Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Premixed Powder (PMP) Preparation
2.2.2. BT Cement Samples Preparation
2.3. Setting Time
2.4. Mechanical Properties
2.5. Physical Characterizations
2.5.1. X-ray Diffraction Analysis
2.5.2. Fourier Transform Infrared Spectroscopy Analysis
2.5.3. Morphological Observation
2.6. Simulated Body Fluid (SBF) Immersion
2.7. Injectability
2.8. Washout Resistance Test
2.9. Biodegradation
2.10. In Vitro Cytocompatibility
2.10.1. WST-1 Assay
2.10.2. Live and Dead Assay
2.11. Statistical Analysis
3. Results
3.1. Setting Time
3.2. Mechanical Properties
3.3. Physical Characterizations
3.3.1. XRD Analysis
3.3.2. FTIR Analysis
3.3.3. Morphological Observation of Cements
3.4. Simulated Body Fluid (SBF) Immersion
3.5. Injectability
3.6. Washout Resistance Test
3.7. Biodegradation
3.8. Cytocompatibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fukada, E.; Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Shamos, M.H.; Lavine, L.S. Piezoelectricity as a fundamental property of biological tissues. Nature 1967, 213, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Bassett, C.A.L. Biologic significance of piezoelectricity. Calcif. Tissue Int. 1967, 1, 252–272. [Google Scholar] [CrossRef]
- Anderson, J.C.; Eriksson, C. Piezoelectric properties of dry and wet bone. Nature 1970, 227, 491–492. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.A.; Becker, R.O. Piezoelectric effect and growth control in bone. Nature 1970, 228, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.A.; Becker, R.O.; Soderholm, S.C. Origin of the piezoelectric effect in bone. Calcif. Tissue Int. 1971, 8, 177–180. [Google Scholar] [CrossRef]
- Williams, W.S.; Breger, L. Piezoelectricity in tendon and bone. J. Biomech. 1975, 8, 407–413. [Google Scholar] [CrossRef]
- Reddy, G.N.; Saha, S. Electrical and dielectric properties of wet bone as a function of frequency. IEEE Trans. Biomed. Eng. 1984, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kenner, G.H. Effect of Electrical Stimulation on the Tensile Strength of the Porous Implant and Bone Interface. Biomater. Med. Devices Artif. Organs 1975, 3, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kenner, G.H. Effect of electrical stimulation on the interfacial tensile strength and amount of bone formation. Biomater. Med. Devices Artif. Organs 1976, 4, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.O.; Kenner, J.B.; Moore, G.H.; Myers, R.R.; Sauer, B.R. Dental Implant Fixation by Electrically Mediated Process I. Interfacial Strength. Biomater. Med. Devices Artif. Organs 1978, 6, 111–126. [Google Scholar] [CrossRef]
- Park, J.B.; Young, S.O.; Kenner, G.H.; Von Recum, A.F.; Myers, B.R.; Moore, R.R. Dental Implant Fixation by Electrically Mediated Process II. Tissue Ingrowth. Biomater. Med. Devices Artif. Organs 1978, 6, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Von Recum, A.F.; Kenner, G.H.; Kelly, B.J.; Coffeen, W.W.; Grether, M.F. Piezoelectric ceramic implants: A feasibility study. J. Biomed. Mater. Res. A 1980, 14, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kelly, B.J.; Kenner, G.H.; Von Recum, A.F.; Grether, M.F.; Coffeen, W.W. Piezoelectric ceramic implants: In vivo results. J. Biomed. Mater. Res. A 1981, 15, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yuan, H.; Zhang, X. Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials 1997, 18, 1531–1534. [Google Scholar] [CrossRef]
- Dubey, A.K.; Balani, K.; Basu, B. Multifunctional Properties of Multistage Spark Plasma Sintered HA–BaTiO3-Based Piezobiocomposites for Bone Replacement Applications. J. Am. Ceram. Soc. 2013, 96, 3753–3759. [Google Scholar] [CrossRef]
- Prakasam, M.; Albino, M.; Lebraud, E.; Maglione, M.; Elissalde, C.; Largeteau, A. Hydroxyapatite-barium titanate piezocomposites with enhanced electrical properties. J. Am. Ceram. Soc. 2017, 100, 2621–2631. [Google Scholar] [CrossRef]
- Dubey, A.K.; Basu, B. Pulsed Electrical Stimulation and Surface Charge Induced Cell Growth on Multistage Spark Plasma Sintered Hydroxyapatite-Barium Titanate Piezobiocomposite. J. Am. Ceram. Soc. 2014, 97, 481–489. [Google Scholar] [CrossRef]
- Dubey, A.K.; Thrivikraman, G.; Basu, B. Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment. J. Mater. Sci. Mater. Med. 2015, 26, 103. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Kakimoto, K.I. Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite–barium titanate composite. Mater. Sci. Eng. C 2016, 63, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Carrodeguas, R.G.; V’zquez, B.; del Barrio, J.S.R.; de la Cal, A.M. Barium titanate-filled bone cements. I. Chemical, physical, and mechanical characterization. Int. J. Polym. Mater. 2002, 51, 591–605. [Google Scholar] [CrossRef]
