting quality and efficiency. The study concludes that UHPC, particularly with alkali-activated formulations, shows promise for low-pressure casting environments. Full article
Show Figures

Figure 1

11 pages, 10448 KiB  
Article
Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings
by Andrea Sütőová, Róbert Kočiško, Patrik Petroušek, Martin Kotus, Ivan Petryshynets and Andrii Pylypenko
Coatings 2024, 14(8), 1043; https://doi.org/10.3390/coatings14081043 - 16 Aug 2024
Viewed by 1829
Abstract
The wear and degradation of tools applied in the high-pressure die casting of Al alloys induce significant financial losses. The formation of failures on the surface of mold parts caused by erosion, thermal fatigue, corrosion, and soldering negatively affects the surface quality of [...] Read more.
The wear and degradation of tools applied in the high-pressure die casting of Al alloys induce significant financial losses. The formation of failures on the surface of mold parts caused by erosion, thermal fatigue, corrosion, and soldering negatively affects the surface quality of castings. In this study, the lifetime of inserts protected by physical-vapor-deposited coatings (TiN, TiAlN, and CrAlSiN) is examined under real manufacturing conditions while considering requirements for the castings’ surface quality (maximum average roughness Ra) defined by the customer. The goal was to identify the most suitable solution for HPDC in the foundry organization. After the deposition of PVD coatings on the inserts, the hardness (HRC) values increased from two to five depending on the coating used, and also the surface roughness was higher in the case of all inserts (Ra values increased from 0.24 to 0.36 µm). The lifetime of all PVD-coated inserts was higher compared to the uncoated insert. The highest lifetime was achieved by the application of a TiN coating, when 15,000 shots were achieved until the inserts’ wear negatively affected (increased) the surface roughness of castings, considering the customer requirements for the maximum Ra value. SEM analysis was used to identify examples of wear and degradation on the surface of the TiN coated insert. Full article
(This article belongs to the Special Issue Laser-Assisted Coating Techniques and Surface Modifications)
Show Figures

Figure 1

14 pages, 6229 KiB  
Article
Interface Contact Thermal Resistance of Die Attach in High-Power Laser Diode Packages
by Liting Deng, Te Li, Zhenfu Wang, Pu Zhang, Shunhua Wu, Jiachen Liu, Junyue Zhang, Lang Chen, Jiachen Zhang, Weizhou Huang and Rui Zhang
Electronics 2024, 13(1), 203; https://doi.org/10.3390/electronics13010203 - 2 Jan 2024
Cited by 4 | Viewed by 3338
Abstract
The reliability of packaged laser diodes is heavily dependent on the quality of the die attach. Even a small void or delamination may result in a sudden increase in junction temperature, eventually leading to failure of the operation. The contact thermal resistance at [...] Read more.
The reliability of packaged laser diodes is heavily dependent on the quality of the die attach. Even a small void or delamination may result in a sudden increase in junction temperature, eventually leading to failure of the operation. The contact thermal resistance at the interface between the die attach and the heat sink plays a critical role in thermal management of high-power laser diode packages. This paper focuses on the investigation of interface contact thermal resistance of the die attach using thermal transient analysis. The structure function of the heat flow path in the T3ster thermal resistance testing experiment is utilized. By analyzing the structure function of the transient thermal characteristics, it was determined that interface thermal resistance between the chip and solder was 0.38 K/W, while the resistance between solder and heat sink was 0.36 K/W. The simulation and measurement results showed excellent agreement, indicating that it is possible to accurately predict the interface contact area of the die attach in the F-mount packaged single emitter laser diode. Additionally, the proportion of interface contact thermal resistance in the total package thermal resistance can be used to evaluate the quality of the die attach. Full article
(This article belongs to the Special Issue Advanced Thermal Management of Integrated Electronic Devices)
Show Figures

