Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = diarylquinoline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4022 KiB  
Article
Development of Bedaquiline-Loaded SNEDDS Using Quality by Design (QbD) Approach to Improve Biopharmaceutical Attributes for the Management of Multidrug-Resistant Tuberculosis (MDR-TB)
by Rao Nargis Jahan, Zafar Khan, Md. Sayeed Akhtar, Mohd Danish Ansari, Pavitra Solanki, Farhan J. Ahmad, Mohd Aqil and Yasmin Sultana
Antibiotics 2023, 12(10), 1510; https://doi.org/10.3390/antibiotics12101510 - 3 Oct 2023
Cited by 4 | Viewed by 2516
Abstract
Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ [...] Read more.
Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ is a diarylquinoline derivative and exhibits targeted action on mycobacterium tuberculosis, but due to poor solubility, the desired therapeutic action is not achieved. Objective: To develop a QbD-based self-nanoemulsifying drug delivery system of bedaquiline using various oils, surfactants, and co-surfactants. Methods: The quality target product profile (QTPP) and critical quality attributes (CQAs) were identified with a patient-centric approach, which facilitated the selection of critical material attributes (CMAs) during pre-formulation studies and initial risk assessment. Caprylic acid as a lipid, propylene glycol as a surfactant, and Transcutol-P as a co-surfactant were selected as CMAs for the formulation of bedaquiline fumarate SNEDDS. Pseudo-ternary phase diagrams were constructed to determine the optimal ratio of oil and Smix. To optimize the formulation, a Box–Benkhen design (BBD) was used. The optimized formulation (BDQ-F-SNEDSS) was further evaluated for parameters such as droplet size, polydispersity index (PDI), percentage transmittance, dilution studies, stability studies, and cell toxicity through the A549 cell. Results: Optimized BDQ-F-SNEDDS showed well-formed droplets of 98.88 ± 2.1 nm with a zeta potential of 21.16 mV. In vitro studies showed enhanced drug release with a high degree of stability at 25 ± 2 °C, 60 ± 5% and 40 ± 2 °C, 75 ± 5%. Furthermore, BDQ-F-SNEDDS showed promising cell viability in A549 cells, indicating BDQ-F-SNEDDS as a safer formulation for oral delivery. Conclusion: Finally, it was concluded that the utilization of a QbD approach in the development of BDQ-F-loaded SNEDDS offers a promising strategy to improve the biopharmaceutical properties of the drug, resulting in potential cost and time savings. Full article
Show Figures

