Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = dice loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 955 KiB  
Article
Single-Center Preliminary Experience Treating Endometrial Cancer Patients with Fiducial Markers
by Francesca Titone, Eugenia Moretti, Alice Poli, Marika Guernieri, Sarah Bassi, Claudio Foti, Martina Arcieri, Gianluca Vullo, Giuseppe Facondo, Marco Trovò, Pantaleo Greco, Gabriella Macchia, Giuseppe Vizzielli and Stefano Restaino
Life 2025, 15(8), 1218; https://doi.org/10.3390/life15081218 - 1 Aug 2025
Abstract
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer [...] Read more.
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer requiring adjuvant radiation with external beams were enrolled. Five patients underwent radiation therapy targeting the pelvic disease and positive lymph nodes, with doses of 50.4 Gy in twenty-eight fractions and a subsequent stereotactic boost on the vaginal vault at a dose of 5 Gy in a single fraction. One patient was administered 30 Gy in five fractions to the vaginal vault. These patients underwent external beam RT following the implantation of three 0.40 × 10 mm gold fiducial markers (FMs). Our IGRT strategy involved real-time 2D kV image-based monitoring of the fiducial markers during the treatment delivery as a surrogate of the vaginal cuff. To explore the potential role of FMs throughout the treatment process, we analyzed cine movies of the 2D kV-triggered images during delivery, as well as the image registration between pre- and post-treatment CBCT scans and the planning CT (pCT). Each CBCT used to trigger fraction delivery was segmented to define the rectum, bladder, and vaginal cuff. We calculated a standard metric to assess the similarity among the images (Dice index). Results: All the patients completed radiotherapy and experienced good tolerance without any reported acute or long-term toxicity. We did not observe any loss of FMs during or before treatment. A total of twenty CBCTs were analyzed across ten fractions. The observed trend showed a relatively emptier bladder compared to the simulation phase, with the bladder filling during the delivery. This resulted in a final median Dice similarity coefficient (DSC) of 0.90, indicating strong performance. The rectum reproducibility revealed greater variability, negatively affecting the quality of the delivery. Only in two patients, FMs showed intrafractional shift > 5 mm, probably associated with considerable rectal volume changes. Target coverage was preserved due to a safe CTV-to-PTV margin (10 mm). Conclusions: In our preliminary study, CBCT in combination with the use of fiducial markers to guide the delivery proved to be a feasible method for IGRT both before and during the treatment of post-operative gynecological cancer. In particular, this approach seems to be promising in selected patients to facilitate the use of SBRT instead of BRT (brachytherapy), thanks to margin reduction and adaptive strategies to optimize dose delivery while minimizing toxicity. A larger sample of patients is needed to confirm our results. Full article
Show Figures

Figure 1

21 pages, 4400 KiB  
Article
BFLE-Net: Boundary Feature Learning and Enhancement Network for Medical Image Segmentation
by Jiale Fan, Liping Liu and Xinyang Yu
Electronics 2025, 14(15), 3054; https://doi.org/10.3390/electronics14153054 - 30 Jul 2025
Viewed by 105
Abstract
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning [...] Read more.
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning and enhancement network is proposed. This model integrates a dedicated boundary learning module combined with an auxiliary loss function to strengthen the semantic correlations between boundary pixels and regional features, thus reducing category mis-segmentation. Additionally, channel and positional compound attention mechanisms are employed to selectively filter features and minimize background interference. To further enhance multi-scale representation capabilities, the dynamic scale-aware context module dynamically selects and fuses multi-scale features, significantly improving the model’s adaptability. The model achieves average Dice similarity coefficients of 81.67% on synapse and 90.55% on ACDC datasets, outperforming state-of-the-art methods. This network significantly improves segmentation by emphasizing boundary accuracy, noise reduction, and multi-scale adaptability, enhancing clinical diagnostics and treatment planning. Full article
Show Figures