Figure 1

13 pages, 5507 KiB  
Article
Study on the Application of Modified Sn-Based Solder in Cable Intermediate Joints
by Wenbin Zhang, Ruikang Luo, Xuehua Wu, Chungang Xu and Chunguang Suo
Materials 2022, 15(23), 8385; https://doi.org/10.3390/ma15238385 - 25 Nov 2022
Cited by 3 | Viewed by 3124
Abstract
With the increasing use of underground cables, the quantity and quality of intermediate joints demanded are also increasing. The quality of the traditional crimping intermediate joint is easily affected by the actual process of the operator, which may lead to the heating of [...] Read more.
With the increasing use of underground cables, the quantity and quality of intermediate joints demanded are also increasing. The quality of the traditional crimping intermediate joint is easily affected by the actual process of the operator, which may lead to the heating of the crimping part of the wire core, affecting the insulation performance of the cable, and finally causing the joint to break. However, aluminothermic reactive technology has some problems, such as a high welding temperature and an uncontrollable reaction. In order to solve these problems, according to the brazing principle and microalloying method, the optimal content of In in Sn-1.5Cu-based solder was explored, and then the connection of the middle joint of a 10 kV cable was completed using a connecting die and electrical connection process. The contact resistance and tensile strength of the joint were tested to verify the feasibility of this method. The results show that the maximum conductivity of the solder with 3.8% and 5% In content can reach 3.236 × 106 S/m, and the highest wettability is 93.6%. Finally, the minimum contact resistance of the intermediate joint is 7.05 μΩ, which is 43% lower than that of the aluminothermic welded joint, and the tensile strength is close to that of the welded joint, with a maximum of 7174 N. Full article
(This article belongs to the Special Issue New Advances in Nanomaterials)
Show Figures

Figure 1

10 pages, 3685 KiB  
Article
Effects of Bonding Materials on Optical–Thermal Performances and High-Temperature Reliability of High-Power LED
by Jiaxin Liu, Yun Mou, Yueming Huang, Jiuzhou Zhao, Yang Peng and Mingxiang Chen
Micromachines 2022, 13(6), 958; https://doi.org/10.3390/mi13060958 - 17 Jun 2022
Cited by 11 | Viewed by 3066
Abstract
The die-bonding layer between chips and substrate determinates the heat conduction efficiency of high-power LED. Sn-based solder, AuSn20 eutectic, and nano-Ag paste were widely applied to LED interconnection. In this paper, the optical–thermal performances and high-temperature reliability of LED with these bonding materials [...] Read more.
The die-bonding layer between chips and substrate determinates the heat conduction efficiency of high-power LED. Sn-based solder, AuSn20 eutectic, and nano-Ag paste were widely applied to LED interconnection. In this paper, the optical–thermal performances and high-temperature reliability of LED with these bonding materials have systematically compared and studied. The thermal conductivity, electrical resistivity, and mechanical property of these bonding materials were characterized. The LED module packaged with nano-Ag has a minimum working temperature of 21.5 °C. The total thermal resistance of LED packaged with nano-Ag, Au80Sn20, and SAC305 is 4.82, 7.84, and 8.75 K/W, respectively, which is 4.72, 6.14, and 7.84 K/W higher after aging for 500 h. Meanwhile, the junction temperature change of these LEDs increases from 2.33, 3.76, and 4.25 °C to 4.34, 4.81, and 6.41 °C after aging, respectively. The thermal resistance of the nano-Ag, Au80Sn20 and SAC305 layer after aging is 1.5%, 65.7%, and 151.5% higher than before aging, respectively. After aging, the LED bonded with nano-Ag has the better optical performances in spectral intensity and light output power, which indicates its excellent heat dissipation can improve the light efficiency. These results demonstrate the nano-Ag bonding material could enhance the optical-thermal performances and high-temperature reliability of high-power LED. Full article
(This article belongs to the Special Issue Advanced Technologies in Electronic Packaging)
Show Figures

