Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = dicalcium phosphate cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4312 KiB  
Article
Preparation of Injectable Dicalcium Phosphate Bone Cement for Potential Orthopedic Applications
by Kholoud Jabar Wali, Ali Taha Saleh and Ghasan Fahim Huseien
Eng 2024, 5(2), 1028-1042; https://doi.org/10.3390/eng5020056 - 1 Jun 2024
Cited by 2 | Viewed by 1419
Abstract
Various natural wastes can be promising for mining more valuable compounds if some specialized extraction techniques are adopted. Hydroxyapatite (HA) is a significant biomaterial that can be extracted from waste bovine bones by heating them at 700 °C and 900 °C. Based on [...] Read more.
Various natural wastes can be promising for mining more valuable compounds if some specialized extraction techniques are adopted. Hydroxyapatite (HA) is a significant biomaterial that can be extracted from waste bovine bones by heating them at 700 °C and 900 °C. Based on this idea, we made a novel dicalcium phosphate (DCP) bone cement (BC) by extracting HA via the reaction with monocalcium phosphate monohydrate (MCPM) and trisodium citrate. The setting time, injectability, and compressive strength (CS) of this DCPBC were examined using various analytical techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transformed infrared spectroscopy (FTIR). The phase composition, surface morphology, and chemical compositions of HA and DCP were evaluated. A Gillmore needle apparatus was used to measure the initial and final setting times of the specimens. The CS values of the prepared specimens were determined using INSTRON Series IX. The in vitro dissolution behavior of all samples was evaluated by immersing them in simulated body fluid (SBF) over 7 days at 37 °C. The final setting times of samples 3, 4, and 5 were 20, 24, and 18 min, respectively. In addition, the CS value of sample 1 before immersion in SBF was much lower (1.23 MPa) compared to sample 5 (21.79 MPa) after 7 days of immersion. The CS of the DCP after 3 days of immersion was increased to 33.75 MPa. The in vitro results for the dissolution and bioactivity of HA showed the highest degradation rate after 1 day of immersion and then decreased with the increase in the immersion duration. The HA layer thickness was considerably improved with longer incubation times. The proposed injectable DCP bone cement may have potential in future orthopedic applications. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

18 pages, 15912 KiB  
Article
Carbonate-Hydroxyapatite Cement: The Effect of Composition on Solubility In Vitro and Resorption In Vivo
by Yulia Lukina, Leonid Bionyshev-Abramov, Sergey Kotov, Natalya Serejnikova, Dmitriiy Smolentsev and Sergey Sivkov
Ceramics 2023, 6(3), 1397-1414; https://doi.org/10.3390/ceramics6030086 - 3 Jul 2023
Cited by 4 | Viewed by 2468
Abstract
The rate of resorption of calcium phosphate self-hardening materials for bone regeneration can be changed by changing the phase composition. The Ca3(PO4)2/CaCO3/Ca(H2PO4)2·H2O/Na2HPO4·12H2 [...] Read more.
The rate of resorption of calcium phosphate self-hardening materials for bone regeneration can be changed by changing the phase composition. The Ca3(PO4)2/CaCO3/Ca(H2PO4)2·H2O/Na2HPO4·12H2O system is important for the synthesis of self-curing bioactive materials with variable resorption rates by changing the ratios of the initial components. Cement compositions in twelve figurative points of a four-component composition diagram at a fixed content in the α-Ca3(PO4)2 system were studied with XRD, FTIR, SEM, calorimetric, and volumetric methods to obtain an idea of the effect of composition on solubility in vitro and resorption in vivo. It was found that the presence of the highly resorbable phase of dicalcium phosphate dihydrate in cement and the substitution of phosphate ions with the carbonate ions of hydroxyapatite increased solubility in vitro and resorption in vivo. The obtained results confirm the possibility of changing the solubility of a final product in the Ca3(PO4)2/CaCO3/Ca(H2PO4)2·H2O/Na2HPO4·12H2O system by changing the ratio of the initial components. Full article
Show Figures