Figure 1

20 pages, 19642 KiB  
Article
SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention
by Baishao Zhan, Jiawei Liao, Hailiang Zhang, Wei Luo, Shizhao Wang, Qiangqiang Zeng and Yongxian Lai
Spectrosc. J. 2025, 3(3), 22; https://doi.org/10.3390/spectroscj3030022 - 29 Jul 2025
Viewed by 125
Abstract
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature [...] Read more.
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature extraction under complex optical interference. To address the postharvest latent damage detection challenges in ‘Korla’ pears, this study proposes a collaborative detection framework integrating structured-illumination reflectance imaging (SIRI) with multi-order gated attention mechanisms. Initially, an SIRI optical system was constructed, employing 150 cycles·m−1 spatial frequency modulation and a three-phase demodulation algorithm to extract subtle interference signal variations, thereby generating RT (Relative Transmission) images with significantly enhanced contrast in subsurface damage regions. To improve the detection accuracy of latent damage areas, the MOGA-UNet model was developed with three key innovations: 1. Integrate the lightweight VGG16 encoder structure into the feature extraction network to improve computational efficiency while retaining details. 2. Add a multi-order gated aggregation module at the end of the encoder to realize the fusion of features at different scales through a special convolution method. 3. Embed the channel attention mechanism in the decoding stage to dynamically enhance the weight of feature channels related to damage. Experimental results demonstrate that the proposed model achieves 94.38% mean Intersection over Union (mIoU) and 97.02% Dice coefficient on RT images, outperforming the baseline UNet model by 2.80% with superior segmentation accuracy and boundary localization capabilities compared with mainstream models. This approach provides an efficient and reliable technical solution for intelligent postharvest agricultural product sorting. Full article
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 179
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

37 pages, 1831 KiB  
Review
Deep Learning Techniques for Retinal Layer Segmentation to Aid Ocular Disease Diagnosis: A Review
by Oliver Jonathan Quintana-Quintana, Marco Antonio Aceves-Fernández, Jesús Carlos Pedraza-Ortega, Gendry Alfonso-Francia and Saul Tovar-Arriaga
Computers 2025, 14(8), 298; https://doi.org/10.3390/computers14080298 - 22 Jul 2025
Viewed by 360
Abstract
Age-related ocular conditions like macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are leading causes of irreversible vision loss globally. Optical coherence tomography (OCT) provides essential non-invasive visualization of retinal structures for early diagnosis, but manual analysis of these images is labor-intensive and [...] Read more.
Age-related ocular conditions like macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are leading causes of irreversible vision loss globally. Optical coherence tomography (OCT) provides essential non-invasive visualization of retinal structures for early diagnosis, but manual analysis of these images is labor-intensive and prone to variability. Deep learning (DL) techniques have emerged as powerful tools for automating the segmentation of the retinal layer in OCT scans, potentially improving diagnostic efficiency and consistency. This review systematically evaluates the state of the art in DL-based retinal layer segmentation using the PRISMA methodology. We analyze various architectures (including CNNs, U-Net variants, GANs, and transformers), examine the characteristics and availability of datasets, discuss common preprocessing and data augmentation strategies, identify frequently targeted retinal layers, and compare performance evaluation metrics across studies. Our synthesis highlights significant progress, particularly with U-Net-based models, which often achieve Dice scores exceeding 0.90 for well-defined layers, such as the retinal pigment epithelium (RPE). However, it also identifies ongoing challenges, including dataset heterogeneity, inconsistent evaluation protocols, difficulties in segmenting specific layers (e.g., OPL, RNFL), and the need for improved clinical integration. This review provides a comprehensive overview of current strengths, limitations, and future directions to guide research towards more robust and clinically applicable automated segmentation tools for enhanced ocular disease diagnosis. Full article
Show Figures

Figure 1

28 pages, 2881 KiB  
Article
Segmentation-Based Classification of Plants Robust to Various Environmental Factors in South Korea with Self-Collected Database
by Ganbayar Batchuluun, Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Horticulturae 2025, 11(7), 843; https://doi.org/10.3390/horticulturae11070843 - 17 Jul 2025
Viewed by 297
Abstract
Many plant image-based studies primarily use datasets featuring either a single plant, a plant with only one leaf, or images containing only plants and leaves without any background. However, in real-world scenarios, a substantial portion of acquired images consists of blurred plants or [...] Read more.
Many plant image-based studies primarily use datasets featuring either a single plant, a plant with only one leaf, or images containing only plants and leaves without any background. However, in real-world scenarios, a substantial portion of acquired images consists of blurred plants or extensive backgrounds rather than high-resolution details of the target plants. In such cases, classification models struggle to identify relevant areas for classification, leading to insufficient information and reduced classification performance. Moreover, the presence of moisture, water droplets, dust, or partially damaged leaves further degrades classification accuracy. To address these challenges and enhance classification performance, this study introduces a plant image segmentation (Pl-ImS) model for segmentation and a plant image classification (Pl-ImC) model for classification. The proposed models were evaluated using a self-collected dataset of 21,760 plant images captured under real field conditions in South Korea, incorporating various environmental factors such as moisture, water droplets, dust, and partial leaf loss. The segmentation method achieved a dice score (DS) of 89.90% and an intersection over union (IoU) of 81.82%, while the classification method attained an F1-score of 95.97%, surpassing state-of-the-art methods. Full article
(This article belongs to the Special Issue Emerging Technologies in Smart Agriculture)
Show Figures