Figure 1

10 pages, 3788 KiB  
Communication
Real-Time Temperature Monitoring under Thermal Cycling Loading with Optical Fiber Sensor
by Shiuh-Chuan Her and Jr-Luen Tasi
Sensors 2022, 22(12), 4466; https://doi.org/10.3390/s22124466 - 13 Jun 2022
Cited by 1 | Viewed by 2358
Abstract
A fiber optic sensing system consisting of a fiber Bragg grating (FBG) sensor, optical circulator, optical band pass filter and photodetector is developed to monitor the real-time temperature response of a structure under a dynamic thermal loading. The FBG sensor is surface-bonded on [...] Read more.
A fiber optic sensing system consisting of a fiber Bragg grating (FBG) sensor, optical circulator, optical band pass filter and photodetector is developed to monitor the real-time temperature response of a structure under a dynamic thermal loading. The FBG sensor is surface-bonded on a test specimen and integrated with an optical band pass filter. As a broadband light source transmits into a FBG sensor, a specific wavelength is reflected and transmitted into an optical band pass filter. The reflected wavelength is significantly affected by the temperature, while the output light power from the optical band pass filter is dependent on the wavelength. By measuring the light power with a photodetector, the wavelength can be demodulated, resulting in the determination of the temperature. In this work, the proposed optical sensing system was utilized to monitor the dynamic temperature change of a steel beam under a thermal cycling loading. To verify the accuracy of the fiber optic sensor, a thermocouple was adopted as the reference. The experimental results illustrate a good agreement between the fiber optic sensor and thermocouple. Electronic packages composed of various components such as a solder joint, silicon die, mold compound, and solder mask are frequently subjected to a thermal cycling loading in real-life applications. Temperature variations’ incorporation with mismatches of coefficients of thermal expansion among the assembly components leads to crack growth, damage accumulation and final failure. It is important to monitor the temperature to prevent a thermal fatigue failure. A fast response and easy implementation of the fiber optic sensing system was proposed for the real-time temperature measurement under thermal cycling loading. Full article
(This article belongs to the Special Issue Advanced Sensors for Real-Time Monitoring Applications ‖)
Show Figures

Figure 1

12 pages, 9155 KiB  
Article
Study of Thermal Stress Fluctuations at the Die-Attach Solder Interface Using the Finite Element Method
by Luchun Yan, Jiawen Yao, Yu Dai, Shanshan Zhang, Wangmin Bai, Kewei Gao, Huisheng Yang and Yanbin Wang
Electronics 2022, 11(1), 62; https://doi.org/10.3390/electronics11010062 - 25 Dec 2021
Cited by 11 | Viewed by 5679
Abstract
Solder joints in electronic packages are frequently exposed to thermal cycling in both real-life applications and accelerated thermal cycling tests. Cyclic temperature leads the solder joints to be subjected to cyclic mechanical loading and often accelerates the cracking failure of the solder joints. [...] Read more.
Solder joints in electronic packages are frequently exposed to thermal cycling in both real-life applications and accelerated thermal cycling tests. Cyclic temperature leads the solder joints to be subjected to cyclic mechanical loading and often accelerates the cracking failure of the solder joints. The cause of stress generated in thermal cycling is usually attributed to the coefficients of thermal expansion (CTE) mismatch of the assembly materials. In a die-attach structure consisting of multiple layers of materials, the effect of their CTE mismatch on the thermal stress at a critical location can be very complex. In this study, we investigated the influence of different materials in a die-attach structure on the stress at the chip–solder interface with the finite element method. The die-attach structure included a SiC chip, a SAC solder layer and a DBC substrate. Three models covering different modeling scopes (i.e., model I, chip–solder layer; model II, chip–solder layer and copper layer; and model III, chip–solder layer and DBC substrate) were developed. The 25–150 °C cyclic temperature loading was applied to the die-attach structure, and the change of stress at the chip–solder interface was calculated. The results of model I showed that the chip–solder CTE mismatch, as the only stress source, led to a periodic and monotonic stress change in the temperature cycling. Compared to the stress curve of model I, an extra stress recovery peak appeared in both model II and model III during the ramp-up of temperature. It was demonstrated that the CTE mismatch between the solder and copper layer (or DBC substrate) not only affected the maximum stress at the chip–solder interface, but also caused the stress recovery peak. Thus, the combined effect of assembly materials in the die-attach structure should be considered when exploring the joint thermal stresses. Full article
(This article belongs to the Special Issue Thermal Management of Electronic Packaging)
Show Figures

