Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = diatom fatty acids metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 879 KiB  
Article
Multiblock Metabolomics Responses of the Diatom Phaeodactylum tricornutum Under Benthic and Planktonic Culture Conditions
by Andrea Castaldi, Mohamed Nawfal Triba, Laurence Le Moyec, Cédric Hubas, Gaël Le Pennec and Marie-Lise Bourguet-Kondracki
Mar. Drugs 2025, 23(8), 314; https://doi.org/10.3390/md23080314 - 31 Jul 2025
Viewed by 348
Abstract
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated [...] Read more.
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated on three laboratory substrates (glass, polystyrene, and polydimethylsiloxane) and under planktonic conditions. Our results revealed metabolic differences between adherent and planktonic cultures, particularly concerning the lipid and carbohydrate contents. Adherent cultures showed a metabolic profile with an increase in betaine lipids (DGTA/S), fatty acids (tetradecanoic and octadecenoic acids), and sugars (myo-inositol and ribose), suggesting modifications in membrane composition and lipid remodeling, which play a potential role in adhesion. In contrast, planktonic cultures displayed a higher content of cellobiose, specialized metabolites such as dihydroactinidiolide, quinic acid, catechol, and terpenes like phytol, confirming different membrane composition, energy storage capacity, osmoregulation, and stress adaptation. The adaptative strategies do not only concern adherent and planktonic states, but also different adherent culture conditions, with variations in lipid, amino acid, terpene, and carbohydrate contents depending on the physical properties of the support. Our results highlight the importance of metabolic adaptation in adhesion, which could explain the fouling process. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3841 KiB  
Article
RNA Editing Analysis Reveals Methyl Jasmonic Acid Regulation of Fucoxanthin and Fatty Acid Metabolism in Phaeodactylum tricornutum
by Sihui Huang, Hao Liu, Ruihao Xu, Wangchang Li, Han Yang, Xinlei Bao, Yuqing Hang, Yifu Gong and Yuxiang Zhao
Mar. Drugs 2025, 23(2), 66; https://doi.org/10.3390/md23020066 - 6 Feb 2025
Cited by 1 | Viewed by 1223
Abstract
Phaeodactylum tricornutum is a marine diatom with significant biotechnological potential, particularly in producing high-value bioactive compounds such as fucoxanthin and unsaturated fatty acids, which possess significant pharmaceutical and nutraceutical properties. However, the naturally low yields of these compounds present a major challenge for [...] Read more.
Phaeodactylum tricornutum is a marine diatom with significant biotechnological potential, particularly in producing high-value bioactive compounds such as fucoxanthin and unsaturated fatty acids, which possess significant pharmaceutical and nutraceutical properties. However, the naturally low yields of these compounds present a major challenge for large-scale production. Methyl jasmonic acid (MeJA), a plant-derived signaling molecule, has been shown to enhance the biosynthesis of these metabolites in P. tricornutum. While transcriptional regulation has been extensively studied, the role of post-transcriptional modifications, such as RNA editing, in mediating MeJA-induced metabolic changes remains largely unexplored. RNA editing can alter nucleotide sequences, leading to functional changes in gene expression and protein activity, thus providing a potential regulatory mechanism for enhanced biosynthesis of target metabolites. In this study, we investigated the role of RNA editing in Phaeodactylum tricornutum under methyl jasmonic acid (MeJA) treatment, focusing on its impact on the accumulation of bioactive compounds such as fucoxanthin and fatty acids. We conducted a comprehensive comparative analysis of RNA editing events across MeJA-treated and control groups. Our findings reveal that MeJA treatment induces significant variations in RNA editing levels, affecting key metabolic pathways. Notably, two genes, Lhcr10 (Phatr3_J16481) and Phatr3_J43665, were identified as potential contributors to increased RNA editing enzyme activity and to energy metabolism and fatty acid biosynthesis under MeJA treatment. These results provide a foundation for the discovery of molecular mechanisms underlying adaptive responses in P. tricornutum and highlight RNA editing as a critical regulatory mechanism in MeJA-induced metabolic reprogramming. Full article
(This article belongs to the Special Issue Marine Algal Biotechnology and Applications)
Show Figures

Figure 1

15 pages, 1314 KiB  
Article
The Impact of Temperature on Host–Parasite Interactions and Metabolomic Profiles in the Marine Diatom Coscinodiscus granii
by Ruchicka Annie O’Niel, Georg Pohnert and Marine Vallet
Plants 2024, 13(23), 3415; https://doi.org/10.3390/plants13233415 - 5 Dec 2024
Viewed by 1349
Abstract
Diatoms are single-celled photosynthetic eukaryotes responsible for CO2 fixation and primary production in aquatic ecosystems. The cosmopolitan marine diatom Coscinodiscus granii can form seasonal blooms in coastal areas and interact with various microorganisms, including the parasitic oomycete Lagenisma coscinodisci. This unicellular [...] Read more.
Diatoms are single-celled photosynthetic eukaryotes responsible for CO2 fixation and primary production in aquatic ecosystems. The cosmopolitan marine diatom Coscinodiscus granii can form seasonal blooms in coastal areas and interact with various microorganisms, including the parasitic oomycete Lagenisma coscinodisci. This unicellular eukaryote is mainly present in the northern hemisphere as an obligate parasite of the genus Coscinodiscus. Understanding the interplay of abiotic factors such as temperature and biotic factors like parasitism on algal physiology is crucial as it dictates plankton community composition and is especially relevant during environmental changes and warming events. This study investigates the impact of two temperatures, 13 °C and 25 °C, on Coscinodiscus granii under laboratory conditions. A decreased infection rate of the parasite was observed at the elevated temperature. Comparative metabolomic analysis using UHPLC-HRMS revealed that temperature and parasitism significantly affect the algal cell metabolome. Abundances of metabolites related to sulfur metabolism, including cysteinoleic acid and dimethylsulfoniopropionate, as well as molecules linked to fatty acid metabolism, e.g., carnitine, acetylcarnitine, and eicosapentanoic acid, significantly increase in cells grown at a higher temperature, suggesting the enhanced rate of metabolism of host cells as the temperature rises. Our study reveals how temperature-induced metabolic changes can influence host–parasite dynamics in a changing environment. Full article
Show Figures

Figure 1

17 pages, 1907 KiB  
Article
Cell-Death Metabolites from Cocconeis scutellum var. parva Identified by Integrating Bioactivity-Based Fractionation and Non-Targeted Metabolomic Approaches
by Carlos Sanchez-Arcos, Mirko Mutalipassi, Valerio Zupo and Eric von Elert
Mar. Drugs 2024, 22(7), 320; https://doi.org/10.3390/md22070320 - 18 Jul 2024
Viewed by 1489
Abstract
Epiphytic diatoms growing in Mediterranean seagrass meadows, particularly those of the genus Cocconeis, are abundant and ecologically significant, even in naturally acidified environments. One intriguing aspect of some benthic diatoms is their production of an unidentified cell-death-promoting compound, which induces destruction of [...] Read more.
Epiphytic diatoms growing in Mediterranean seagrass meadows, particularly those of the genus Cocconeis, are abundant and ecologically significant, even in naturally acidified environments. One intriguing aspect of some benthic diatoms is their production of an unidentified cell-death-promoting compound, which induces destruction of the androgenic gland in Hippolyte inermis Leach, 1816, a shrimp exhibiting protandric hermaphroditism, principally under normal environmental pH levels. The consumption of Cocconeis spp. by this shrimp is vital for maintaining the stability of its natural populations. Although many attempts have been made to reveal the identity of the apoptotic compound, it is still unknown. In this study, we strategically integrated a bioactivity-based fractionation, a metabolomic approach, and two different experimental avenues to identify potential apoptotic metabolites from Cocconeis scutellum var. parva responsible for the sex reversal in H. inermis. Our integrated analysis uncovered two potential candidate metabolites, one putatively identified as a lysophosphatidylglycerol (LPG) (16:1) and the other classified as a fatty acid ester. This is the first time LPG (16:1) has been reported in C. scutellum var. parva and associated with cell-death processes. These candidate metabolites mark substantial progress in elucidating the factors responsible for triggering the removal of the androgenic gland in the early post-larval phases of H. inermis. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Figure 1

15 pages, 2188 KiB  
Article
Distribution and Level of Bioactive Monoacylglycerols in 12 Marine Microalgal Species
by Giovanna Santaniello, Gianna Falascina, Marcello Ziaco, Laura Fioretto, Angela Sardo, Martina Carelli, Mariarosaria Conte, Giovanna Romano and Adele Cutignano
Mar. Drugs 2024, 22(6), 258; https://doi.org/10.3390/md22060258 - 31 May 2024
Viewed by 1792
Abstract
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of [...] Read more.
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Microalgae)
Show Figures

Figure 1

16 pages, 1355 KiB  
Article
Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A
by Riccardo Trentin, Emanuela Moschin, Luísa Custódio and Isabella Moro
Mar. Drugs 2024, 22(1), 35; https://doi.org/10.3390/md22010035 - 6 Jan 2024
Viewed by 3043
Abstract
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species Craspedostauros ineffabilis IMA082A and [...] Read more.
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species Craspedostauros ineffabilis IMA082A and Craspedostauros zucchellii IMA088A Trentin, Moschin, Lopes, Custódio and Moro (Bacillariophyta) that are here explored for the first time for possible biotechnological applications. For this purpose, a bioprospection approach was applied by preparing organic extracts (acetone and methanol) from freeze-dried biomass followed by the evaluation of their in vitro antioxidant properties and inhibitory activities on enzymes related with Alzheimer’s disease (acetylcholinesterase: AChE, butyrylcholinesterase: BChE), Type 2 diabetes mellitus (T2DM, α–glucosidase, α–amylase), obesity (lipase) and hyperpigmentation (tyrosinase). Extracts were then profiled by ultra-high-performance liquid chromatography–mass spectrometry (UPLC–HR–MS/MS), while the fatty acid methyl ester (FAME) profiles were established by gas chromatography–mass spectrometry (GC–MS). Our results highlighted strong copper chelating activity of the acetone extract from C. ineffabilis and moderate to high inhibitory activities on AChE, BChE, α–amylase and lipase for extracts from both species. The results of the chemical analysis indicated polyunsaturated fatty acids (PUFA) and their derivatives as the possible compounds responsible for the observed activities. The FAME profile showed saturated fatty acids (SFA) as the main group and methyl palmitoleate (C16:1) as the predominant FAME in both species. Overall, our results suggest both Antarctic strains as potential sources of interesting molecules with industrial applications. Further studies aiming to investigate unidentified metabolites and to maximize growth yield and natural compound production are required. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments III)
Show Figures

Graphical abstract

15 pages, 1911 KiB  
Article
Okara Waste as a Substrate for the Microalgae Phaeodactylum tricornutum Enhances the Production of Algal Biomass, Fucoxanthin, and Polyunsaturated Fatty Acids
by Jaejung Kim, Jaslyn Lee, Amanda Ying Hui Voo, Yong Xing Tan, Wai Kit Mok, Aaron Zongwei Li and Wei Ning Chen
Fermentation 2023, 9(1), 31; https://doi.org/10.3390/fermentation9010031 - 30 Dec 2022
Cited by 10 | Viewed by 3615
Abstract
Despite the rich nutritional content of okara, the majority remains underutilized and discarded as food waste. In this study, solid-state fermentation of okara with food-grade fungi was performed to extract and solubilize any remnant nutrients locked within the lignocellulosic matrix to produce a [...] Read more.
Despite the rich nutritional content of okara, the majority remains underutilized and discarded as food waste. In this study, solid-state fermentation of okara with food-grade fungi was performed to extract and solubilize any remnant nutrients locked within the lignocellulosic matrix to produce a nutrient-rich okara fermentate. Fermented okara media (FOM) was used as the sole nutrient source for growing marine diatom, Phaeodactylum tricornutum. Results have shown a two-fold increase in biomass production when grown on FOM (0.52 g L−1) as compared with conventional Guillard’s F/2 media (0.25 g L−1). Furthermore, cellular fucoxanthin content was enhanced significantly by two-fold to reach a final concentration of 15.3 mg g−1 compared to 7.3 mg g−1. Additionally, a significantly higher amount of polyunsaturated fatty acid (PUFA) was produced, particularly eicosapentaenoic acid (EPA) which yield has increased by nearly three-fold. Metabolomics analysis of intracellular contents in fermented okara culture revealed a significantly enhanced accumulation of nitrogenous metabolites, alongside the decrease in sugar metabolites as compared to F/2 culture, thus indicating metabolic flux towards pathways involved in cellular growth. This study demonstrated an innovative and low-cost strategy of using fermented okara as a nutritious substrate for achieving a sustainable media replacement for high density algal growth with a simultaneous enhancement of production in highly valued nutraceuticals, including fucoxanthin and EPA. Full article
Show Figures

Figure 1

17 pages, 2386 KiB  
Article
Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae Phaeodactylum tricornutum
by Eleonora Curcuraci, Simona Manuguerra, Concetta Maria Messina, Rosaria Arena, Giuseppe Renda, Theodora Ioannou, Vito Amato, Claire Hellio, Francisco J. Barba and Andrea Santulli
Antioxidants 2022, 11(2), 411; https://doi.org/10.3390/antiox11020411 - 17 Feb 2022
Cited by 16 | Viewed by 4269
Abstract
Phaeodactylum tricornutum (Bacillariophyta) is a worldwide-distributed diatom with the ability to adapt and survive in different environmental habitats and nutrient-limited conditions. In this research, we investigated the growth performance, the total lipids productivity, the major categories of fatty acids, and the antioxidant content [...] Read more.
Phaeodactylum tricornutum (Bacillariophyta) is a worldwide-distributed diatom with the ability to adapt and survive in different environmental habitats and nutrient-limited conditions. In this research, we investigated the growth performance, the total lipids productivity, the major categories of fatty acids, and the antioxidant content in P. tricornutum subjected for 15 days to nitrogen deprivation (N−) compared to standard culture conditions (N+). Furthermore, genes and pathways related to lipid biosynthesis (i.e., glucose-6-phosphate dehydrogenase, acetyl-coenzyme A carboxylase, citrate synthase, and isocitrate dehydrogenase) and photosynthetic activity (i.e., ribulose-1,5-bisphospate carboxylase/oxygenase and fucoxanthin-chlorophyll a/c binding protein B) were investigated through molecular approaches. P. tricornutum grown under starvation condition (N−) increased lipids production (42.5 ± 0.19 g/100 g) and decreased secondary metabolites productivity (phenolic content: 3.071 ± 0.17 mg GAE g−1; carotenoids: 0.35 ± 0.01 mg g−1) when compared to standard culture conditions (N+). Moreover, N deprivation led to an increase in the expression of genes involved in fatty acid biosynthesis and a decrease in genes related to photosynthesis. These results could be used as indicators of nitrogen limitation for environmental or industrial monitoring of P. tricornutum. Full article
(This article belongs to the Special Issue Antioxidant Metabolism in Plants and Algae)
Show Figures

Graphical abstract

20 pages, 5359 KiB  
Article
A Genome-Scale Metabolic Model of Thalassiosira pseudonana CCMP 1335 for a Systems-Level Understanding of Its Metabolism and Biotechnological Potential
by Ahmad Ahmad, Archana Tiwari and Shireesh Srivastava
Microorganisms 2020, 8(9), 1396; https://doi.org/10.3390/microorganisms8091396 - 11 Sep 2020
Cited by 11 | Viewed by 4548
Abstract
Thalassiosira pseudonana is a transformable and biotechnologically promising model diatom with an ability to synthesise nutraceuticals such as fucoxanthin and store a significant amount of polyglucans and lipids including omega-3 fatty acids. While it was the first diatom to be sequenced, a systems-level [...] Read more.
Thalassiosira pseudonana is a transformable and biotechnologically promising model diatom with an ability to synthesise nutraceuticals such as fucoxanthin and store a significant amount of polyglucans and lipids including omega-3 fatty acids. While it was the first diatom to be sequenced, a systems-level analysis of its metabolism has not been done yet. This work presents first comprehensive, compartmentalized, and functional genome-scale metabolic model of the marine diatom Thalassiosira pseudonana CCMP 1335, which we have termed iThaps987. The model includes 987 genes, 2477 reactions, and 2456 metabolites. Comparison with the model of another diatom Phaeodactylum tricornutum revealed presence of 183 unique enzymes (belonging primarily to amino acid, carbohydrate, and lipid metabolism) in iThaps987. Model simulations showed a typical C3-type photosynthetic carbon fixation and suggested a preference of violaxanthin–diadinoxanthin pathway over violaxanthin–neoxanthin pathway for the production of fucoxanthin. Linear electron flow was found be active and cyclic electron flow was inactive under normal phototrophic conditions (unlike green algae and plants), validating the model predictions with previous reports. Investigation of the model for the potential of Thalassiosira pseudonana CCMP 1335 to produce other industrially useful compounds suggest iso-butanol as a foreign compound that can be synthesized by a single-gene addition. This work provides novel insights about the metabolism and potential of the organism and will be helpful to further investigate its metabolism and devise metabolic engineering strategies for the production of various compounds. Full article
(This article belongs to the Special Issue Genome-Scale Modeling of Microorganisms in the Real World)
Show Figures

Figure 1

28 pages, 2006 KiB  
Review
Diatoms for Carbon Sequestration and Bio-Based Manufacturing
by Deepak Sethi, Thomas O. Butler, Faqih Shuhaili and Seetharaman Vaidyanathan
Biology 2020, 9(8), 217; https://doi.org/10.3390/biology9080217 - 10 Aug 2020
Cited by 49 | Viewed by 11318
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic [...] Read more.
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing. Full article
(This article belongs to the Special Issue The Molecular Life of Diatoms: From Genes to Ecosystems)
Show Figures

Figure 1

20 pages, 5412 KiB  
Review
Anticancer Compounds Derived from Marine Diatoms
by Hanaa Ali Hussein and Mohd Azmuddin Abdullah
Mar. Drugs 2020, 18(7), 356; https://doi.org/10.3390/md18070356 - 9 Jul 2020
Cited by 64 | Viewed by 7176
Abstract
Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. [...] Read more.
Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms’ microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated. Full article
Show Figures

Figure 1

25 pages, 1462 KiB  
Review
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications
by Nadia Ruocco, Luisa Albarano, Roberta Esposito, Valerio Zupo, Maria Costantini and Adrianna Ianora
Mar. Drugs 2020, 18(7), 342; https://doi.org/10.3390/md18070342 - 30 Jun 2020
Cited by 29 | Viewed by 4992
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a [...] Read more.
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins. Full article
Show Figures

Figure 1

14 pages, 2155 KiB  
Article
Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus
by Roberta Esposito, Nadia Ruocco, Luisa Albarano, Adrianna Ianora, Loredana Manfra, Giovanni Libralato and Maria Costantini
Int. J. Mol. Sci. 2020, 21(3), 719; https://doi.org/10.3390/ijms21030719 - 22 Jan 2020
Cited by 14 | Viewed by 2845
Abstract
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea [...] Read more.
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
Metabolite Profiling of the Microalgal Diatom Chaetoceros Calcitrans and Correlation with Antioxidant and Nitric Oxide Inhibitory Activities via 1H NMR-Based Metabolomics
by Awanis Azizan, Muhammad Safwan Ahamad Bustamam, M. Maulidiani, Khozirah Shaari, Intan Safinar Ismail, Norio Nagao and Faridah Abas
Mar. Drugs 2018, 16(5), 154; https://doi.org/10.3390/md16050154 - 7 May 2018
Cited by 56 | Viewed by 9321
Abstract
Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely 1H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data [...] Read more.
Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely 1H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Plankton)
Show Figures

Figure 1

17 pages, 533 KiB  
Article
Determination of Lipid Hydroperoxides in Marine Diatoms by the FOX2 Assay
by Ida Orefice, Andrea Gerecht, Giuliana D'Ippolito, Angelo Fontana, Adrianna Ianora and Giovanna Romano
Mar. Drugs 2015, 13(9), 5767-5783; https://doi.org/10.3390/md13095767 - 11 Sep 2015
Cited by 11 | Viewed by 8726
Abstract
Ecologically-relevant marine diatoms produce a plethora of bioactive oxylipins deriving from fatty acid oxidation, including aldehydes, hydroxy-fatty acids, epoxy-hydroxy-fatty acids, and oxo-acids. These secondary metabolites have been related to the negative effect of diatoms on copepod reproduction, causing low hatching success and teratogenesis [...] Read more.
Ecologically-relevant marine diatoms produce a plethora of bioactive oxylipins deriving from fatty acid oxidation, including aldehydes, hydroxy-fatty acids, epoxy-hydroxy-fatty acids, and oxo-acids. These secondary metabolites have been related to the negative effect of diatoms on copepod reproduction, causing low hatching success and teratogenesis in the offspring during periods of intense diatom blooms. The common intermediates in the formation of oxylipins are fatty acid hydroperoxides. The quantitative measurement of these intermediates can fundamentally contribute to understanding the function and role of lipoxygenase metabolites in diatom-copepod interactions. Here, we describe the successful adaptation of the ferrous oxidation-xylenol orange 2 (FOX2) assay to diatom samples, which showed several advantages over other spectrophotometric and polarographic methods tested in the present work. Using this method we assessed fatty acid hydroperoxide levels in three diatom species: Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros affinis, and discuss results in light of the literature data on their detrimental effects on copepod reproduction. Full article
(This article belongs to the Special Issue Metabolites in Diatoms)
Show Figures

Graphical abstract

Back to TopTop