Figure 1

14 pages, 329 KiB  
Review
New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria
by Eduardo Rodríguez-Bustamante, Saúl Gómez-Manzo, Alvaro De Obeso Fernández del Valle, Roberto Arreguín-Espinosa, Clara Espitia-Pinzón and Eden Rodríguez-Flores
Processes 2023, 11(9), 2793; https://doi.org/10.3390/pr11092793 - 20 Sep 2023
Cited by 1 | Viewed by 2510
Abstract
Tuberculosis (TB) is a bacterial disease that remains a global health threat due to the millions of deaths attributed to it each year. The emergence of drug resistance has exacerbated and further increased the challenges in the fight against this illness. Despite the [...] Read more.
Tuberculosis (TB) is a bacterial disease that remains a global health threat due to the millions of deaths attributed to it each year. The emergence of drug resistance has exacerbated and further increased the challenges in the fight against this illness. Despite the preventive measures using the application of the Bacillus Calmette-Guérin vaccine, the desired immunization outcome is not as high as expected. Conventional TB treatments exhibit serious limitations, such as adverse effects and prolonged duration, leading to a pressing need for alternative and more effective treatment options. Despite significant efforts, it took nearly four decades for diarylquinoline to become the most recently approved medicine for this disease. In addition, various possibilities, such as the usage of medications used for many other conditions (repurposed drugs), have been explored in order to speed up the process of achieving faster outcomes. Natural compounds derived from various sources (microorganisms, plants, and animals) have emerged as potential candidates for combating TB due to their chemical diversity and their unique modes of action. Finally, efforts towards the generation of novel vaccines have received considerable attention. The goal of this paper was to perform an analysis of the current state of treating drug-resistant TB and to evaluate possible approaches to this complicated challenge. Our focus is centered on highlighting new alternatives that can be used to combat resistant strains, which have potentiated the health crisis that TB represents. Full article
12 pages, 1840 KiB  
Article
Preparation Strategies of the Anti-Mycobacterial Drug Bedaquiline for Intrapulmonary Routes of Administration
by Sara E. Maloney, Ian E. Stewart, Brendan K. Podell, Hadley E. Gary, Jeffrey B. Mecham, Bryan J. Berube, Susan L. Baldwin, Rhea N. Coler and Anthony J. Hickey
Pharmaceuticals 2023, 16(5), 729; https://doi.org/10.3390/ph16050729 - 11 May 2023
Cited by 6 | Viewed by 2877
Abstract
Mycobacterium tuberculosis (M.tb) has infected one-quarter of the world’s population and led to the deaths of 1.6 million individuals in 2021 according to estimates from the World Health Organization. The rise in prevalence of multidrug-resistant and extensively drug-resistant M.tb strains coupled [...] Read more.
Mycobacterium tuberculosis (M.tb) has infected one-quarter of the world’s population and led to the deaths of 1.6 million individuals in 2021 according to estimates from the World Health Organization. The rise in prevalence of multidrug-resistant and extensively drug-resistant M.tb strains coupled with insufficient therapies to treat such strains has motivated the development of more effective treatments and/or delivery modalities. Bedaquiline, a diarylquinoline antimycobacterial agent, effectively targets mycobacterial ATP synthase but may lead to systemic complications upon oral delivery. Targeted delivery of bedaquiline to the lungs represents an alternative strategy to harness the sterilizing benefits of the drug against M.tb while mitigating off-target side effects. Two pulmonary delivery modalities were developed herein, including dry powder inhalation and liquid instillation. Despite bedaquiline’s poor water solubility, spray drying was performed in predominantly aqueous conditions (≥80%) to avoid a closed-loop, inert system. Aerosols of spray-dried bedaquiline with L-leucine excipient outperformed spray-dried bedaquiline alone, demonstrating superior fine particle fraction metrics (~89% of the emitted dose below <5 µm), suitable for inhalation therapies. Furthermore, the use of a 2-hydroxypropyl-β-cyclodextrin excipient allowed a molecular dispersion of bedaquiline in an aqueous solution for liquid instillation. Both delivery modalities were successfully administered to Hartley guinea pigs for pharmacokinetic analysis and were well-tolerated by the animals. Intrapulmonary liquid delivery of bedaquiline led to adequate serum absorption and appropriate peak serum concentrations of the drug. The liquid formulation was superior in systemic uptake compared to the powder formulation. The predominant route via which M.tb bacilli enter the body is aerosol droplets that are deposited onto airway surfaces. For this reason, we believe that further studies should focus on inhalation or intrapulmonary therapies that target the site of entry and primary site of infection for M.tb. Full article
(This article belongs to the Special Issue Pharmaceutical Excipients in Formulation Design and Drug Delivery)
Show Figures

Graphical abstract

7 pages, 569 KiB  
Short Note
2-(4-Chlorophenyl)-4-(3,4-dimethoxy-phenyl)-6-methoxy-3-methylquinoline
by Duván A. Rodríguez Enciso, Carlos E. Puerto Galvis and Vladimir V. Kouznetsov
Molbank 2022, 2022(2), M1383; https://doi.org/10.3390/M1383 - 13 Jun 2022
Cited by 2 | Viewed by 2753
Abstract
A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine, p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization processes under microwave irradiation conditions in [...] Read more.
A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine, p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization processes under microwave irradiation conditions in the presence of a green oxidative I2-DMSO system. The structure of the compound was fully characterized by FT-IR, 1H and 13C-NMR, ESI-MS, and elemental analysis. Its physicochemical parameters (Lipinski’s descriptors) were also calculated using the Molinspiration Cheminformatics software. The diarylquinoline molecule obtained is an interesting model with increased lipophilicity and thus permeability, an important descriptor for quinoline-based drug design. Such types of derivatives are known for their anticancer, antitubercular, antifungal, and antiviral activities. Full article
Show Figures