Figure 1

15 pages, 5504 KiB  
Review
Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation
by Seonho Seok
Micromachines 2021, 12(9), 1020; https://doi.org/10.3390/mi12091020 - 27 Aug 2021
Cited by 26 | Viewed by 5960
Abstract
Polymer materials attract more and more interests for a biocompatible package of novel implantable medical devices. Medical implants need to be packaged in a biocompatible way to minimize FBR (Foreign Body Reaction) of the implant. One of the most advanced implantable devices is [...] Read more.
Polymer materials attract more and more interests for a biocompatible package of novel implantable medical devices. Medical implants need to be packaged in a biocompatible way to minimize FBR (Foreign Body Reaction) of the implant. One of the most advanced implantable devices is neural prosthesis device, which consists of polymeric neural electrode and silicon neural signal processing integrated circuit (IC). The overall neural interface system should be packaged in a biocompatible way to be implanted in a patient. The biocompatible packaging is being mainly achieved in two approaches; (1) polymer encapsulation of conventional package based on die attach, wire bond, solder bump, etc. (2) chip-level integrated interconnect, which integrates Si chip with metal thin film deposition through sacrificial release technique. The polymer encapsulation must cover different materials, creating a multitude of interface, which is of much importance in long-term reliability of the implanted biocompatible package. Another failure mode is bio-fluid penetration through the polymer encapsulation layer. To prevent bio-fluid leakage, a diffusion barrier is frequently added to the polymer packaging layer. Such a diffusion barrier is also used in polymer-based neural electrodes. This review paper presents the summary of biocompatible packaging techniques, packaging materials focusing on encapsulation polymer materials and diffusion barrier, and a FEM-based modeling and simulation to study the biocompatible package reliability. Full article
(This article belongs to the Special Issue MEMS Packaging Technologies and 3D Integration)
Show Figures

Figure 1

12 pages, 7611 KiB  
Article
Silver Sintering for Silicon Carbide Die Attach: Process Optimization and Structural Modeling
by Michele Calabretta, Alessandro Sitta, Salvatore Massimo Oliveri and Gaetano Sequenzia
Appl. Sci. 2021, 11(15), 7012; https://doi.org/10.3390/app11157012 - 29 Jul 2021
Cited by 31 | Viewed by 10749
Abstract
The increasing demand in automotive markets is leading the semiconductor industries to develop high-performance and highly reliable power devices. Silicon carbide MOSFET chips are replacing silicon-based solutions through their improved electric and thermal capabilities. In order to support the development of these novel [...] Read more.
The increasing demand in automotive markets is leading the semiconductor industries to develop high-performance and highly reliable power devices. Silicon carbide MOSFET chips are replacing silicon-based solutions through their improved electric and thermal capabilities. In order to support the development of these novel semiconductors, packaging technologies are evolving to provide enough reliable products. Silver sintering is one of the most promising technologies for die attach. Due to their superior reliability properties with respect to conventional soft solder compounds, dedicated reliability flow and physical analyses should be designed and employed for sintering process optimization and durability assessment. This paper proposes an experimental methodology to optimize the pressure value applied during the silver sintering manufacturing of a silicon carbide power MOSFET molded package. The evaluation of the best pressure value is based on scanning electron microscopy performed after a liquid-to-liquid thermal shock reliability test. Furthermore, the sintering layer degradation is monitored during durability stress by scanning the acoustic microscopy and electric measurement of a temperature sensitive electric parameter. Moreover, mechanical elastoplastic behavior is characterized by uniaxial tensile test for a bulk sample and finite element analysis is developed to predict the mechanical behavior as a function of void fraction inside sintering layer. Full article
(This article belongs to the Special Issue New Trends in Design Engineering)
Show Figures

Figure 1

16 pages, 5258 KiB  
Article
Formation of Die Soldering and the Influence of Alloying Elements on the Intermetallic Interface
by Marius Kohlhepp, Peter J. Uggowitzer, Marc Hummel and Heinz Werner Höppel
Materials 2021, 14(7), 1580; https://doi.org/10.3390/ma14071580 - 24 Mar 2021
Cited by 16 | Viewed by 2913
Abstract
Die soldering of die castings is a serious problem in the aluminum casting industry. The precise mechanism, the influence of the alloy composition, and the options for prevention have not yet been fully elaborated. A well-established solution for alloys with low iron content [...] Read more.
Die soldering of die castings is a serious problem in the aluminum casting industry. The precise mechanism, the influence of the alloy composition, and the options for prevention have not yet been fully elaborated. A well-established solution for alloys with low iron content is the addition of manganese. However, up to 0.8 wt.% is necessary, which increases the amount of brittle phases in the material and consequently reduces ductility. Immersion tests with 1.2343 tool steel and pure aluminum as well as a hypoeutectic AlSi-alloy with Mn, Mo, Co, and Cr additions were carried out to systematically investigate the formation of die soldering. Three different intermetallic layers and a scattered granular intermetallic phase formed at the interface between steel and Al-alloy after immersion into the melt for a duration of 6 min at 710 °C. The combined presence of the irregular, needle-shaped β-Al5FeSi phase and the surrounding alloy was responsible for the bond between the two components. Mn and Mo inhibited the formation of the β-phase, and instead promoted the αC-Al15(Fe,X)3Si2 phase. This led to an evenly running boundary to the AlSi-alloy and thus prevented bonding. Cr has proven to be the most efficient addition against die soldering, with 0.2 wt.% being sufficient. Contrary to the other elements investigated, Cr also reduced the thickness of the intermetallic interface. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

14 pages, 1748 KiB  
Article
Modeling Precipitation Hardening and Yield Strength in Cast Al-Si-Mg-Mn Alloys
by Emre Cinkilic, Xinyan Yan and Alan A. Luo
Metals 2020, 10(10), 1356; https://doi.org/10.3390/met10101356 - 11 Oct 2020
Cited by 21 | Viewed by 7054
Abstract
An integrated precipitation and strengthening model, incorporating the effect of precipitate morphology on precipitation kinetics and yield strength, is developed based on a modified Kampmann–Wagner numerical (KWN) framework with a precipitate shape factor. The optimized model was used to predict the yield strength [...] Read more.
An integrated precipitation and strengthening model, incorporating the effect of precipitate morphology on precipitation kinetics and yield strength, is developed based on a modified Kampmann–Wagner numerical (KWN) framework with a precipitate shape factor. The optimized model was used to predict the yield strength of Al-Si-Mg-Mn casting alloys produced by vacuum high pressure die casting at various aged (T6) conditions. The solid solution strengthening contribution of Mn, which is a common alloying element to avoid die soldering, was included in the model to increase the prediction accuracy. The experimental results and simulations show good agreement and the model is capable of reliably predicting yield strength of aluminum die castings after T6 heat treatment, providing a useful tool to tailor heat treatment for a variety of applications. Full article
(This article belongs to the Special Issue Multiscale Modeling of Materials and Processes)
Show Figures

Graphical abstract

21 pages, 5093 KiB  
Review
Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics
by Hyejun Kang, Ashutosh Sharma and Jae Pil Jung
Metals 2020, 10(7), 934; https://doi.org/10.3390/met10070934 - 11 Jul 2020
Cited by 49 | Viewed by 13697
Abstract
Transient liquid phase (TLP) bonding is a novel bonding process for the joining of metallic and ceramic materials using an interlayer. TLP bonding is particularly crucial for the joining of the semiconductor chips with expensive die-attached materials during low-temperature sintering. Moreover, the transient [...] Read more.
Transient liquid phase (TLP) bonding is a novel bonding process for the joining of metallic and ceramic materials using an interlayer. TLP bonding is particularly crucial for the joining of the semiconductor chips with expensive die-attached materials during low-temperature sintering. Moreover, the transient TLP bonding occurs at a lower temperature, is cost-effective, and causes less joint porosity. Wire bonding is also a common process to interconnect between the power module package to direct bonded copper (DBC). In this context, we propose to review the challenges and advances in TLP and ultrasonic wire bonding technology using Sn-based solders for power electronics packaging. Full article
Show Figures

Figure 1

Back to TopTop