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Abstract: The preparation of a new class of six bifunctional thiourea organocatalysts having a D-
fructose scaffold and a primary amino group was demonstrated. In the present study, the novel
organocatalysts exhibited excellent enantio- and moderate diastereoselectivities in the asymmetric
Michael addition of aliphatic ketones and 1,3-diketone to substituted nitroolefins at room temperature.
In addition, the direct asymmetric aldol reaction between cyclic aliphatic ketone and aromatic
aldehydes was also studied in the presence of the saccharide-thiourea organocatalysts giving excellent
yield with moderate enantioselectivity.

Keywords: carbohydrates; bifunctional thiourea; organocatalyst; enantioselective; Michael addition;
aldol reaction

1. Introduction

The development of cost-effective and highly efficient synthetic techniques for the
formation of carbon–carbon bonds remains an active field of research in organic chem-
istry [1,2]. Among the variants of these reactions, asymmetric Michael addition and Aldol
reactions represent one of the most powerful and attractive transformations, mainly due to
their widespread applications in the synthesis of several important biological and pharma-
ceutical compounds [3–5]. Significant efforts have been made in recent years to produce
metal-free organocatalysts that are capable of promoting these asymmetric processes with
exceptionally high yields and stereoselectivity [6–8]. In this context, the applications of
chiral bifunctional amine-thioureas have emerged as a promising prospect and they have
been successfully employed for a number of asymmetric transformations [9–14]. Their
high efficacy in stereoselective synthesis is mainly attributed to their unique capability of
multiple hydrogen-bonding donors as well as the readily accessible chiral diamines [15].
Some prominent examples include Jacobsen’s thioureas [16–22] and Takemoto’s amino
thioureas [23–28], which were employed as catalysts in various asymmetric syntheses.
Recently, with the aim of enhancing reactivity, widening substrate scope and improving
the stereoselectivity of the organocatalytic reactions, the development of a bifunctional
amine-thiourea-bearing saccharide moiety has also drawn the attention of various research
groups [29,30].
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Despite the variety of Michael acceptors employed in asymmetric Michael reactions,
nitroalkenes have garnered particular interest due to their high reactivity and suitability
as reaction partners for various aldehydes and ketones [31–33]. In addition, the generated
functionalized nitroalkane adducts have a wide range of synthetic applications and can be
converted into diverse functionalities, earning them the title of “synthetic chameleon” [34,35].
With a rise in the number of studies conducted in this field, several highly tuned and effective
organocatalysts have been designed and developed. And, the potential of carbohydrate-based
amine thioureas as a catalyst for the enantioselective Michael addition of ketones [36–39]
and 1,3-dicarbonyl compound [40–44] to electron-poor nitroalkenes has also been extensively
evaluated. In most of the cases, the resultant products obtained are in moderate to excellent
yields and enantioselectivities.

Aside from the outstanding progress made with saccharide-based tertiary amine
thiourea [36,45–49], laboratory efforts were also directed towards the creation of chiral
thiourea, which contains a primary amino group and a carbohydrate scaffold. These chiral
organic molecules, which were initially developed by Ma and co-workers in 2007 [36], were
demonstrated to successfully facilitate reaction between ketone and nitroalkenes with high
yields and excellent stereochemical results. In light of these important precedents, as well as
our ongoing interest in asymmetric synthesis [50,51], we explored the asymmetric Michael
addition reaction of aliphatic ketones and acetylacetone to substituted β-nitrostyrene using
a new class of D-fructose-derived bifunctional primary amine-thiourea catalysts.

D-Fructose, a compound characterized by its abundant availability, cost-effectiveness,
and well-defined stereogenic centers, has been explored for a number of asymmetric or-
ganic transformations. However, there has been no previous report on the utilization of D-
Fructose as a saccharide scaffold in the synthesis of carbohydrate-based thiourea organocat-
alysts. Furthermore, there are only limited reports of the application of saccharide-based
thioureas for the direct asymmetric Aldol reaction between ketones and aldehydes [52].
And the utilization of thiourea compounds containing carbohydrate scaffolds as organocat-
alysts continues to pose a significant challenge for the said transformation. So, the effective-
ness of the newly synthesized compounds was further extrapolated for the asymmetric
aldol reaction between cyclohexanone and aromatic aldehydes.

