Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = diastereoselective addition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3606 KB  
Article
Complementary Synthesis of Anti- and Syn-Hydroxymethyl 1,3-Diols via Regioselective Ring Opening of TIPS-Protected 2,3-Epoxy Alcohols: Toward Polypropionate Fragments
by Raúl R. Rodríguez-Berríos and José A. Prieto
Organics 2025, 6(3), 29; https://doi.org/10.3390/org6030029 - 10 Jul 2025
Viewed by 1158
Abstract
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage [...] Read more.
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage of TIPS-monoprotected cis- and trans-2,3-epoxy alcohols using alkenyl Grignard reagents. Regioselective ring opening of cis-epoxides provided anti-1,3-diols, while trans-epoxides afforded the corresponding syn-1,3-diols. The use of cis-propenylmagnesium bromide and vinyl Grignard reagents enabled direct access to cis- and terminal homoallylic 1,3-diols, respectively, with moderate to good yields (46–88%) and excellent regioselectivities (95:5). In contrast, reactions with trans-propenyl Grignard reagent led to partial alkene isomerization, limiting their synthetic utility. To address this, a complementary two-step approach employing propynyl alanate addition followed by sodium/ammonia reduction was incorporated, providing access to trans-homoallylic 1,3-diols with high diastereoselectivity. All 1,3-diols were characterized by NMR spectroscopy, confirming regioselective epoxide opening. These combined strategies offer a practical and modular platform for the synthesis of syn- and anti-hydroxymethylated 1,3-diols and their application to the construction of polypropionate-type fragments, supporting future efforts in the total synthesis of polyketide natural products. Full article
Show Figures

Figure 1

15 pages, 2179 KB  
Article
Stereoselective Synthesis and Biological Evaluation of Perhydroquinoxaline-Based κ Receptor Agonists
by Jonathan Hoffmann, Dirk Schepmann, Constantin Daniliuc, Marcel Bermudez and Bernhard Wünsch
Int. J. Mol. Sci. 2025, 26(3), 998; https://doi.org/10.3390/ijms26030998 - 24 Jan 2025
Viewed by 1077
Abstract
The hydroxylated perhydroquinoxaline 14 was designed by conformational restriction of the prototypical κ receptor agonist U-50,488 and the introduction of an additional polar group. The synthesis of 14 comprised ten reaction steps starting from diethyl 3-hydroxyglutarate (4). The first key step [...] Read more.
The hydroxylated perhydroquinoxaline 14 was designed by conformational restriction of the prototypical κ receptor agonist U-50,488 and the introduction of an additional polar group. The synthesis of 14 comprised ten reaction steps starting from diethyl 3-hydroxyglutarate (4). The first key step was the diastereoselective establishment of the tetrasubstituted cyclohexane 7 by the reaction of dialdehyde 6 with benzylamine and nitromethane. The piperazine ring was annulated by the reaction of silyloxy-substituted cyclohexanetriamine 8 with dimethyl oxalate. The pharmacophoric structural elements characteristic for κ receptor agonists were finally introduced by functional group modifications. The structure including the relative configuration of the tetrasubstituted cyclohexane derivative (2r,5s)-7a and the perhydroquinoxaline 9 was determined unequivocally by X-ray crystal structure analysis. The hydroxylated perhydroquinoxaline 14 showed moderate κ receptor affinity (Ki = 599 nM) and high selectivity over μ, δ, σ1, and σ2 receptors. An ionic interaction between the protonated pyrrolidine of 14 and D138 of κ receptor anchors 14 in the κ receptor binding pocket. Full article
Show Figures

Graphical abstract

18 pages, 4650 KB  
Article
(E)-2-Benzylidenecyclanones: Part XIX. Reaction of (E)-2-(4′-X-Benzylidene)-1-tetralones with Cellular Thiols: Comparison of Thiol Reactivities of Open-Chain Chalcones and Their Six- and Seven-Membered Cyclic Analogs
by Fatemeh Kenari, Zoltán Pintér, Szilárd Molnár, Igor D. Borges, Ademir J. Camargo, Hamilton B. Napolitano and Pál Perjési
Int. J. Mol. Sci. 2024, 25(14), 7773; https://doi.org/10.3390/ijms25147773 - 16 Jul 2024
Cited by 2 | Viewed by 1202
Abstract
Non-enzyme-catalyzed thiol addition onto the α,β-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH [...] Read more.
Non-enzyme-catalyzed thiol addition onto the α,β-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH values (pH 3.2, 7.4 and 8.0). The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended both on the substitution and the pH. The stereochemical outcome of the reactions was evaluated using high-pressure liquid chromatography with UV detection (HPLC-UV). The structures of the formed thiol-conjugates and the retro-Michael products (Z)-2a and (Z)-2b were confirmed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Frontier molecular orbitals and the Fukui function calculations were carried out to investigate their effects on the six-membered cyclic analogs. Data were compared with those obtained with the open-chain (1) and the seven-membered (3) analogs. The observed reactivities do not directly relate to the difference in in vitro cancer cell cytotoxicity of the compounds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