Figure 1

15 pages, 4995 KiB  
Article
Efficacy of Silver Nanoparticles-Loaded Bone Cement against an MRSA Induced-Osteomyelitis in a Rat Model
by Young Suk Choi, Young Hwan Kim, Hye Min An, Sung Kyoung Bae and Young Koo Lee
Medicina 2023, 59(4), 811; https://doi.org/10.3390/medicina59040811 - 21 Apr 2023
Cited by 7 | Viewed by 3256
Abstract
Background and Objectives: The purpose of this study was to assess the cytotoxicity and antibacterial effects of AgNP-impregnated Tetracalcium phosphate-dicalcium phosphate dihydrate (TTCP-DCPD). Materials and Methods: Using in vitro experiments, the cytotoxicity of AgNP-impregnated TTCP-DCPD against fibroblasts and osteocytes was assessed in terms [...] Read more.
Background and Objectives: The purpose of this study was to assess the cytotoxicity and antibacterial effects of AgNP-impregnated Tetracalcium phosphate-dicalcium phosphate dihydrate (TTCP-DCPD). Materials and Methods: Using in vitro experiments, the cytotoxicity of AgNP-impregnated TTCP-DCPD against fibroblasts and osteocytes was assessed in terms of cell viability by water-soluble tetrazolium salt assay. To assess antibacterial effects, a disc diffusion test was used; osteomyelitis was induced first in vivo, by injection of methicillin-resistant Staphylococcus aureus into the tibia of rats. AgNP-impregnated TTCP-DCPD bone cement was then applied at various silver concentrations for 3 or 12 weeks. Antibacterial effects were assessed by culturing and reverse transcription-polymerase chain reaction (RT-PCR). For histological observation, the bone tissues were stained using hematoxylin and eosin. Results: Cell viability was decreased by the impregnated bone cement but did not differ according to AgNP concentration. The diameter of the growth-inhibited zone of MRSA was between 4.1 and 13.3 mm on the disks treated with AgNP, indicating antimicrobial effects. In vivo, the numbers of bacterial colonies were reduced in the 12-week treatment groups compared to the 3-week treatment groups. The groups treated with a higher (10×) dose of AgNP (G2–G5) showed a tendency of lower bacterial colony counts compared to the group without AgNP (G1). The PCR analysis results showed a tendency of decreased bacterial gene expression in the AgNP-impregnated TTCP-DCPD groups (G2–G5) compared to the group without AgNP (G1) at 3 and 12 weeks. In the H&E staining, the degree of inflammation and necrosis of the AgNP-impregnated TTCP-DCPD groups (G2–G5) showed a tendency to be lower at 3 and 12 weeks compared to the control group. Our results suggest that AgNP-impregnated TTCP-DCPD cement has antimicrobial effects. Conclusions: This study indicates that AgNP-impregnated TTCP-DCPD bone cement could be considered to treat osteomyelitis. Full article
Show Figures

Figure 1

11 pages, 2865 KiB  
Article
Bioactive Carbonate Apatite Cement with Enhanced Compressive Strength via Incorporation of Silica Calcium Phosphate Composites and Calcium Hydroxide
by Arief Cahyanto, Michella Liemidia, Elin Karlina, Myrna Nurlatifah Zakaria, Khairul Anuar Shariff, Cortino Sukotjo and Ahmed El-Ghannam
Materials 2023, 16(5), 2071; https://doi.org/10.3390/ma16052071 - 3 Mar 2023
Cited by 8 | Viewed by 2469
Abstract
Carbonate apatite (CO3Ap) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)2) were added to CO3Ap cement. The [...] Read more.
Carbonate apatite (CO3Ap) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)2) were added to CO3Ap cement. The aim of this study was to investigate the effect of Si-CaP and Ca(OH)2 on the mechanical properties in terms of the compressive strength and biological characteristics of CO3Ap cement, specifically the formation of an apatite layer and the exchange of Ca, P, and Si elements. Five groups were prepared by mixing CO3Ap powder consisting of dicalcium phosphate anhydrous and vaterite powder added by varying ratios of Si-CaP and Ca(OH)2 and 0.2 mol/L Na2HPO4 as a liquid. All groups underwent compressive strength testing, and the group with the highest strength was evaluated for bioactivity by soaking it in simulated body fluid (SBF) for one, seven, 14, and 21 days. The group that added 3% Si-CaP and 7% Ca(OH)2 had the highest compressive strength among the groups. SEM analysis revealed the formation of needle-like apatite crystals from the first day of SBF soaking, and EDS analysis indicated an increase in Ca, P, and Si elements. XRD and FTIR analyses confirmed the presence of apatite. This combination of additives improved the compressive strength and showed the good bioactivity performance of CO3Ap cement, making it a potential biomaterial for bone and dental engineering applications. Full article
(This article belongs to the Special Issue Innovative Restoration Dentistry Materials)
Show Figures

Figure 1

19 pages, 51046 KiB  
Article
TEGDMA-Functionalized Dicalcium Phosphate Dihydrate Resin-Based Composites Prevent Secondary Caries in an In Vitro Biofilm Model
by Andrei Cristian Ionescu, Sebastian Hahnel, Marina D. S. Chiari, Andreas König, Paolo Delvecchio, Roberto Ruggiero Braga, Vanessa Zambelli and Eugenio Brambilla
J. Funct. Biomater. 2022, 13(4), 232; https://doi.org/10.3390/jfb13040232 - 9 Nov 2022
Cited by 8 | Viewed by 2138
Abstract
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were [...] Read more.
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a bisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass and 20 wt.% T-DCPD (RBC-20); or 20 wt.% Ba glass and 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced Streptococcus mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterized the specimen surfaces, and antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey’s tests were applied at p < 0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p < 0.0001). Initial enamel demineralization could be observed only around the RBC-0 and RBC-20 restorations. Direct antibiofilm activity can explain SC reduction by RMGIC, whereas a buffering effect on the acidogenicity of biofilm can explain the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

18 pages, 3579 KiB  
Article
The Influence of the Matrix on the Apatite-Forming Ability of Calcium Containing Polydimethylsiloxane-Based Cements for Endodontics
by Paola Taddei, Michele Di Foggia, Fausto Zamparini, Carlo Prati and Maria Giovanna Gandolfi
Molecules 2022, 27(18), 5750; https://doi.org/10.3390/molecules27185750 - 6 Sep 2022
Cited by 4 | Viewed by 1803
Abstract
This study aimed to characterize the chemical properties and bioactivity of an endodontic sealer (GuttaFlow Bioseal) based on polydimethylsiloxane (PDMS) and containing a calcium bioglass as a doping agent. Commercial PDMS-based cement free from calcium bioglass (GuttaFlow 2 and RoekoSeal) were characterized for [...] Read more.
This study aimed to characterize the chemical properties and bioactivity of an endodontic sealer (GuttaFlow Bioseal) based on polydimethylsiloxane (PDMS) and containing a calcium bioglass as a doping agent. Commercial PDMS-based cement free from calcium bioglass (GuttaFlow 2 and RoekoSeal) were characterized for comparison as well as GuttaFlow 2 doped with dicalcium phosphate dihydrate, hydroxyapatite, or a tricalcium silicate-based cement. IR and Raman analyses were performed on fresh materials as well as after aging tests in Hank’s Balanced Salt Solution (28 d, 37 °C). Under these conditions, the strengthening of the 970 cm−1 Raman band and the appearance of the IR components at 1455–1414, 1015, 868, and 600–559 cm−1 revealed the deposition of B-type carbonated apatite. The Raman I970/I638 and IR A1010/A1258 ratios (markers of apatite-forming ability) showed that bioactivity decreased along with the series: GuttaFlow Bioseal > GuttaFlow 2 > RoekoSeal. The PDMS matrix played a relevant role in bioactivity; in GuttaFlow 2, the crosslinking degree was favorable for Ca2+ adsorption/complexation and the formation of a thin calcium phosphate layer. In the less crosslinked RoekoSeal, such processes did not occur. The doped cements showed bioactivity higher than GuttaFlow 2, suggesting that the particles of the mineralizing agents are spontaneously exposed on the cement surface, although the hydrophobicity of the PDMS matrix slowed down apatite deposition. Relevant properties in the endodontic practice (i.e., setting time, radiopacity, apatite-forming ability) were related to material composition and the crosslinking degree. Full article
Show Figures