2. Materials and Methods
2.1. General

All reagents and solvents were commercial grade and purified prior to use when nec-
essary. Optical rotations were measured with an Autopol IV, Rudolph Research Analytical
Polarimeter (Rudolph Research Analytical, Hackettstown, NJ, USA) in chloroform, and
described as follows: [α]D

25 (c in mg per 10 mL, solvent). FT-IR spectra were recorded on
an Agilent Cary 630 FT-IR spectrometer (Agilent, Santa Clara, CA, USA), with absorptions
in cm−1. NMR spectra were recorded on a Bruker Avance II spectrophotometers. Chemical
shifts for 1H NMR and 13C NMR spectra are reported (in parts per million) with reference
to internal tetramethylsilane (Me4Si = 0.0 ppm) using CDCl3 and DMSO-d6 as solvents.
ESI-MS was carried out on an Agilent 6520 Q-TOF Mass spectrometer (Agilent, Santa Clara,
CA, USA) with an Agilent 1200 HPLC system (Agilent, Santa Clara, CA, USA). HRMS was
recorded on XEVO G2-XS QTOF instrument (Waters, Milford, MA, USA) using CH3CN as
a solvent. The elemental analyses of the catalyst were carried out on a Perkin–Elmer-2400
CHN/S analyzer (Perkin Elmer, Waltham, MA, USA). Using a Chiralpak OD-H or AD-H
column (Diacel Corporation, Konan, Tokyo, Japan) with n-hexane and iso-propanol as the
eluent, the enantioselectivity of the adducts was examined using a Waters 1525 binary pump
(Waters, Milford, MA, USA) and a Waters UV detector 2489 (Waters, Milford, MA, USA).

2.2. Synthesis of Saccharide-Based Isothiocyanates 3 and 4

To a stirred solution of sugar amines (1.5 g, 5.8 mmol), 1 or 2, in absolute ethanol
(5 mL) were added CS2 (3.50 mL, 58 mmol) and NEt3 (0.806 mL, 5.8 mmol) [53] The reaction
mixture was stirred for 2 h at room temperature and then cooled on an ice bath. Next,
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Boc2O (6.38 mmol) and 3 mol% of DMAP were added to the reaction mixture and allowed
to reach room temperature. After stirring for another three hours, the solvent was removed
under reduced pressure and the residue was purified by column chromatography on silica
gel (5:95, ethyl acetate: hexane) to afford the desired product. (see Supplementary Materials
Figures S1, S2, S9 and S10 for the 1H NMR, 13C NMR, and mass spectra data of compounds
3 and 4).

1,2:4,5-Di-O-isopropylidene-3-(isothiocyanato)-3-deoxy-α-D-fructopyranose (3): yield:
82% as white solid; mp: 64–66 ◦C. [α]D

25 −198.00◦ (c 0.001, CHCl3). 1H NMR (400 MHz,
CDCl3): δ 4.46–4.44 (m, 1H), 4.27–4.19 (m, 2H), 4.04–3.94 (m, 2H), 3.84–3.77 (m, 2H), 1.46
(s, 3H), 1.41 (s, 3H), 1.39 (s, 3H), 1.29 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 136.54,
111.54, 110.77, 104.35, 73.31, 72.50, 72.42, 62.76, 58.79, 27.02, 26.52, 26.04, 25.35 ppm. IR
(KBr): 2937, 2344, 2067, 1698, 1460, 1378, 1198, 1077, 854, 742 cm−1. ESI-MS (m/z): 324.0
(M+ + Na). HRMS: calculated for [C13H19NO5S+H]: 302.1062, found 302.1064. Elemental
Analysis for C13H19NO5S: calculated C 51.67, H 6.66, N 5.25, O 26.04, S 10.38; found C
51.88, H 6.75, N 5.11, O 26.08, S 10.18.

1,2:4,5-Di-O-isopropylidene-3-(isothiocyanato)-3-deoxy-β-D-fructopyranose (4): yield:
77% as white solid; mp: 68–70 ◦C. [α]D

25 −248.83◦ (c 0.002, CHCl3). 1H NMR (400 MHz,
CDCl3): δ 4.35–4.33 (m, 1H), 4.20–4.02 (m, 5H), 3.59 (d, 1H, J = 4 Hz), 1.52 (s, 3H), 1.50
(s, 3H), 1.48 (s, 3H), 1.37 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 135.04, 113.08,
109.57, 103.08, 75.95, 72.35, 72.32, 60.06, 60.01, 27.96, 26.08, 25.94, 25.75 ppm. IR (KBr): 2927,
2106, 1684, 1364, 1208, 1087, 863 cm−1. ESI-MS (m/z): 324.0 (M+ + Na). HRMS: calculated
for [C13H19NO5S+H]: 302.1062, found 302.1063. Elemental Analysis for C13H19NO5S:
calculated C 51.81, H 6.36, N 4.65, O 26.54, S 10.64; found C 51.72, H 6.29, N 4.91, O, 26.52,
S 10.56.

2.3. Synthesis of Saccharide-Derived Amine Thiourea 5a–d and 6a–b

To a stirred solution of sugar isothiocyanate 3 or 4 (0.3 g, 1 mmol) in anhydrous
dichloromethane (2 mL) were added the corresponding chiral diamines (1 mmol). The
reaction mixture was stirred at room temperature for 3 h. After completion of the reaction,
the solvent was removed under vacuum and the residue was purified by column chro-
matography on silica gel using dichloromethane: methanol (100:5) as an eluent to obtain
the desired product (see Supplementary Materials Figures S3–S8 and S11–S16 for the 1H
NMR, 13C NMR, and mass spectra data of compounds 5 and 6).

1,2:4,5-Di-O-isopropylidene-3-[(1S,2S)-2-aminocyclohexyl-1-thioureido]-3-deoxy-α-D-
fructopyranose (5a): yield: 68% as pale-yellow solid; mp: 58–60 ◦C. [α]D

25 −117.00◦ (c
0.002, CHCl3). 1H NMR (400 MHz, CDCl3): δ 6.89 (s, 1H), 6.27 (s, 1H), 4.88 (d, 1H, J = 4 Hz),
4.46–3.76 (m, 8H), 2.04 (s, 1H), 1.84 (s, 1H), 1.63–1.25 (m, 20H). 13C NMR (100 MHz, CDCl3):
δ 181.81, 110.26, 110.11, 105.56, 74.50, 73.90, 72.30, 62.76, 60.26, 60.24, 54.50, 31.79, 31.77,
27.17, 26.82, 26.20, 26.16, 24.92, 24.74 ppm. IR (KBr): 3282.52, 3067.99, 2925.76, 2869.35,
2344.94, 1533.49, 1360.49, 1212.71, 1045.06, 855.95, 728.83. ESI-MS (m/z): 416.3 (M+ + H).
HRMS: calculated for [C19H33N3O5S+H]: 416.2219, found 416.2222. Elemental Analysis for
C19H33N3O5S: calculated C 54.92, H 8.00, N 10.11, O 19.25, S 7.72; found C 54.88, H 7.85, N
10.22, O 19.39, S 7.65.

1,2:4,5-Di-O-isopropylidene-3-[(1R,2R)-2-aminocyclohexyl-1-thioureido]-3-deoxy-α-D-
fructopyranose (5b): yield: 72% as pale-yellow solid; mp: 63–65 ◦C. [α]D

25 −65.00◦ (c 0.001,
CHCl3). 1H NMR (400 MHz, CDCl3): δ 6.58 (s, 1H), 4.94 (s, 1H), 4.58–4.56 (m, 1H), 4.32–3.85
(m, 8H), 1.77 (s, 2H), 1.48–1.17 (m, 20H). 13C NMR (100 MHz, CDCl3): δ 183.93, 110.46,
109.60, 104.77, 72.93, 72.71, 62.24, 62.17, 61.07, 55.86, 55.45, 34.21, 32.27, 31.59, 26.63, 25.66,
24.90, 24.78, 24.66 ppm. IR (KBr): 3278.32, 2926.35, 2342.06, 1540.11, 1455.98, 1361.81, 1233.65,
1054.62, 851.62. ESI-MS (m/z): 416.3 (M+ + H). HRMS: calculated for [C19H33N3O5S+H]:
416.2219, found 416.2221. Elemental Analysis for C19H33N3O5S: calculated C 55.12, H 8.09,
N 10.20, O 18.95, S 7.63; found C 54.99, H 8.27, N 10.35, O 19.01, S 7.37.

1,2:4,5-Di-O-isopropylidene-3-[(1R,2R)-2-amino-1,2-diphenylethyl-1-thioureido]-3-
deoxy-α-D-fructopyranose (5c): yield: 68% as white solid; mp: 61–64 ◦C. [α]D

25 −80.50◦
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(c 0.001, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.40–7.26 (m, 10H), 6.04 (d, 1H, J = 8 Hz),
5.16 (s, 1H), 4.44–3.78 (m, 9H), 1.69 (s, 2H), 1.44 (s, 3H), 1.32 (s, 3H), 1.25 (s, 3H), 1.22 (s,
3H). 13C NMR (100 MHz, CDCl3): δ 182.65, 141.83, 129.17, 129.09, 129.04, 128.81, 128.07,
128.06, 127.97, 126.83, 126.64, 104.55, 104.47, 102.48, 73.03, 71.87, 64.26, 61.89, 60.33, 55.28,
55.26, 26.65, 26.12, 25.96, 25.02 ppm. IR (KBr): 3308.63, 3055.27, 2955.48, 2919.75, 2342.90,
2085.47, 1670.42, 1521.56, 1369.01, 1220.54, 1063.22, 857.54, 765.60, 683.20. ESI-MS (m/z):
514.3 (M+ + H). HRMS: calculated for [C27H35N3O5S+H]: 514.2376, found 514.2386. Ele-
mental Analysis for C27H35N3O5S: calculated C 62.72, H 7.02, N 7.88, O 16.04, S 6.34; found
C 62.56, H 7.16, N 7.64, O 16.28, S 6.36.

1,2:4,5-Di-O-isopropylidene-3-[(1S,2S)-2-amino-1,2-diphenylethyl-1-thioureido]-3-
deoxy-α-D-fructopyranose (5d): yield: 74% as white solid; mp: 88–91 ◦C. [α]D

25 −61.67◦

(c 0.001, CHCl3). 1H NMR (400 MHz, CDCl3): δ 7.37–7.25 (m, 10H), 6.58 (s, 1H), 4.80 (s,
1H), 4.47–3.72 (m, 9H), 1.65 (s, 2H), 1.43 (s, 3H), 1.40 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H). 13C
NMR (100 MHz, CDCl3): δ 183.26, 141.79, 139.24, 136.97, 136.87, 129.26, 128.78, 128.51,
128.36, 128.03, 126.91, 126.81, 111.64, 109.48, 104.50, 73.04, 71.95, 71.88, 64.65, 61.63, 61.49,
55.58, 26.47, 26.40, 25.74, 25.23 ppm. IR (KBr): 3299.65, 3050.39, 2989.10, 2923.72, 2342.79,
2080.59, 1674.68, 1530.30, 1372.98, 1215.66, 1058.34, 1009.98, 852.66, 760.72, 691.52. ESI-MS
(m/z): 514.3 (M+ + H). HRMS: calculated for [C27H35N3O5S+H]: 514.2376, found 514.2384.
Elemental Analysis for C27H35N3O5S: calculated C 65.44, H 6.34, N 7.68, O 14.24, S 6.30;
found C 65.34, H 6.49, N 7.89, O 14.07, S 6.21.

1,2:4,5-Di-O-isopropylidene-3-[(1R,2R)-2-amino-1,2-diphenylethyl-1-thioureido]-3-
deoxy-β-D-fructopyranose (6a): yield: 61% as white solid; mp: 130–134 ◦C. [α]D

25 −197.33◦

(c 0.001, CHCl3). 1H NMR (400 MHz, DMSO-d6): δ 8.25 (d, 1H, J = 8 Hz), 7.96 (d, 1H, ),
7.43–7.18 (m, 10), 5.44 (s, 1H), 4.62–3.56 (m, 10H), 1.44 (s, 3H), 1.40 (s, 3H), 1.26 (s, 3H), 1.24
(s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ 183.11, 140.64, 126.45, 125.80, 125.39, 125.14,
109.19, 106.69, 103.95, 72.80, 72.69, 70.79, 69.52, 62.06, 58.08, 53.13, 26.38, 25.14, 25.06, 24.72
ppm. IR (KBr): 3267.08, 3070.26, 2959.88, 2341.63, 1529.65, 1376.04, 1207.78, 1068.85, 880.52,
687.55. ESI-MS (m/z): 514.3 (M+ + H). HRMS: calculated for [C27H35N3O5S+H]: 514.2376,
found 514.2387. Elemental Analysis for C27H35N3O5S: calculated C 62.94, H 6.91, N 8.51, O
15.23, S 6.40; found C 62.78, H 6.86, N 8.33, O 15.47, S 6.55.

1,2:4,5-Di-O-isopropylidene-3-[(1S,2S)-2-amino-1,2-diphenylethyl-1-thioureido]-3-
deoxy-β-D-fructopyranose (6b): yield: 59% as white solid; mp: 102–105 ◦C. [α]D

25 −155.67◦

(c 0.002, CHCl3). 1H NMR (400 MHz, DMSO-d6): δ 8.26 (d, 1H, J = 8 Hz), 7.96 (d, 1H,
J = 12 Hz), 7.43–7.20 (m, 10H), 5.18 (s, 1H), 4.63–3.57 (m, 10H), 1.44 (s, 3H), 1.39 (s, 3H),
1.29 (s, 3H), 1.27 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 184.93, 143.74, 142.52, 128.34,
127.71, 127.29, 127.07, 127.02, 111.09, 108.59, 105.86, 74.71, 72.70, 71.44, 63.93, 59.99, 59.87,
55.04, 28.29, 26.97, 26.90, 26.67 ppm. IR (KBr): 3281.74, 3059.45, 2979.95, 2930.55, 2351.66,
2093.87, 1538.91, 1376.04, 1227.08, 1078.88, 989.53, 880.52, 767.06, 692.19. ESI-MS (m/z): 514.3
(M+ + H). HRMS: calculated for [C27H35N3O5S+H]: 514.2376, found 514.2389. Elemental
Analysis for C27H35N3O5S: calculated C 63.14, H 6.87, N 8.18, O 15.57, S 6.24; found C 63.04,
H 6.66, N 8.09, O 15.77, S 6.44.

2.4. Typical Procedure for Asymmetric Michael Addition Reaction

To a stirred solution of β-nitrostyrene (0.2 mmol) and ketone (3 equiv.) in dry
dichloromethane (0.25 mL), 15 mol% saccharide-based amine-thiourea organocatalyst
and benzoic acid were added. The reaction mixture was then stirred at room temperature
for an appropriate reaction time, followed by concentration under vacuum. The reaction
mixture was then subjected to purification by column chromatography using silica gel
(60–120 mesh) with a hexane:EtOAc mixture as an eluent to obtain the desired product.
The enantiomeric excess values of the product were determined by HPLC analysis on
a chiral column using a mixture of n-hexane and iso-propanol as the mobile phase (see
Supplementary Materials Figures S17–S46 for the 1H NMR, 13C NMR, and HPLC data for
Michael adducts).
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2.5. Typical Procedure for the Asymmetric Aldol Reaction

A solution of 20 mol% of the saccharide-based amine-thiourea organocatalyst 6a,
20 mol% of benzoic acid, aldehydes (0.2 mmol) and ketone (4 equiv.) in water (0.5 mL)
was stirred at 0 ◦C. The reaction mixture was then concentrated under vacuum, followed
by purification with column chromatography using silica gel with hexane:EtOAc mixture.
The enantiomeric excess values of the products were identified by HPLC analysis on a
chiral column using a mixture of n-hexane and iso-propanol as the mobile phase (see
Supplementary Materials Figures S47–S56 for the 1H NMR, 13C NMR, and HPLC data for
Aldol products).

3. Results and Discussions

As described in Scheme 1, sugar amines 1 (1,2:4,5-di-O-isopropylidene-3-amino-3-deoxy-
α-D-fructopyranose) or 2 (1,2:4,5-di-O-isopropylidene-3-amino-3-deoxy-β-D-fructopyranose)
prepared from D-fructose [50,51], were converted to the corresponding isothiocyanates
(3 and 4) according to the reported procedure [53]. Subsequently, the newly prepared
isothiocyanates were coupled with commercially available chiral 1,2-diamines to afford the
desired bifunctional thiourea organocatalysts 5 and 6 (Figure 1) in good yields.
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Our investigations started with the reaction of acetone with trans-4-bromo-β-nitrostyrene
at room temperature using 10 mol% of amine-thiourea catalysts (5 and 6) in the presence
of DCM as solvent. After completion of the reactions as shown by TLC, the products
were separated using column chromatography. The enantiomeric excess (ee) of the final
products was estimated using a chiral column and compared with the chromatograms
of racemic mixtures, which were prepared by using DL-proline as a catalyst. Table 1
summarizes the results of these preliminary studies. The desired product was generated
with a reasonable yield and enantioselectivity when a saccharide-derived amine catalyst
with an S,S-configured 1,2-diaminocyclohexane moiety 5a was utilized (Table 1, entry 1). In
order to improve the yield as well as stereoselectivity, several additives were subsequently
examined, and they were found to play a crucial role in the outcome of the reactions (Table 1,
entries 2–6). The potential function of the acidic co-catalyst appears to lie in its ability
to facilitate the generation of an enamine intermediate, which arises from the interaction
between the primary amine catalyst and ketones. Remarkably, the best result was obtained
when the catalyst was employed in conjunction with benzoic acid, affording the Michael
adduct 8a with an 89% yield and 96% ee. Other chiral primary-amine-thioureas (5b–d and
6a–b) were also explored for the reaction (Table 1, entries 7–11), and it was observed that all
of the examined thioureas could promote the addition reaction, with yield and selectivity
ranging from moderate to good. However, the thiourea catalyst 5a was found to be the
most promising catalyst for the asymmetric process. Further, a primary amine-thiourea 7,
which do not contain a saccharide scaffold was also evaluated for this asymmetric reaction.
The catalyst afforded the desired product in 78% yield and 88% enantioselectivity (entry
12), which demonstrate that the carbohydrate moiety is essential for maintaining high level
of enantioselectivity.

After identifying the principal catalyst and additive for the asymmetric transformation,
we next examined the influence of their concentrations in the reaction medium. The reaction
could only be completed after 72 h when the catalyst loading was reduced to 5 mol%,
resulting in a 73% yield and 95% ee (Table 1, entry 13). However, when the catalyst loading
was raised to 15 mol%, the reaction time was shortened to 52 h, and the yield (92%) and
enantioselectivity (97% ee) of the product also improved significantly (Table 1, entry 14).
Increasing the catalyst concentration to 20% resulted in a further reduction in reaction time
but a slightly lower ee value (Table 1, entry 15); therefore, it was decided that 15 mol%
was the optimal amount for the catalyst concentration. The observed initial rise in product
formation as well as the increase in enantiomeric excess %, noticed after increasing the
catalyst loading, can be attributed to the simultaneous increase in the number of actives
within the reaction medium. On the other hand, the utilization of a lesser amount of catalyst
causes the catalyst stereocontrol to erode, leading to a reduction in the ee of the resultant
adducts [41,46]. Another variable that influenced the final result of the reaction was the
amount of benzoic acid employed; decreasing the amount had a detrimental effect on the
reaction, whereas raising the concentration improved the yield and ee of the products
(Table 1, entries 16–18). Furthermore, a brief investigation of the solvents revealed that the
reaction is substantially solvent-dependent, with DCM being the most reactive (Table 1,
entries 19–22). Moreover, reducing the reaction temperature prolonged the reaction time
while having no influence on the product’s yield or selectivity (Table 1, entry 23). Thus, the
optimal reaction conditions for this reaction were determined to be 0.2 mmol of nitrostyrene,
15 mol% of 5a, 15 mol% of benzoic acid, and three equivalents of ketones in 0.25 mL of
dichloromethane at room temperature.
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Table 1. Optimization of reaction condition for the asymmetric Michael addition of acetone to
trans-4-bromo-β-nitrostyrene [a].
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Table 1. Optimization of reaction condition for the asymmetric Michael addition of acetone to trans-

4-bromo-β-nitrostyrene [a]. 

 

Entry Solvent Catalyst (mol%) Additives (mol%) Time (h) Yield (%) [b] ee (%) [c] 

1 CH2Cl2 5a (10) - 96 48 57 

2 CH2Cl2 5a (10) AcOH (10) 56 76 92 

3 CH2Cl2 5a (10) PhCO2H (10) 54 89 96 

4 CH2Cl2 5a (10) CF3CO2H (10) 77 54 76 

5 CH2Cl2 5a (10) 4-NO2C6H4CO2H (10) 48 87 32 

6 CH2Cl2 5a (10) 4-BrC6H4CO2H (10) 52 83 43 

7 CH2Cl2 5b (10) PhCO2H (10) 52 82 90 

8 CH2Cl2 5c (10) PhCO2H (10) 66 77 93 

9 CH2Cl2 5d (10) PhCO2H (10) 96 81 86 

10 CH2Cl2 6a (10) PhCO2H (10) 49 88 89 

11 CH2Cl2 6b (10) PhCO2H (10) 72 81 92 

12 CH2Cl2 7 (10) PhCO2H (10) 24 78 88 

13 CH2Cl2 5a (5) PhCO2H (10) 72 73 95 

14 CH2Cl2 5a (15) PhCO2H (10) 52 92 97 

15 CH2Cl2 5a (20) PhCO2H (10) 44 93 96 

16 CH2Cl2 5a (15) PhCO2H (5) 58 92 93 

17 CH2Cl2 5a (15) PhCO2H (15) 48 95 >99 

18 CH2Cl2 5a (15) PhCO2H (20) 44 96 98 

19 Toluene 5a (15) PhCO2H (15) 72 60 88 

20 THF 5a (15) PhCO2H (15) 96 43 93 

21 CH3CN 5a (15) PhCO2H (15) 120 51 66 

22 Neat 5a (15) PhCO2H (15) 48 78 82 

23 [d] CH2Cl2 5a (15) PhCO2H (15) 120 66 98 

[a] Unless otherwise stated, the reactions were conducted with 0.2 mmol trans-4-bromo-β-nitrosty-

rene, three equivalents of acetone and 0.25 mL solvents. [b] Isolated yield of the product. [c] The 

enantiomeric excess values were determined by HPLC. [d] The reaction was performed at 0 °C. 
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15 CH2Cl2 5a (20) PhCO2H (10) 44 93 96

16 CH2Cl2 5a (15) PhCO2H (5) 58 92 93

17 CH2Cl2 5a (15) PhCO2H (15) 48 95 >99

18 CH2Cl2 5a (15) PhCO2H (20) 44 96 98

19 Toluene 5a (15) PhCO2H (15) 72 60 88

20 THF 5a (15) PhCO2H (15) 96 43 93

21 CH3CN 5a (15) PhCO2H (15) 120 51 66

22 Neat 5a (15) PhCO2H (15) 48 78 82

23 [d] CH2Cl2 5a (15) PhCO2H (15) 120 66 98

[a] Unless otherwise stated, the reactions were conducted with 0.2 mmol trans-4-bromo-β-nitrostyrene, three
equivalents of acetone and 0.25 mL solvents. [b] Isolated yield of the product. [c] The enantiomeric excess values
were determined by HPLC. [d] The reaction was performed at 0 ◦C.

After determining the optimal reaction conditions, the scope of the reaction was
investigated using a range of nitrostyrenes and ketones. (Table 2). It was observed that all
the addition processes between acetone and β-nitrostyrene derivatives (Table 2, entries 1–6)
proceeded smoothly, furnishing high yields (81–95%) with excellent enantiomeric excess
values (up to >99%). The findings also demonstrated that the reactions worked extremely
well with both the electron-withdrawing and electron-donating substituted nitroolefins.
However, when acetylacetone was employed as a substrate (Table 2, entries 7 and 8),
thiourea 5a afforded the corresponding products 8g and 8h in good yield, albeit with poor
stereoselectivity. Interestingly, even after prolonging the reaction period to 6 days, the
conjugate addition of cyclohexanone to β-nitrostyrene failed entirely (Table 2, entry 9). The
above findings are similar to those reported previously by Ma [39], Tvrdoňová [44] and
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Wu [37], that the thiourea derivatives having 1,2-diaminecyclohexane scaffolds perform
well with acetone but abysmally with acetylacetone and cyclic ketones.

Table 2. Asymmetric Michael addition of ketones to nitroolefins [a].
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Therefore, additional investigation on thiourea organocatalysts 5b–d and 6a–b was
conducted under the optimum conditions in order to identify the best catalyst for the
asymmetric addition of ketones (other than acetone) to nitrostyrene, and the results are
presented in Table 3, entries 1–5. The experimental results showed that by substituting
the cyclohexane-1,2-diamine moiety with 1,2-diphenylethane-1,2-diamine scaffolds, the
enantioselectivity of the products could be considerably enhanced (Table 3, entry 1 vs.
entry 2–5). Amongst the tested catalysts, amine-thiourea 6a bearing the R,R-configured
1,2-diphenylethylenediamine scaffold delivered the best result (Table 3, entry 4) in terms of
enantioselectivity (84% ee), and it was selected as the optimal catalyst. With the catalyst 6a at
hand, the enantioselective addition of ketones to derivatives of nitroalkenes was conducted
and the corresponding Michael adducts 8h–l were obtained in high yields (73–85%) with
good enantioselectivities (between 71 and 81%) (Table 3, entries 5–9). Additionally, the
reactions of substituted and electron-neutral nitroolefins with cyclohexanone could be
completed, giving moderate yields (up to 55%) and stereoselectivities (up to 83% ee and
68:32% dr) (Table 3, entries 11–13).

The enantioselectivity of the adducts generated by the present saccharide-derived
amine thioureas was compared to that described in the previous literature (Figure 2). So far,
there is only one report available that discusses the application of an organocatalyst contain-
ing a primary-amine thiourea and saccharide scaffold for the asymmetric Michael addition
reaction of acetone to nitroolefins. In this report, different saccharide moieties such as
D-glucose, D-galactose, and D-mannose were employed. After a fine examination, the
desired product could be obtained with a good yield (up to 94%) and enantioselectivity
levels of 84% or higher. Accordingly, when the reported data are compared to our experi-
mental findings, it can be concluded that the primary-amine thiourea organocatalyst, which
incorporates a saccharide scaffold of D-glucose, D-galactose, D-mannose, or D-fructose,
were all able to achieve comparable stereochemical results.
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Table 3. Asymmetric Michael addition of ketones to various β-nitroolefins [a].
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[a] The addition reaction was performed with nitroolefins (0.2 mmol), ketone (3 equiv.), thiourea catalyst
(0.03 mmol), and benzoic acid (0.03 mmol) in 0.25 mL DCM at room temperature. [b] Isolated yield. [c] The dr
values were obtained from 1H NMR data. [d] The ee values were determined by HPLC. [e] The configuration was
assigned according to the references [41,54–58]. [f] Enantioselectivity of the syn-diastereomer.
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Figure 2. Comparison of the catalytic activity of primary-amine thiourea organocatalysts containing
different saccharide scaffold on the asymmetric Michael addition of acetone to nitroolefins [37].

The saccharide-derived organocatalysts 5a–d and 6a–b were also examined for the
asymmetric aldol addition of cyclohexanone to 4-nitro-benzaldehyde, and the results are
summarized in Table 4. According to the experimental results (Table 4, entries 2–7), the
bifunctional thioureas were able to promote the conjugate reaction when water was used
as a reaction medium and benzoic acid (20 mol%) was added as an acidic co-catalyst. The
amine-thiourea catalyst 6a has been shown to be the most effective for the transformation,
producing the required product in moderate yield but with poor adduct stereocontrol.
Additional testing of various additives and solvents failed to improve the catalyst’s stereos-
electivity (entries 8–12). However, the enantioselectivity was slightly increased when the
reaction temperature was lowered to 0 ◦C (entry 13). Even after establishing the optimized
reaction condition, the corresponding aldol adducts 9a–e could only be obtained in modest
yields with enantioselectivity up to 73% and dr up to 33:67 (syn:anti) (Table 5, entries 1–5).

Table 4. Optimization of reaction condition for asymmetric Aldol reaction using catalysts 5 and 6.

Entry Catalyst
(mol%) Temp Additives

(mol%) Solvent Time
(h)

Yield
(%)

dr (%)
Syn:anti

er (%)
Syn:anti

1 5a (20) RT - Neat 12 h 85 50:50 Racemic

2 5a (20) RT PhCO2H (20) H2O 24 h 63 48:52 15:21

3 5b (20) RT PhCO2H (20) H2O 36 h 65 56:44 8:16

4 5c (20) RT PhCO2H (20) H2O 38 h 55 51:49 14:24

5 5d (20) RT PhCO2H (20) H2O 38 h 34 58:42 6:25

6 6a (20) RT PhCO2H (20) H2O 58 h 54 43:57 13:39

7 6b (20) RT PhCO2H (20) H2O 48 h 44 48:52 12:35

8 6a (20) RT CH3CO2H (20) H2O 72 h 65 52:48 9:28

9 6a (20) RT DNP (20) H2O 48 h 72 47:53 11:3

10 6a (20) RT TFA (20) H2O 56 h 66 43:57 19:12

11 6a (20) RT PhCO2H (20) DMSO 96 h 48 44:56 Racemic

12 6a (20) RT PhCO2H (20) DCM 126 h trace - -

13 6a (20) 0 ◦C PhCO2H (20) H2O 144 h 62 47:53 30:47

14 6a (20) 0 ◦C PhCO2H (20) Neat 110 h 72 45:55 9:38
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Table 5. Asymmetric Aldol reaction of cyclohexanone with aldehydes [a].
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[a] The reaction was performed with aldehydes (0.2 mmol), cyclohexanone (4 equiv.), thiourea (0.04 mmol),
and benzoic acid (0.04 mmol) in 0.5 mL of water at 0 ◦C. [b] Isolated yield. [c] The diastereoselectivity was
obtained from 1H NMR data. [d] The enantioselectivity values of the adducts were determined by HPLC. [e] The
configuration of the syn-adduct was assigned according to references [59–61].

4. Conclusions

In summary, we have successfully reported the synthesis of a new class of D-fructose-
derived primary amine-thiourea organocatalysts. It is demonstrated that the chiral organic
molecules are highly enantioselective for the asymmetric Michael addition of aliphatic
ketones and 1,3-diketone to a series of substituted nitroalkenes. The functionalized γ-nitro
ketones could be obtained in good yield (up to 95%) with excellent enantioselectivities
(>99%) and diastereomeric ratios up to 67:33 (syn:anti). Further investigation of the efficacy
of the novel bifunctional organocatalysts in the asymmetric aldol reaction yielded the
corresponding aldol products with low-to-moderate enantio- and diastereoselectivities.
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spectra of the catalysts. Figures S9–S16: HRMS data of the catalysts. Figure S17–S31: 1H and 13C
NMR spectra of Michael adducts. Figures S32–S46: HPLC data of enantioenriched and racemic data
of compound 7a–o. Figures S47–S51: 1H and 13C NMR spectra of Aldol adducts. Figures S52–S56:
HPLC data of enantioenriched and racemic data of compound 8a–e.
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