Figure 1

15 pages, 1794 KiB  
Article
Lightweight Dual-Attention Network for Concrete Crack Segmentation
by Min Feng and Juncai Xu
Sensors 2025, 25(14), 4436; https://doi.org/10.3390/s25144436 - 16 Jul 2025
Viewed by 280
Abstract
Structural health monitoring in resource-constrained environments demands crack segmentation models that match the accuracy of heavyweight convolutional networks while conforming to the power, memory, and latency limits of watt-level edge devices. This study presents a lightweight dual-attention network, which is a four-stage U-Net [...] Read more.
Structural health monitoring in resource-constrained environments demands crack segmentation models that match the accuracy of heavyweight convolutional networks while conforming to the power, memory, and latency limits of watt-level edge devices. This study presents a lightweight dual-attention network, which is a four-stage U-Net compressed to one-quarter of the channel depth and augmented—exclusively at the deepest layer—with a compact dual-attention block that couples channel excitation with spatial self-attention. The added mechanism increases computation by only 19%, limits the weight budget to 7.4 MB, and remains fully compatible with post-training INT8 quantization. On a pixel-labelled concrete crack benchmark, the proposed network achieves an intersection over union of 0.827 and an F1 score of 0.905, thus outperforming CrackTree, Hybrid 2020, MobileNetV3, and ESPNetv2. While refined weight initialization and Dice-augmented loss provide slight improvements, ablation experiments show that the dual-attention module is the main factor influencing accuracy. With 110 frames per second on a 10 W Jetson Nano and 220 frames per second on a 5 W Coral TPU achieved without observable accuracy loss, hardware-in-the-loop tests validate real-time viability. Thus, the proposed network offers cutting-edge crack segmentation at the kiloflop scale, thus facilitating ongoing, on-device civil infrastructure inspection. Full article
Show Figures

Figure 1

20 pages, 10137 KiB  
Article
A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
by Shuyuan Yang, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu and Ran Bo
Remote Sens. 2025, 17(14), 2409; https://doi.org/10.3390/rs17142409 - 12 Jul 2025
Viewed by 209
Abstract
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the [...] Read more.
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Graphical abstract

18 pages, 70320 KiB  
Article
RIS-UNet: A Multi-Level Hierarchical Framework for Liver Tumor Segmentation in CT Images
by Yuchai Wan, Lili Zhang and Murong Wang
Entropy 2025, 27(7), 735; https://doi.org/10.3390/e27070735 - 9 Jul 2025
Viewed by 414
Abstract
The deep learning-based analysis of liver CT images is expected to provide assistance for clinicians in the diagnostic decision-making process. However, the accuracy of existing methods still falls short of clinical requirements and needs to be further improved. Therefore, in this work, we [...] Read more.
The deep learning-based analysis of liver CT images is expected to provide assistance for clinicians in the diagnostic decision-making process. However, the accuracy of existing methods still falls short of clinical requirements and needs to be further improved. Therefore, in this work, we propose a novel multi-level hierarchical framework for liver tumor segmentation. In the first level, we integrate inter-slice spatial information by a 2.5D network to resolve the accuracy–efficiency trade-off inherent in conventional 2D/3D segmentation strategies for liver tumor segmentation. Then, the second level extracts the inner-slice global and local features for enhancing feature representation. We propose the Res-Inception-SE Block, which combines residual connections, multi-scale Inception modules, and squeeze-excitation attention to capture comprehensive global and local features. Furthermore, we design a hybrid loss function combining Binary Cross Entropy (BCE) and Dice loss to solve the category imbalance problem and accelerate convergence. Extensive experiments on the LiTS17 dataset demonstrate the effectiveness of our method on accuracy, efficiency, and visual results for liver tumor segmentation. Full article
(This article belongs to the Special Issue Cutting-Edge AI in Computational Bioinformatics)
Show Figures