Graphical abstract

7 pages, 968 KiB  
Article
The Chemical Property Position of Bedaquiline Construed by a Chemical Global Positioning System-Natural Product
by Muaaz Mutaz Alajlani
Molecules 2022, 27(3), 753; https://doi.org/10.3390/molecules27030753 - 24 Jan 2022
Cited by 5 | Viewed by 3647
Abstract
Bedaquiline is a novel adenosine triphosphate synthase inhibitor anti-tuberculosis drug. Bedaquiline belongs to the class of diarylquinolines, which are antituberculosis drugs that are quite different mechanistically from quinolines and flouroquinolines. The fact that relatively similar chemical drugs produce different mechanisms of action is [...] Read more.
Bedaquiline is a novel adenosine triphosphate synthase inhibitor anti-tuberculosis drug. Bedaquiline belongs to the class of diarylquinolines, which are antituberculosis drugs that are quite different mechanistically from quinolines and flouroquinolines. The fact that relatively similar chemical drugs produce different mechanisms of action is still not widely understood. To enhance discrimination in favor of bedaquiline, a new approach using eight-score principal component analysis (PCA), provided by a ChemGPS-NP model, is proposed. PCA scores were calculated based on 35 + 1 different physicochemical properties and demonstrated clear differences when compared with other quinolines. The ChemGPS-NP model provided an exceptional 100 compounds nearest to bedaquiline from antituberculosis screening sets (with a cumulative Euclidian distance of 196.83), compared with the different 2Dsimilarity provided by Tanimoto methods (extended connective fingerprints and the Molecular ACCess System, showing 30% and 182% increases in cumulative Euclidian distance, respectively). Potentially similar compounds from publicly available antituberculosis compounds and Maybridge sets, based on bedaquiline’s eight-dimensional similarity and different filtrations, were identified too. Full article
Show Figures

Figure 1

45 pages, 2549 KiB  
Review
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010–2020 Review
by Klaudia T. Angula, Lesetja J. Legoabe and Richard M. Beteck
Pharmaceuticals 2021, 14(5), 461; https://doi.org/10.3390/ph14050461 - 13 May 2021
Cited by 37 | Viewed by 6858
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration [...] Read more.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development. Full article
(This article belongs to the Collection Old Pharmaceuticals with New Applications)
Show Figures

Figure 1

12 pages, 911 KiB  
Review
Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline
by Jickky Palmae Sarathy, Gerhard Gruber and Thomas Dick
Antibiotics 2019, 8(4), 261; https://doi.org/10.3390/antibiotics8040261 - 11 Dec 2019
Cited by 58 | Viewed by 8940
Abstract
Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme’s c-ring to block its rotation, thus inhibiting ATP synthesis [...] Read more.
Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme’s c-ring to block its rotation, thus inhibiting ATP synthesis in the enzyme’s catalytic α3β3-headpiece. An indirect mechanism involves BDQ uncoupling electron transport in the electron transport chain from ATP synthesis at the F-ATP synthase. In a recently uncovered second direct mechanism, BDQ binds to the enzyme’s ε-subunit to disrupt its ability to link c-ring rotation to ATP synthesis at the α3β3-headpiece. However, this mechanism is controversial as the drug’s binding affinity for the isolated ε-subunit protein is moderate and spontaneous resistance mutants in the ε-subunit cannot be isolated. Recently, the new, structurally distinct BDQ analogue TBAJ-876 was utilized as a chemical probe to revisit BDQ’s mechanisms of action. In this review, we first summarize discoveries on BDQ’s mechanisms of action and then describe the new insights derived from the studies of TBAJ-876. The TBAJ-876 investigations confirm the c-ring as a target, while also supporting a functional role for targeting the ε-subunit. Surprisingly, the new findings suggest that the uncoupler mechanism does not play a key role in BDQ’s anti-mycobacterial activity. Full article
(This article belongs to the Special Issue Antibiotics against Tuberculosis)
Show Figures

Figure 1

11 pages, 2969 KiB  
Article
Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus
by Qinghua Cui, Han Cheng, Rui Xiong, Gang Zhang, Ruikun Du, Manu Anantpadma, Robert A. Davey and Lijun Rong
Viruses 2018, 10(12), 678; https://doi.org/10.3390/v10120678 - 30 Nov 2018
Cited by 29 | Viewed by 5472
Abstract
Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally [...] Read more.
Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 μM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 μM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Figure 1

30 pages, 15400 KiB  
Review
Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery
by Iram Khan Iqbal, Sapna Bajeli, Ajit Kumar Akela and Ashwani Kumar
Pathogens 2018, 7(1), 24; https://doi.org/10.3390/pathogens7010024 - 23 Feb 2018
Cited by 53 | Viewed by 12951
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable [...] Read more.
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Show Figures