- Carrodeguas, R.G.; Lasa, B.V.; Del Barrio, J.S.R. Injectable acrylic bone cements for vertebroplasty with improved properties. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 68, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S. Calcium orthophosphate cements for biomedical application. J. Mater. Sci. 2008, 43, 3028–3057. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 2013, 4, 209–311. [Google Scholar] [CrossRef] [PubMed]
- Constantz, B.R.; Barr, B.M.; Ison, I.C.; Fulmer, M.T.; Baker, J.; McKinney, L.; Goodman, S.B.; Gunasekaren, S.; Delaney, D.C.; Ross, J.; et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J. Biomed. Mater. Res. A 1998, 43, 451–461. [Google Scholar] [CrossRef]
- Klammert, U.; Reuther, T.; Jahn, C.; Kraski, B.; Kübler, A.C.; Gbureck, U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 2009, 5, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, F.; Torres, J.; Bassett, D.; Barralet, J.; Cabarcos, E.L. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010, 31, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Cama, G.; Gharibi, B.; Sait, M.S.; Knowles, J.C.; Lagazzo, A.; Romeed, S.; Di Silvio, L.; Deb, S. A novel method of forming micro- and microporous monetite cements. J. Mater. Chem. B 2013, 1, 958–969. [Google Scholar] [CrossRef]
- Boroujeni, N.M.; Zhou, H.; Luchini, T.J.; Bhaduri, S.B. Development of monetite/phosphorylated chitosan composite bone cement. J. Biomed. Mater. Res. Part B 2014, 102, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Nominal Dimensions, Permissible Variations for Wirecloth of Standard Test Sieves; ASTM E11; ASTM International: West Conshohocken, PA, USA, 1995.
- Time of Setting of Cements, Lime, Gypsum by Gillmore Needle; ASTM C266-89; ASTM International: West Conshohocken, PA, USA, 1993.
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. Effect of carbonate content and buffer type on calcium phosphonate formation in SBF solutions. J. Mater. Sci. Mater. Med. 2006, 17, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Åberg, J.; Pankotai, E.; Hulsart Billström, G.; Weszl, M.; Larsson, S.; Forster-Horvath, C.; Lacza, Z.; Engqvist, H. In vivo evaluation of an injectable premixed radiopaque calcium phosphate cement. Int. J. Biomater. 2011, 2011, 232574. [Google Scholar] [CrossRef] [PubMed]
- Takagi, S.; Chow, L.C.; Hirayama, S.; Eichmiller, F.C. Properties of elastomeric calcium phosphate cement–chitosan composites. Dent. Mater. J. 2003, 19, 797–804. [Google Scholar] [CrossRef]
- Wu, F.; Su, J.; Wei, J.; Guo, H.; Liu, C. Injectable bioactive calcium–magnesium phosphate cement for bone regeneration. Biomed. Mater. 2008, 3, 044105. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wei, J.; Guo, H.; Chen, F.; Hong, H.; Liu, C. Selfsetting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater. 2008, 4, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Babaie, E.; Lin, B.; Goel, V.K.; Bhaduri, S.B. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements. Biomed. Mater. 2016, 11, 055010. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Luchini, T.J.; Boroujeni, N.M.; Agarwal, A.K.; Goel, V.K.; Bhaduri, S.B. Development of nanosilica bonded monetite cement from egg shells. Mater. Sci. Eng. C 2015, 50, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Ding, Y.; Leng, Y. Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. J. Biomed. Mater. Res. Part A 2014, 102, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Touny, A.H.; Dawkins, H.; Zhou, H.; Bhaduri, S.B. Hydrolysis of monetite/chitosan composites in α-MEM and SBF solutions. J. Mater. Sci. Mater. Med. 2011, 22, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Borhan, S.; Hesaraki, S.; Ahmadzadeh-Asl, S. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement. J. Mater. Sci. Mater. Med. 2010, 21, 3171–3181. [Google Scholar] [CrossRef] [PubMed]