Figure 1

22 pages, 3494 KiB  
Article
Parcel Segmentation Method Combined YOLOV5s and Segment Anything Model Using Remote Sensing Image
by Xiaoqin Wu, Dacheng Wang, Caihong Ma, Yi Zeng, Yongze Lv, Xianmiao Huang and Jiandong Wang
Land 2025, 14(7), 1429; https://doi.org/10.3390/land14071429 - 8 Jul 2025
Viewed by 398
Abstract
Accurate land parcel segmentation in remote sensing imagery is critical for applications such as land use analysis, agricultural monitoring, and urban planning. However, existing methods often underperform in complex scenes due to small-object segmentation challenges, blurred boundaries, and background interference, often influenced by [...] Read more.
Accurate land parcel segmentation in remote sensing imagery is critical for applications such as land use analysis, agricultural monitoring, and urban planning. However, existing methods often underperform in complex scenes due to small-object segmentation challenges, blurred boundaries, and background interference, often influenced by sensor resolution and atmospheric variation. To address these limitations, we propose a dual-stage framework that combines an enhanced YOLOv5s detector with the Segment Anything Model (SAM) to improve segmentation accuracy and robustness. The improved YOLOv5s module integrates Efficient Channel Attention (ECA) and BiFPN to boost feature extraction and small-object recognition, while Soft-NMS is used to reduce missed detections. The SAM module receives bounding-box prompts from YOLOv5s and incorporates morphological refinement and mask stability scoring for improved boundary continuity and mask quality. A composite Focal-Dice loss is applied to mitigate class imbalance. In addition to the publicly available CCF BDCI dataset, we constructed a new WuJiang dataset to evaluate cross-domain performance. Experimental results demonstrate that our method achieves an IoU of 89.8% and a precision of 90.2%, outperforming baseline models and showing strong generalizability across diverse remote sensing conditions. Full article
Show Figures