Figure 1

7 pages, 624 KiB  
Review
New Antituberculosis Drugs: From Clinical Trial to Programmatic Use
by Gina Gualano, Susanna Capone, Alberto Matteelli and Fabrizio Palmieri
Infect. Dis. Rep. 2016, 8(2), 6569; https://doi.org/10.4081/idr.2016.6569 - 24 Jun 2016
Cited by 59 | Viewed by 1895
Abstract
Treatment of multidrug-resistant tuberculosis (MDR-TB) cases is challenging because it relies on second-line drugs that are less potent and more toxic than those used in the clinical management of drug-susceptible TB. Moreover, treatment outcomes for MDR-TB are generally poor compared to drug sensitive [...] Read more.
Treatment of multidrug-resistant tuberculosis (MDR-TB) cases is challenging because it relies on second-line drugs that are less potent and more toxic than those used in the clinical management of drug-susceptible TB. Moreover, treatment outcomes for MDR-TB are generally poor compared to drug sensitive disease, highlighting the need for of new drugs. For the first time in more than 50 years, two new anti-TB drugs were approved and released. Bedaquiline is a first-in-class diarylquinoline compound that showed durable culture conversion at 24 weeks in phase IIb trials. Delamanid is the first drug of the nitroimidazole class to enter clinical practice. Similarly to bedaquiline results of phase IIb studies showed increased sputum-culture conversion at 2 months and better final treatment outcomes in patients with MDR-TB. Among repurposed drugs linezolid and carbapenems may represent a valuable drug to treat cases of MDR and extensively drugresistant TB. The recommended regimen for MDR-TB is the combination of at least four drugs to which M. tuberculosis is likely to be susceptible for the duration of 20 months. Drugs are chosen with a stepwise selection process through five groups on the basis of efficacy, safety, and cost. Clinical phase III trials on new regimen are ongoing that could prove transformative against MDR-TB, by being shorter (six months), simpler (an alloral regimen) and safer than current standard therapy. It is fundamental that the adoption of the new drugs is done responsibly to avoid inappropriate use. Concentration of inpatient MDR-TB treatment in specialized centers could be considered in countries with low numbers of cases in order to provide appropriate clinical case management and to prevent emergence of drug resistance. Full article
15 pages, 201 KiB  
Article
Direct One-Pot Synthesis of Primary 4-Amino-2,3-diaryl-quinolines via Suzuki-Miyaura Cross-Coupling of 2-Aryl-4-azido-3-iodoquinolines with Arylboronic Acids
by Malose Jack Mphahlele and Mamasegare Mabel Mphahlele
Molecules 2011, 16(11), 8958-8972; https://doi.org/10.3390/molecules16118958 - 25 Oct 2011
Cited by 2 | Viewed by 5411
Abstract
Palladium-catalyzed Suzuki-Miyaura cross-coupling of 2-aryl-4-azido-3-iodo-quinolines with arylboronic acids afforded the corresponding primary 4-amino-2,3-diarylquinolines in a single-pot operation along with symmetrical biaryls and traces of the 2,3-diaryl-4-azidoquinolines. A plausible mechanism, which implicates palladium hydride species in the reduction of the incipient 2,3-diaryl-4-azidoquinolines to afford [...] Read more.
Palladium-catalyzed Suzuki-Miyaura cross-coupling of 2-aryl-4-azido-3-iodo-quinolines with arylboronic acids afforded the corresponding primary 4-amino-2,3-diarylquinolines in a single-pot operation along with symmetrical biaryls and traces of the 2,3-diaryl-4-azidoquinolines. A plausible mechanism, which implicates palladium hydride species in the reduction of the incipient 2,3-diaryl-4-azidoquinolines to afford the 4-amino-2,3-diarylquinolines is proposed. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

15 pages, 226 KiB  
Article
One-Pot Synthesis of 2,3,4-Triarylquinolines via Suzuki-Miyaura Cross-Coupling of 2-Aryl-4-chloro-3-iodoquinolines with Arylboronic Acids
by Malose Jack Mphahlele and Mamasegare Mabel Mphahlele
Molecules 2010, 15(10), 7423-7437; https://doi.org/10.3390/molecules15107423 - 22 Oct 2010
Cited by 10 | Viewed by 6490
Abstract
Palladium–catalyzed Suzuki cross-coupling of 2-aryl-4-chloro-3-iodoquinolines with excess arylboronic acids (2.5 equiv.) in the presence of tricyclohexylphosphine afforded the 2,3,4-triarylquinolines in one-pot operation. The incipient 2,3-diaryl-4-chloroquinolines were also prepared and transformed to the primary 4-amino-2,3-diarylquinolines and 2,3-diarylquinolin-4(1H)-ones. Full article
Show Figures

Figure 1

Back to TopTop