Graphical abstract

13 pages, 3285 KiB  
Article
Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite
by Yoontae Kim, Eun-Jin Lee, Anthony P. Kotula, Shozo Takagi, Laurence Chow and Stella Alimperti
J. Funct. Biomater. 2022, 13(2), 34; https://doi.org/10.3390/jfb13020034 - 23 Mar 2022
Cited by 13 | Viewed by 6115
Abstract
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional [...] Read more.
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds’ mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations. Full article
(This article belongs to the Special Issue Smart Biomaterials for Soft and Hard Tissue Repair and Regeneration)
Show Figures

Figure 1

14 pages, 2596 KiB  
Article
Effect of the Addition of Alginate and/or Tetracycline on Brushite Cement Properties
by Claudia Morilla, Elianis Perdomo, Ana Karla Hernández, Ramcy Regalado, Amisel Almirall, Gastón Fuentes, Yaima Campos Mora, Timo Schomann, Alan Chan and Luis J. Cruz
Molecules 2021, 26(11), 3272; https://doi.org/10.3390/molecules26113272 - 28 May 2021
Cited by 6 | Viewed by 4027
Abstract
Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of [...] Read more.
Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%). The cements exhibit compression resistance values between 1.6 and 2.6 MPa. The drug was released in a range between 12.6 and 13.2% after 7 days. The antimicrobial activity of all the cements containing antibiotics was proven. All samples reached values of cell viability above 70 percent. We also observed that the addition of the sodium alginate and tetracycline improved the cell viability. Full article
(This article belongs to the Special Issue Drug Delivery Systems Based on Polysaccharides)
Show Figures

Figure 1

18 pages, 1254 KiB  
Article
The Monetite Structure Probed by Advanced Solid-State NMR Experimentation at Fast Magic-Angle Spinning
by Yang Yu, Baltzar Stevensson, Michael Pujari-Palmer, Hua Guo, Håkan Engqvist and Mattias Edén
Int. J. Mol. Sci. 2019, 20(24), 6356; https://doi.org/10.3390/ijms20246356 - 17 Dec 2019
Cited by 19 | Viewed by 4510
Abstract
We present a solid-state nuclear magnetic resonance (NMR) spectroscopy study of the local 31 P and 1 H environments in monetite [CaHPO 4 ; dicalcium phosphate anhydrous (DCPA)], as well as their relative spatial proximities. Each of the three 1 H NMR peaks [...] Read more.
We present a solid-state nuclear magnetic resonance (NMR) spectroscopy study of the local 31 P and 1 H environments in monetite [CaHPO 4 ; dicalcium phosphate anhydrous (DCPA)], as well as their relative spatial proximities. Each of the three 1 H NMR peaks was unambiguously assigned to its respective crystallographically unique H site of monetite, while their pairwise spatial proximities were probed by homonuclear 1 H– 1 H double quantum–single quantum NMR experimentation under fast magic-angle spinning (MAS) of 66 kHz. We also examined the relative 1 H– 31 P proximities among the inequivalent {P1, P2} and {H1, H2, H3} sites in monetite; the corresponding shortest internuclear 1 H– 31 P distances accorded well with those of a previous neutron diffraction study. The NMR results from the monetite phase were also contrasted with those observed from the monetite component present in a pyrophosphate-bearing calcium phosphate cement, demonstrating that while the latter represents a disordered form of monetite, it shares all essential local features of the monetite structure. Full article
(This article belongs to the Special Issue NMR Characterization of Amorphous and Disordered Materials)
Show Figures

Figure 1

10 pages, 1275 KiB  
Article
Effectiveness of Calcium Phosphate Desensitising Agents in Dental Hypersensitivity Over 24 Weeks of Clinical Evaluation
by Paolo Usai, Vincenzo Campanella, Giovanni Sotgiu, Giovanni Spano, Roberto Pinna, Stefano Eramo, Laura Saderi, Franklin Garcia-Godoy, Giacomo Derchi, Giorgio Mastandrea and Egle Milia
Nanomaterials 2019, 9(12), 1748; https://doi.org/10.3390/nano9121748 - 9 Dec 2019
Cited by 29 | Viewed by 3686
Abstract
Background: Calcium phosphate-based compounds are used to treat dental hypersensitivity (DH). Their long-term clinical behaviour needs further research. This study compared the 24-week effectiveness of Teethmate Desensitizer (TD), a pure tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) powder/water, to that of Dentin [...] Read more.
Background: Calcium phosphate-based compounds are used to treat dental hypersensitivity (DH). Their long-term clinical behaviour needs further research. This study compared the 24-week effectiveness of Teethmate Desensitizer (TD), a pure tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) powder/water, to that of Dentin Desensitizer (DD), and Bite & White ExSense (BWE), both of calcium phosphate crystallites. Methods: A total of 105 subjects were selected. A random table was utilised to form three groups of 35 subjects. DH was evaluated using the evaporative sensitivity, tactile sensitivity tests, and the visual analogue scale (VAS) of pain. Response was recorded before the application of the materials (Pre-1), immediately after (Post-0), at 1 week (Post-1), 4 weeks (Post-2), 12 weeks (Post-3) and 24 weeks (Post-4). The non-parametric distribution was assessed with the Shapiro–Wilk statistical test. Intra-group differences for the six time points were evaluated with the Friedman statistical test and the Kruskal–Wallis test. Results: All the materials decreased DH after 24 weeks in comparison to Pre-1. However, the TTCP/DCPD cement showed the greatest statistical efficiency. Conclusions: The significant decrease of VAS scores produced by TD in the long term suggest the material as the most reliable in the clinical relief of DH. Full article
(This article belongs to the Special Issue Bioactive Materials for Tooth Engineering)
Show Figures

Graphical abstract

20 pages, 4520 KiB  
Article
Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro
by Joseph Lazraq Bystrom and Michael Pujari-Palmer
J. Funct. Biomater. 2019, 10(4), 54; https://doi.org/10.3390/jfb10040054 - 27 Nov 2019
Cited by 8 | Viewed by 8267
Abstract
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength [...] Read more.
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38–49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates)
Show Figures

Graphical abstract

12 pages, 4643 KiB  
Article
Role of Aspartic and Polyaspartic Acid on the Synthesis and Hydrolysis of Brushite
by Katia Rubini, Elisa Boanini and Adriana Bigi
J. Funct. Biomater. 2019, 10(1), 11; https://doi.org/10.3390/jfb10010011 - 1 Feb 2019
Cited by 22 | Viewed by 8104
Abstract
Dicalcium phosphate dihydrate (DCPD) is one of the mineral phases indicated as possible precursors of biological apatites and it is widely employed in the preparation of calcium phosphate bone cements. Herein, we investigated the possibility to functionalize DCPD with aspartic acid (ASP) and [...] Read more.
Dicalcium phosphate dihydrate (DCPD) is one of the mineral phases indicated as possible precursors of biological apatites and it is widely employed in the preparation of calcium phosphate bone cements. Herein, we investigated the possibility to functionalize DCPD with aspartic acid (ASP) and poly-aspartic acid (PASP), as models of the acidic macromolecules of biomineralized tissues, and studied their influence on DCPD hydrolysis. To this aim, the synthesis of DCPD was performed in aqueous solution in the presence of increasing concentrations of PASP and ASP, whereas the hydrolysis reaction was carried out in physiological solution up to three days. The results indicate that it is possible to prepare DCPD functionalized with PASP up to a polyelectrolyte content of about 2.3 wt%. The increase of PASP content induces crystal aggregation, reduction of the yield of the reaction and of the thermal stability of the synthesized DCPD. Moreover, DCPD samples functionalized with PASP display a slower hydrolysis than pure DCPD. On the other hand, in the explored range of concentrations (up to 10 mM) ASP is not incorporated into DCPD and does not influence its crystallization nor its hydrolysis. At variance, when present in the hydrolysis solution, ASP, and even more PASP, delays the conversion into the more stable phases, octacalcium phosphate and/or hydroxyapatite. The greater influence of PASP on the synthesis and hydrolysis of DCPD can be ascribed to the cooperative action of the carboxylate groups and to its good fit with DCPD structure. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates)
Show Figures

Graphical abstract

18 pages, 5644 KiB  
Article
Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications
by Naresh Koju, Prabaha Sikder, Bipin Gaihre and Sarit B. Bhaduri
Materials 2018, 11(7), 1258; https://doi.org/10.3390/ma11071258 - 22 Jul 2018
Cited by 27 | Viewed by 7059
Abstract
The present study is the first of its kind dealing with the development of a specific bioceramic which qualifies as a potential material in hard-tissue replacements. Specifically, we report the synthesis and evaluation of smart injectable calcium phosphate bone cement (CPC) which we [...] Read more.
The present study is the first of its kind dealing with the development of a specific bioceramic which qualifies as a potential material in hard-tissue replacements. Specifically, we report the synthesis and evaluation of smart injectable calcium phosphate bone cement (CPC) which we believe will be suitable for various kinds of orthopedic and spinal-fusion applications. The smart nature of this next generation orthopedic implant is attained by incorporating piezoelectric barium titanate (BT) particles into monetite-based (dicalcium phosphate anhydrous, DCPA) CPC composition. The main goal is to take advantage of the piezoelectric properties of BT, as electromechanical effect plays a vital role in fracture healing at the defect site and bone integration with the implant. Furthermore, radiopacity of BT would help in easy detection of the CPC presence at the fracture site during surgery. Results reveal that BT addition favors important properties of bone cement such as good compressive strength, injectability, bioactivity, biocompatibility, and even washout resistance. Most importantly, the self-setting nature of the bone cements are not compromised with BT incorporation. The in vitro results confirm that the developed bone-cement abides by the standard orthopedic requirements making it apt for real-time prosthetic materials. Full article
(This article belongs to the Special Issue Bioceramics: Bioinert, Bioactive, and Coatings)
Show Figures

Figure 1

12 pages, 5970 KiB  
Article
Incorporation of Collagen in Calcium Phosphate Cements for Controlling Osseointegration
by Ming-Hsien Hu, Pei-Yuan Lee, Wen-Cheng Chen and Jin-Jia Hu
Materials 2017, 10(8), 910; https://doi.org/10.3390/ma10080910 - 6 Aug 2017
Cited by 16 | Viewed by 5648
Abstract
In this study, we investigated the effect of supplementing a non-dispersive dicalcium phosphate-rich calcium phosphate bone cement (DCP-rich CPC) with type I collagen on in vitro cellular activities and its performance as a bone graft material. Varying amounts of type I collagen were [...] Read more.
In this study, we investigated the effect of supplementing a non-dispersive dicalcium phosphate-rich calcium phosphate bone cement (DCP-rich CPC) with type I collagen on in vitro cellular activities and its performance as a bone graft material. Varying amounts of type I collagen were added during the preparation of the DCP-rich CPC. In vitro cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity were evaluated using progenitor bone cells. Bone graft performance was evaluated via a rat posterolateral lumbar fusion model and osteointegration of the implant. New bone formations in the restorative sites were assessed by micro-computed tomography (micro-CT) and histological analysis. We found that the incorporation of collagen into the DCP-rich CPC was associated with increased cell adhesion, cell viability, and ALP activity in vitro. The spinal fusion model revealed a significant increase in bone regeneration. Additionally, better osseointegration was observed between the host bone and graft with the DCP-rich CPC supplemented with collagen than with the collagen-free DCP-rich CPC control graft. Furthermore, compared to the control graft, the results of micro-CT showed that a smaller amount of residual material was observed with the collagen-containing DCP-rich CPC graft compared with the control graft, which suggests the collagen supplement enhanced new bone formation. Of the different mixtures evaluated in this study (0.8 g DCP-rich CPC supplemented with 0.1, 0.2, and 0.4 mL type I collagen, respectively), DCP-rich CPC supplemented with 0.4 mL collagen led to the highest level of osteogenesis. Our results suggest that the DCP-rich CPC supplemented with collagen has potential to be used as an effective bone graft material in spinal surgery. Full article
(This article belongs to the Special Issue Biocompatibility of Materials)
Show Figures

Figure 1

11 pages, 5288 KiB  
Article
Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties
by J. V. Rau, M. Fosca, V. Graziani, A. A. Egorov, Yu. V. Zobkov, A. Yu. Fedotov, M. Ortenzi, R. Caminiti, A. E. Baranchikov and V. S. Komlev
J. Funct. Biomater. 2016, 7(2), 10; https://doi.org/10.3390/jfb7020010 - 18 Apr 2016
Cited by 41 | Viewed by 9031
Abstract
Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time [...] Read more.
Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. Full article
(This article belongs to the Collection Biocements for Medical/Dental Purposes)
Show Figures

Figure 1

Back to TopTop