Figure 1

31 pages, 2044 KiB  
Article
Optimized Two-Stage Anomaly Detection and Recovery in Smart Grid Data Using Enhanced DeBERTa-v3 Verification System
by Xiao Liao, Wei Cui, Min Zhang, Aiwu Zhang and Pan Hu
Sensors 2025, 25(13), 4208; https://doi.org/10.3390/s25134208 - 5 Jul 2025
Viewed by 359
Abstract
The increasing sophistication of cyberattacks on smart grid infrastructure demands advanced anomaly detection and recovery systems that balance high recall rates with acceptable precision while providing reliable data restoration capabilities. This study presents an optimized two-stage anomaly detection and recovery system combining an [...] Read more.
The increasing sophistication of cyberattacks on smart grid infrastructure demands advanced anomaly detection and recovery systems that balance high recall rates with acceptable precision while providing reliable data restoration capabilities. This study presents an optimized two-stage anomaly detection and recovery system combining an enhanced TimerXL detector with a DeBERTa-v3-based verification and recovery mechanism. The first stage employs an optimized increment-based detection algorithm achieving 95.0% for recall and 54.8% for precision through multidimensional analysis. The second stage leverages a modified DeBERTa-v3 architecture with comprehensive 25-dimensional feature engineering per variable to verify potential anomalies, improving the precision to 95.1% while maintaining 84.1% for recall. Key innovations include (1) a balanced loss function combining focal loss (α = 0.65, γ = 1.2), Dice loss (weight = 0.5), and contrastive learning (weight = 0.03) to reduce over-rejection by 73.4%; (2) an ensemble verification strategy using multithreshold voting, achieving 91.2% accuracy; (3) optimized sample weighting prioritizing missed positives (weight = 10.0); (4) comprehensive feature extraction, including frequency domain and entropy features; and (5) integration of a generative time series model (TimER) for high-precision recovery of tampered data points. Experimental results on 2000 hourly smart grid measurements demonstrate an F1-score of 0.873 ± 0.114 for detection, representing a 51.4% improvement over ARIMA (0.576), 621% over LSTM-AE (0.121), 791% over standard Anomaly Transformer (0.098), and 904% over TimesNet (0.087). The recovery mechanism achieves remarkably precise restoration with a mean absolute error (MAE) of only 0.0055 kWh, representing a 99.91% improvement compared to traditional ARIMA models and 98.46% compared to standard Anomaly Transformer models. We also explore an alternative implementation using the Lag-LLaMA architecture, which achieves an MAE of 0.2598 kWh. The system maintains real-time capability with a 66.6 ± 7.2 ms inference time, making it suitable for operational deployment. Sensitivity analysis reveals robust performance across anomaly magnitudes (5–100 kWh), with the detection accuracy remaining above 88%. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 6902 KiB  
Article
The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach
by Rostislav Epifanov, Yana Fedotova, Savely Dyachuk, Alexandr Gostev, Andrei Karpenko and Rustam Mullyadzhanov
J. Imaging 2025, 11(7), 209; https://doi.org/10.3390/jimaging11070209 - 26 Jun 2025
Viewed by 790
Abstract
The accurate segmentation of blood vessels and centerline extraction are critical in vascular imaging applications, ranging from preoperative planning to hemodynamic modeling. This study introduces a novel one-stage method for simultaneous vessel segmentation and centerline extraction using a multitask neural network. We designed [...] Read more.
The accurate segmentation of blood vessels and centerline extraction are critical in vascular imaging applications, ranging from preoperative planning to hemodynamic modeling. This study introduces a novel one-stage method for simultaneous vessel segmentation and centerline extraction using a multitask neural network. We designed a hybrid architecture that integrates convolutional and graph layers, along with a task-specific loss function, to effectively capture the topological relationships between segmentation and centerline extraction, leveraging their complementary features. The proposed end-to-end framework directly predicts the centerline as a polyline with real-valued coordinates, thereby eliminating the need for post-processing steps commonly required by previous methods that infer centerlines either implicitly or without ensuring point connectivity. We evaluated our approach on a combined dataset of 142 computed tomography angiography images of the thoracic and abdominal regions from LIDC-IDRI and AMOS datasets. The results demonstrate that our method achieves superior centerline extraction performance (Surface Dice with threshold of 3 mm: 97.65%±2.07%) compared to state-of-the-art techniques, and attains the highest subvoxel resolution (Surface Dice with threshold of 1 mm: 72.52%±8.96%). In addition, we conducted a robustness analysis to evaluate the model stability under small rigid and deformable transformations of the input data, and benchmarked its robustness against the widely used VMTK toolkit. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

31 pages, 4585 KiB  
Article
CAAF-ResUNet: Adaptive Attention Fusion with Boundary-Aware Loss for Lung Nodule Segmentation
by Thang Quoc Pham, Thai Hoang Le, Khai Dinh Lai, Dat Quoc Ngo, Tan Van Pham, Quang Hong Hua, Khang Quang Le, Huyen Duy Mai Le and Tuyen Ngoc Lam Nguyen
Medicina 2025, 61(7), 1126; https://doi.org/10.3390/medicina61071126 - 22 Jun 2025
Viewed by 426
Abstract
Background and Objectives: The accurate segmentation of pulmonary nodules in computed tomography (CT) remains a critical yet challenging task due to variations in nodule size, shape, and boundary ambiguity. This study proposes CAAF-ResUNet (Context-Aware Adaptive Attention Fusion ResUNet), a novel deep learning [...] Read more.
Background and Objectives: The accurate segmentation of pulmonary nodules in computed tomography (CT) remains a critical yet challenging task due to variations in nodule size, shape, and boundary ambiguity. This study proposes CAAF-ResUNet (Context-Aware Adaptive Attention Fusion ResUNet), a novel deep learning model designed to address these challenges through adaptive feature fusion and edge-sensitive learning. Materials and Methods: Central to our approach is the Adaptive Attention Controller (AAC), which dynamically adjusts the contribution of channel and position attention based on contextual features in each input. To further enhance boundary localization, we incorporate three complementary boundary-aware loss functions: Sobel, Laplacian, and Hausdorff. Results: An extensive evaluation of two benchmark datasets demonstrates the superiority of the proposed model, achieving Dice scores of 90.88% on LUNA16 and 85.92% on LIDC-IDRI, both exceeding prior state-of-the-art methods. A clinical validation of a dataset comprising 804 CT slices from 35 patients at the University Medical Center of Ho Chi Minh City confirmed the model’s practical reliability, yielding a Dice score of 95.34% and a notably low Miss Rate of 4.60% under the Hausdorff loss configuration. Conclusions: These results establish CAAF-ResUNet as a robust and clinically viable solution for pulmonary nodule segmentation, offering enhanced boundary precision and minimized false negatives, two critical properties in early-stage lung cancer diagnosis and radiological decision support. Full article
Show Figures