- Boroujeni, N.M.; Zhou, H.; Luchini, T.J.; Bhaduri, S.B. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Mater. Sci. Eng. C 2013, 33, 4323–4330. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, J.; Tian, Y.; Huang, B.; Yuan, Y.; Liu, C. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway. Colloids Surf. B Biointerfaces 2016, 145, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.H.; Heughebaert, J.C.; Nancollas, G.H. Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1985, 1, 119–122. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Wei, L.Y.; Frausto, A.; Mills, B.G. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif. Tissue Int. 2003, 72, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Mestres, G.; Ginebra, M.P. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 2011, 7, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K.D.; Swaid, S.; Nolte, D.; Böckmann, R.A.; Hölzle, F.; Müller-Mai, C. Degradable injectable bone cement in maxillofacial surgery: Indications and clinical experience in 27 patients. J. Craniomaxillofac. Surg. 2004, 32, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Dadkhah, M.; Pontiroli, L.; Fiorilli, S.; Manca, A.; Tallia, F.; Tcacencu, I.; Vitale-Brovarone, C. Preparation and characterisation of an innovative injectable calcium sulphate based bone cement for vertebroplasty application. J. Mater. Chem. B 2017, 5, 102–115. [Google Scholar] [CrossRef]
- Sikder, P.; Bhaduri, S.B. Microwave Assisted Synthesis and Characterization of Single-Phase Tabular Hexagonal Newberyite, an Important Bioceramic. J. Am. Ceram. Soc. 2018, 101, 2537–2544. [Google Scholar] [CrossRef]
- Ren, Y.; Sikder, P.; Lin, B.; Bhaduri, S.B. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater. Sci. Eng. C 2018, 85, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Agarwal, A.K.; Goel, V.K.; Bhaduri, S.B. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem. Mater. Sci. Eng. C 2013, 33, 4288–4294. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Luchini, T.J.; Agarwal, A.K.; Goel, V.K.; Bhaduri, S.B. Development of monetite–nanosilica bone cement: A preliminary study. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Hwang, K.S.; Song, J.E.; Ong, J.L.; Rawls, H.R. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics. Biomaterials 2002, 23, 3859–3864. [Google Scholar] [CrossRef]
- Ohgaki, M.; Kizuki, T.; Katsura, M.; Yamashita, K. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. A 2001, 57, 366–373. [Google Scholar] [CrossRef]
- Koju, N.; Sikder, P.; Ren, Y.; Zhou, H.; Bhaduri, S.B. Biomimetic coating technology for orthopedic implants. Curr. Opin. Chem. Eng. 2017, 15, 49–55. [Google Scholar] [CrossRef]
- Hesaraki, S.; Alizadeh, M.; Borhan, S.; Pourbaghi-Masouleh, M. Polymerizable nanoparticulate silica-reinforced calcium phosphate bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Sikder, P.; Koju, N.; Ren, Y.; Goel, V.K.; Phares, T.; Lin, B.; Bhaduri, S.B. Development of single-phase silver-doped antibacterial CDHA coatings on Ti6Al4V with sustained release. Surf. Coat. Technol. 2018, 342, 105–116. [Google Scholar] [CrossRef]
- Sikder, P.; Grice, C.R.; Lin, B.; Goel, V.K.; Bhaduri, S.B. Single-phase, Antibacterial Tri-Magnesium Phosphate Hydrate Coatings on Polyetheretherketone (PEEK) Implants by Rapid Microwave Irradiation Technique. ACS Biomater. Sci. Eng. 2018. [CrossRef]
Product | Concentration | Surface Area | pH | Density |
---|---|---|---|---|
LUDOX® HS-40 colloidal silica | 40 wt % suspension in H2O | ~220 m2/g | 9.8 | 3 gm/mL at 25 °C |
Cement | PMP (g) | Borax (g) | MgO (g) | BaTiO3 (g) | Colloidal Silica (mL) |
---|---|---|---|---|---|
CPC-0 BT | 5 | 0.20 | 0.25 | - | 1.910 |
CPC-10 BT | 5 | 0.20 | 0.25 | 0.545 | 2.100 |
CPC-20 BT | 5 | 0.20 | 0.25 | 1.090 | 2.290 |
CPC-30 BT | 5 | 0.20 | 0.25 | 1.635 | 2.480 |
CPC-40 BT | 5 | 0.20 | 0.25 | 2.180 | 2.670 |
Order | Reagent | Amount (Weight g per L or Volume mL) |
---|---|---|
1 | NaCl | 9.8184 |
2 | NaHCO3 | 3.4023 |
3 | KCl | 0.5591 |
4 | Na2HPO4 | 0.2129 |
5 | MgCl2·6H2O | 0.4574 |
6 | 1M HCl | 15 mL |
7 | CaCl2·2H2O | 0.5513 |
8 | Na2SO4 | 0.1065 |
9 | TRIS | 9.0855 |
10 | 1M HCl | 50 mL |
Cement | Initial Setting Time (min) | Final Setting Time (min) |
---|---|---|
CPC-0 BT | 8.83 ± 0.72 | 15.33 ± 0.24 |
CPC-10 BT | 7.58 ± 0.12 | 13.67 ± 0.62 * |
CPC-20 BT | 7.92 ± 0.42 | 15.17 ± 0.51 |
CPC-30 BT | 8.08 ± 0.72 | 16.33 ± 0.24 |
CPC-40 BT | 8.50 ± 0.35 | 15.92 ± 0.42 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koju, N.; Sikder, P.; Gaihre, B.; B. Bhaduri, S. Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications. Materials 2018, 11, 1258. https://doi.org/10.3390/ma11071258
Koju N, Sikder P, Gaihre B, B. Bhaduri S. Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications. Materials. 2018; 11(7):1258. https://doi.org/10.3390/ma11071258
Chicago/Turabian StyleKoju, Naresh, Prabaha Sikder, Bipin Gaihre, and Sarit B. Bhaduri. 2018. "Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications" Materials 11, no. 7: 1258. https://doi.org/10.3390/ma11071258
APA StyleKoju, N., Sikder, P., Gaihre, B., & B. Bhaduri, S. (2018). Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications. Materials, 11(7), 1258. https://doi.org/10.3390/ma11071258