26 pages, 7873 KB  
Article
Synthesis of 4′-Thionucleoside Analogues Bearing a C2′ Stereogenic All-Carbon Quaternary Center
by Carla Eymard, Amarender Manchoju, Abir Almazloum, Starr Dostie, Michel Prévost, Mona Nemer and Yvan Guindon
Molecules 2024, 29(7), 1647; https://doi.org/10.3390/molecules29071647 - 6 Apr 2024
Cited by 1 | Viewed by 2054
Abstract
The design of novel 4′-thionucleoside analogues bearing a C2′ stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2′ center, along with different approaches to [...] Read more.
The design of novel 4′-thionucleoside analogues bearing a C2′ stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2′ center, along with different approaches to control the selectivity of the N-glycosidic bond. Intramolecular SN2-like cyclization of a mixture of acyclic thioaminals provided analogues with a pyrimidine nucleobase. A kinetic bias favoring cyclization of the 1′,2′-anti thioaminal furnished the desired β-D-4′-thionucleoside analogue in a 7:1 ratio. DFT calculations suggest that this kinetic resolution originates from additional steric clash in the SN2-like transition state for 1′,4′-trans isomers, causing a significant decrease in their reaction rate relative to 1′,4′-cis counterparts. N-glycosylation of cyclic glycosyl donors with a purine nucleobase enabled the formation of novel 2-chloroadenine 4′-thionucleoside analogues. These proprietary molecules and other derivatives are currently being evaluated both in vitro and in vivo to establish their biological profiles. Full article
Show Figures

Graphical abstract

25 pages, 7871 KB  
Article
Chemoselective Synthesis and Anti-Kinetoplastidal Properties of 2,6-Diaryl-4H-tetrahydro-thiopyran-4-one S-Oxides: Their Interplay in a Cascade of Redox Reactions from Diarylideneacetones
by Thibault Gendron, Don Antoine Lanfranchi, Nicole I. Wenzel, Hripsimée Kessedjian, Beate Jannack, Louis Maes, Sandrine Cojean, Thomas J. J. Müller, Philippe M. Loiseau and Elisabeth Davioud-Charvet
Molecules 2024, 29(7), 1620; https://doi.org/10.3390/molecules29071620 - 4 Apr 2024
Cited by 2 | Viewed by 2126
Abstract
2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of [...] Read more.
2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter—upon S-oxidation, followed by syn-eliminations—fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes. Full article
(This article belongs to the Special Issue Chemistry of Antiparasitic Drugs)
Show Figures

Figure 1

20 pages, 2678 KB  
Article
Nickel(II)-Catalyzed Formal [3+2] Cycloadditions between Indoles and Donor–Acceptor Cyclopropanes
by Víctor Quezada, Mariña Castroagudín, Felipe Verdugo, Sergio Ortiz, Guillermo Zaragoza, Fabiane M. Nachtigall, Francisco A. A. Reis, Alejandro Castro-Alvarez, Leonardo S. Santos and Ronald Nelson
Molecules 2024, 29(7), 1604; https://doi.org/10.3390/molecules29071604 - 3 Apr 2024
Viewed by 2177
Abstract
This article describes the development of a nickel-catalyzed regio- and diastereoselective formal [3+2] cycloaddition between N-substituted indoles and donor–acceptor cyclopropanes to synthesize cyclopenta[b]indoles. Optimized reaction conditions provide the desired nitrogen-containing cycloadducts in up to 93% yield and dr 8.6:1 with [...] Read more.
This article describes the development of a nickel-catalyzed regio- and diastereoselective formal [3+2] cycloaddition between N-substituted indoles and donor–acceptor cyclopropanes to synthesize cyclopenta[b]indoles. Optimized reaction conditions provide the desired nitrogen-containing cycloadducts in up to 93% yield and dr 8.6:1 with complete regioselectivity. The substrate scope showed high tolerance to various substituted indoles and cyclopropanes, resulting in the synthesis of six new cyclopenta[b]indoles and the isolation of five derivatives previously reported in the literature. In addition, a mechanistic proposal for the reaction was studied through online reaction monitoring by ESI-MS, allowing for the identification of the reactive intermediates in the Ni(II) catalyzed process. X-ray crystallography confirmed the structure and relative endo stereochemistry of the products. This method enables the fast and efficient construction of fused indolines from readily accessible starting materials. Full article
(This article belongs to the Special Issue Cyclization Reactions in Organic Synthesis: Recent Developments)
Show Figures

Graphical abstract

14 pages, 2122 KB  
Article
Synthesis of D-Fructose-Based Bifunctional Primary Amine-Thiourea Organocatalysts and Their Applications in Asymmetric Reactions
by Samson Lalhmangaihzuala, Vanlalngaihawma Khiangte, Zathang Laldinpuii, Lal Nunnemi, Joute Malsawmsanga, Gospel Lallawmzuali, Thanhming Liana, Chhakchhuak Lalhriatpuia, Zodinpuia Pachuau and Khiangte Vanlaldinpuia
Chemistry 2023, 5(4), 2362-2375; https://doi.org/10.3390/chemistry5040156 - 23 Oct 2023
Cited by 2 | Viewed by 2820
Abstract
The preparation of a new class of six bifunctional thiourea organocatalysts having a D-fructose scaffold and a primary amino group was demonstrated. In the present study, the novel organocatalysts exhibited excellent enantio- and moderate diastereoselectivities in the asymmetric Michael addition of aliphatic ketones [...] Read more.
The preparation of a new class of six bifunctional thiourea organocatalysts having a D-fructose scaffold and a primary amino group was demonstrated. In the present study, the novel organocatalysts exhibited excellent enantio- and moderate diastereoselectivities in the asymmetric Michael addition of aliphatic ketones and 1,3-diketone to substituted nitroolefins at room temperature. In addition, the direct asymmetric aldol reaction between cyclic aliphatic ketone and aromatic aldehydes was also studied in the presence of the saccharide-thiourea organocatalysts giving excellent yield with moderate enantioselectivity. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Graphical abstract

23 pages, 7214 KB  
Review
The Last Decade of Optically Active α-Aminophosphonates
by Petra R. Varga and György Keglevich
Molecules 2023, 28(16), 6150; https://doi.org/10.3390/molecules28166150 - 20 Aug 2023
Cited by 15 | Viewed by 2511
Abstract
α-Aminophosphonates and related compounds are important due to their real and potential biological activity. α-Aminophosphonates may be prepared by the Kabachnik–Fields condensation of oxo compounds, amines and dialkyl phosphites, or by the aza-Pudovik addition of the same P-reagents to imines. In this review, [...] Read more.
α-Aminophosphonates and related compounds are important due to their real and potential biological activity. α-Aminophosphonates may be prepared by the Kabachnik–Fields condensation of oxo compounds, amines and dialkyl phosphites, or by the aza-Pudovik addition of the same P-reagents to imines. In this review, the methods that allow for the synthesis of α-aminophosphonates with optical activity are surveyed. On the one hand, optically active catalysts or ligands may induce enantioselectivity during the Kabachnik–Fields reaction. On the other hand, asymmetric catalysis during the aza-Pudovik reaction, or hydrogenations of iminophosphonates, may prove to be a useful tool. Lastly yet importantly, it is possible to start from optically active reagents that may be associated with diastereoselectivity. The “green” aspects of the different syntheses are also considered. Full article
(This article belongs to the Special Issue Feature Papers in Organic Chemistry (Volume II))
Show Figures

Scheme 1

16 pages, 1359 KB  
Article
Diastereoselective Synthesis of the Borylated d-Galactose Monosaccharide 3-Boronic-3-Deoxy-d-Galactose and Biological Evaluation in Glycosidase Inhibition and in Cancer for Boron Neutron Capture Therapy (BNCT)
by Michela I. Simone
Molecules 2023, 28(11), 4321; https://doi.org/10.3390/molecules28114321 - 24 May 2023
Cited by 3 | Viewed by 3027
Abstract
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the development of an efficient two-step protocol to completely diastereoselectively access a diethanolamine (DEA) boronate ester derivative of [...] Read more.
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the development of an efficient two-step protocol to completely diastereoselectively access a diethanolamine (DEA) boronate ester derivative of monosaccharide d-galactose from the starting material 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose. This intermediate, in turn, is used to access 3-boronic-3deoxy-d-galactose for boron neutron capture therapy (BNCT) applications. The hydroboration/borane trapping protocol was robustly optimized with BH3.THF in 1,4-dioxane, followed by in-situ conversion of the inorganic borane intermediate to the organic boron product by the addition of DEA. This second step occurs instantaneously, with the immediate formation of a white precipitate. This protocol allows expedited and greener access to a new class of BNCT agents with an Fsp3 index = 1 and a desirable toxicity profile. Furthermore, presented is the first detailed NMR analysis of the borylated free monosaccharide target compound during the processes of mutarotation and borarotation. Full article
(This article belongs to the Special Issue Molecular Targets and Mechanisms of Action of Anti-cancer Agents)
Show Figures

Scheme 1

13 pages, 3021 KB  
Article
Synthesis of Aminoalkyl Sclareolide Derivatives and Antifungal Activity Studies
by Ziyi Li, Hua Gao, Haibo Mei, Guangwei Wu, Vadim A. Soloshonok and Jianlin Han
Molecules 2023, 28(10), 4067; https://doi.org/10.3390/molecules28104067 - 12 May 2023
Cited by 5 | Viewed by 2275
Abstract
Sclareolide was developed as an efficient C-nucleophilic reagent for an asymmetric Mannich addition reaction with a series of N-tert-butylsulfinyl aldimines. The Mannich reaction was carried out under mild conditions, affording the corresponding aminoalkyl sclareolide derivatives with up to 98% [...] Read more.
Sclareolide was developed as an efficient C-nucleophilic reagent for an asymmetric Mannich addition reaction with a series of N-tert-butylsulfinyl aldimines. The Mannich reaction was carried out under mild conditions, affording the corresponding aminoalkyl sclareolide derivatives with up to 98% yield and 98:2:0:0 diastereoselectivity. Furthermore, the reaction could be performed on a gram scale without any reduction in yield and diastereoselectivity. Additionally, deprotection of the obtained Mannich addition products to give the target sclareolide derivatives bearing a free N-H group was demonstrated. In addition, target compounds 46 were subjected to an antifungal assay in vitro, which showed considerable antifungal activity against forest pathogenic fungi. Full article
(This article belongs to the Special Issue Natural Product Chemistry in China-2nd Edition)
Show Figures

Scheme 1

17 pages, 4436 KB  
Article
(E)-2-Benzylidenecyclanones: Part XVIII Study the Possible Link between Glutathione Reactivity and Cancer Cell Cytotoxic Effects of Some Cyclic Chalcone Analogs A Comparison of the Reactivity of the Open-Chain and the Seven-Membered Homologs
by Fatemeh Kenari, Szilárd Molnár, Igor D. Borges, Hamilton B. Napolitano and Pál Perjési
Int. J. Mol. Sci. 2023, 24(10), 8557; https://doi.org/10.3390/ijms24108557 - 10 May 2023
Cited by 4 | Viewed by 2300
Abstract
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione [...] Read more.
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds. Full article
(This article belongs to the Special Issue Chalcones: Biosynthesis, Functions, and Biological Implications)
Show Figures

Figure 1

34 pages, 4294 KB  
Review
Epoxide-Based Synthetic Approaches toward Polypropionates and Related Bioactive Natural Products
by Raúl R. Rodríguez-Berríos, Stephen R. Isbel and Alejandro Bugarin
Int. J. Mol. Sci. 2023, 24(7), 6195; https://doi.org/10.3390/ijms24076195 - 24 Mar 2023
Cited by 7 | Viewed by 4597
Abstract
Polypropionate units are a common structural feature of many of the natural products in polyketides, some of which have shown a broad range of antimicrobial and therapeutic potential. Polypropionates are composed of a carbon skeleton with alternating methyl and hydroxy groups with a [...] Read more.
Polypropionate units are a common structural feature of many of the natural products in polyketides, some of which have shown a broad range of antimicrobial and therapeutic potential. Polypropionates are composed of a carbon skeleton with alternating methyl and hydroxy groups with a specific configuration. Different approaches have been developed for the synthesis of polypropionates and herein we include, for the first time, all of the epoxide-based methodologies that have been reported over the years by several research groups such as Kishi, Katsuki, Marashall, Miyashita, Prieto, Sarabia, Jung, McDonald, etc. Several syntheses of polypropionate fragments and natural products that employed epoxides as key intermediates have been described and summarized in this review. These synthetic approaches involve enatio- and diastereoselective synthesis of epoxides (epoxy-alcohols, epoxy-amides, and epoxy-esters) and their regioselective cleavage with carbon and/or hydride nucleophiles. In addition, we included a description of the isolation and biological activities of the polypropionates and related natural products that have been synthetized using epoxide-based approaches. In conclusion, the epoxide-based methodologies are a non-aldol alternative approach for the construction of polypropionate. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Drugs Discovery)
Show Figures

Figure 1

16 pages, 1314 KB  
Article
Preparation of Chiral Enantioenriched Densely Substituted Cyclopropyl Azoles, Amines, and Ethers via Formal SN2′ Substitution of Bromocylopropanes
by Hillary Straub, Pavel Ryabchuk, Marina Rubina and Michael Rubin
Molecules 2022, 27(20), 7069; https://doi.org/10.3390/molecules27207069 - 20 Oct 2022
Cited by 3 | Viewed by 4046
Abstract
Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of [...] Read more.
Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of the cyclopropene intermediate, which governs the configuration of the two adjacent stereocenters that are successively installed via 1,4-addition/epimerization sequence. Full article
(This article belongs to the Special Issue New Approaches to Synthetic Organic Chemistry)
Show Figures

Scheme 1

44 pages, 13246 KB  
Review
Recent Developments in Stereoselective Reactions of Sulfonium Ylides
by Mukulesh Mondal, Sophie Connolly, Shi Chen, Shubhanjan Mitra and Nessan J. Kerrigan
Organics 2022, 3(3), 320-363; https://doi.org/10.3390/org3030024 - 15 Sep 2022
Cited by 19 | Viewed by 9012
Abstract
This review describes advances in the literature since the mid-1990s in the area of reactions of sulfonium ylide chemistry, with particular attention paid to stereoselective examples. Although the chemistry of sulfonium ylides was first popularized and applied in a substantial way in the [...] Read more.
This review describes advances in the literature since the mid-1990s in the area of reactions of sulfonium ylide chemistry, with particular attention paid to stereoselective examples. Although the chemistry of sulfonium ylides was first popularized and applied in a substantial way in the 1960s, there has been sustained interest in the chemistry of sulfonium ylides since then. Many new ways of exploiting sulfonium ylides in productive stereoselective methodologies have emerged, often taking advantage of advances in organocatalysis and transition metal catalysis, to access stereodefined structurally complex motifs. The development of many different chiral sulfides over the last 20–30 years has also played a role in accelerating their study in a variety of reaction settings. In general, formal cycloaddition reactions ([2 + 1] and [4 + 1]) of sulfonium ylides follow a similar mechanistic pathway: initial addition of the nucleophilic ylide carbanion to an electrophile to form a zwitterionic betaine intermediate, followed by cyclization of the zwitterionic intermediate to afford the desired three-membered cyclic product (e.g., epoxide, cyclopropane, or aziridine), five-membered monocyclic (e.g., oxazolidinone), or fused bicyclic product (e.g., benzofuran, indoline). Full article
(This article belongs to the Collection Advanced Research Papers in Organics)
Show Figures

Scheme 1

11 pages, 1872 KB  
Article
Photocatalytic Isomerization of (E)-Anethole to (Z)-Anethole
by Marvin Korff, Tiffany O. Paulisch, Frank Glorius, Nikos L. Doltsinis and Bernhard Wünsch
Molecules 2022, 27(16), 5342; https://doi.org/10.3390/molecules27165342 - 22 Aug 2022
Cited by 8 | Viewed by 3711
Abstract
Natural product (E)-anethole was isomerized to (Z)-anethole in a photocatalytic reaction. For this purpose, a self-designed cheap photoreactor was constructed. Among 11 photosensitizers (organo and metal complex compounds), Ir(p-tBu-ppy)3 led to the highest conversion. Triplet energies [...] Read more.
Natural product (E)-anethole was isomerized to (Z)-anethole in a photocatalytic reaction. For this purpose, a self-designed cheap photoreactor was constructed. Among 11 photosensitizers (organo and metal complex compounds), Ir(p-tBu-ppy)3 led to the highest conversion. Triplet energies of (E)- and (Z)-anethole were predicted theoretically by DFT calculations to support the selection of appropriate photosensitizers. A catalyst loading of 0.1 mol% gave up to 90% conversion in gram scale. Further additives were not required and mild irradiation with light of 400 nm overnight was sufficient. As a proof of concept, (E)- and (Z)-anethole were dihydroxylated diastereoselectively to obtain diastereomerically pure like- and unlike-configured diols, respectively. Full article
Show Figures

Figure 1

Back to TopTop