Figure 1

17 pages, 1863 KiB  
Article
MedSAM/MedSAM2 Feature Fusion: Enhancing nnUNet for 2D TOF-MRA Brain Vessel Segmentation
by Han Zhong, Jiatian Zhang and Lingxiao Zhao
J. Imaging 2025, 11(6), 202; https://doi.org/10.3390/jimaging11060202 - 18 Jun 2025
Viewed by 657
Abstract
Accurate segmentation of brain vessels is critical for diagnosing cerebral stroke, yet existing AI-based methods struggle with challenges such as small vessel segmentation and class imbalance. To address this, our study proposes a novel 2D segmentation method based on the nnUNet framework, enhanced [...] Read more.
Accurate segmentation of brain vessels is critical for diagnosing cerebral stroke, yet existing AI-based methods struggle with challenges such as small vessel segmentation and class imbalance. To address this, our study proposes a novel 2D segmentation method based on the nnUNet framework, enhanced with MedSAM/MedSAM2 features, for arterial vessel segmentation in time-of-flight magnetic resonance angiography (TOF-MRA) brain slices. The approach first constructs a baseline segmentation network using nnUNet, then incorporates MedSAM/MedSAM2’s feature extraction module to enhance feature representation. Additionally, focal loss is introduced to address class imbalance. Experimental results on the CAS2023 dataset demonstrate that the MedSAM2-enhanced model achieves a 0.72% relative improvement in Dice coefficient and reduces HD95 (mm) and ASD (mm) from 48.20 mm to 46.30 mm and from 5.33 mm to 4.97 mm, respectively, compared to the baseline nnUNet, showing significant enhancements in boundary localization and segmentation accuracy. This approach addresses the critical challenge of small vessel segmentation in TOF-MRA, with the potential to improve cerebrovascular disease diagnosis in clinical practice. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

21 pages, 3621 KiB  
Article
CSNet: A Remote Sensing Image Semantic Segmentation Network Based on Coordinate Attention and Skip Connections
by Jiahao Li, Hongguo Zhang, Liang Chen, Binbin He and Huaixin Chen
Remote Sens. 2025, 17(12), 2048; https://doi.org/10.3390/rs17122048 - 13 Jun 2025
Cited by 1 | Viewed by 502
Abstract
In recent years, the continuous development of deep learning has significantly advanced its application in the field of remote sensing. However, the semantic segmentation of high-resolution remote sensing images remains challenging due to the presence of multi-scale objects and intricate spatial details, often [...] Read more.
In recent years, the continuous development of deep learning has significantly advanced its application in the field of remote sensing. However, the semantic segmentation of high-resolution remote sensing images remains challenging due to the presence of multi-scale objects and intricate spatial details, often leading to the loss of critical information during segmentation. To address this issue and enable fast and accurate segmentation of remote sensing images, we made improvements based on SegNet and named the enhanced model CSNet. CSNet is built upon the SegNet architecture and incorporates a coordinate attention (CA) mechanism, which enables the network to focus on salient features and capture global spatial information, thereby improving segmentation accuracy and facilitating the recovery of spatial structures. Furthermore, skip connections are introduced between the encoder and decoder to directly transfer low-level features to the decoder. This promotes the fusion of semantic information at different levels, enhances the recovery of fine-grained details, and optimizes the gradient flow during training, effectively mitigating the vanishing gradient problem and improving training efficiency. Additionally, a hybrid loss function combining weighted cross-entropy and Dice loss is employed. To address the issue of class imbalance, several categories within the dataset are merged, and samples with an excessively high proportion of background pixels are removed. These strategies significantly enhance the segmentation performance, particularly for small-sample classes. Experimental results from the Five-Billion-Pixels dataset demonstrate that, while introducing only a modest increase in parameters compared to SegNet, CSNet achieves superior segmentation performance in terms of overall classification accuracy, boundary delineation, and detail preservation, outperforming established methods such as U-Net, FCN, DeepLabv3+, SegNet, ViT, HRNe and BiFormert. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop