Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (321)

Search Parameters:
Keywords = diamond cutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 221
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

17 pages, 3811 KiB  
Article
Enhanced Cooling Performance in Cutting Tools Using TPMS-Integrated Toolholders: A CFD-Based Thermal-Fluidic Study
by Haiyang Ji, Zhanqiang Liu, Jinfu Zhao and Bing Wang
Modelling 2025, 6(3), 73; https://doi.org/10.3390/modelling6030073 - 28 Jul 2025
Viewed by 290
Abstract
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study [...] Read more.
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study proposes a novel internal cooling strategy that integrates triply periodic minimal surface (TPMS) structures into the toolholder, aiming to enhance localized heat removal from the cutting region. The thermal-fluidic behaviors of four TPMS topologies (Gyroid, Diamond, I-WP, and Fischer–Koch S) were systematically analyzed under varying coolant velocities using computational fluid dynamics (CFD). Several key performance indicators, including the convective heat transfer coefficient, Nusselt number, friction factor, and thermal resistance, were evaluated. The Diamond and Gyroid structures exhibited the most favorable balance between heat transfer enhancement and pressure loss. The experimental validation confirmed the CFD prediction accuracy. The results establish a new design paradigm for integrating TPMS structures into toolholders, offering a promising solution for efficient, compact, and sustainable cooling in advanced cutting applications. Full article
Show Figures

Figure 1

16 pages, 3244 KiB  
Article
Finite Element Analysis of Dental Diamond Burs: Stress Distribution in Dental Structures During Cavity Preparation
by Chethan K N, Abhilash H N, Afiya Eram, Saniya Juneja, Divya Shetty and Laxmikant G. Keni
Prosthesis 2025, 7(4), 84; https://doi.org/10.3390/prosthesis7040084 - 16 Jul 2025
Viewed by 261
Abstract
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This [...] Read more.
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This study employed finite element analysis (FEA) to investigate the stress distribution in dental structures during cavity preparation using round diamond burs of varying diameters and depths of cut (DOC). Methods: A three-dimensional human maxillary first molar was generated from computed tomography (CT) scan data using 3D Slicer, Fusion 360, and ANSYS Space Claim 2024 R-2. Finite element analysis (FEA) was conducted using ANSYS Workbench 2024. Round diamond burs with diameters of 1, 2, and 3 mm were modeled. Cutting simulations were performed for DOC of 1 mm and 2 mm. The burs were treated as rigid bodies, whereas the dental structures were modeled as deformable bodies using the Cowper–Symonds model. Results: The simulations revealed that larger bur diameters and deeper cuts led to higher stress magnitudes, particularly in the enamel and dentin. The maximum von Mises stress was reached at 136.98 MPa, and dentin 140.33 MPa. Smaller burs (≤2 mm) and lower depths of cut (≤1 mm) produced lower stress values and were optimal for minimizing dental structural damage. Pulpal stress remained low but showed an increasing trend with increased DOC and bur size. Conclusions: This study provides clinically relevant guidance for reducing mechanical damage during cavity preparation by recommending the use of smaller burs and controlled cutting depths. The originality of this study lies in its integration of CT-based anatomy with dynamic FEA modeling, enabling a realistic simulation of tool–tissue interaction in dentistry. These insights can inform bur selection, cutting protocols, and future experimental validations. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

22 pages, 5230 KiB  
Article
Integrated CAD/CAM Approach for Parametric Design and High Precision Fabrication of Planar Curvilinear Structures
by Jonas T. Churchill-Baird, O. Remus Tutunea-Fatan and Evgueni V. Bordatchev
Micromachines 2025, 16(7), 805; https://doi.org/10.3390/mi16070805 - 11 Jul 2025
Viewed by 296
Abstract
Curvilinear V-grooves are increasingly employed in functional surfaces with applications ranging from fluidics to tribology and optics. Despite their widespread use, the accurate and repeatable fabrication of curvilinear V-grooves remains challenging due to their inherent geometric complexity and the lack of relevant commercial [...] Read more.
Curvilinear V-grooves are increasingly employed in functional surfaces with applications ranging from fluidics to tribology and optics. Despite their widespread use, the accurate and repeatable fabrication of curvilinear V-grooves remains challenging due to their inherent geometric complexity and the lack of relevant commercial CAD/CAM systems. To address this, the present study proposes a CAD/CAM integrated framework capable of automating the design and fabrication of functional surfaces comprising curvilinear V-grooves generated by multi-axis single-point diamond cutting (SPDC). The framework is organized into three main functional blocks supported by seven secondary modules that encompass the entire process from V-groove geometry definition to cutting. The developed framework was practically validated by fabricating sinusoidal V-grooves on a flat surface and testing the capillary flow functionality of a curvilinear pattern. These results demonstrate the relevance of the integrated framework to curvilinear V-groove fabrication, thereby offering a versatile solution for certain types of surface engineering applications. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

17 pages, 10204 KiB  
Article
Effect of Nanographene Water-Based Lubricant (NGWL) on Removal Behavior of Pure Copper
by Ziheng Wang, Zhenjing Duan, Shuaishuai Wang, Ji Tan, Peng Bian, Jiyu Liu, Jinlong Song and Xin Liu
Lubricants 2025, 13(7), 286; https://doi.org/10.3390/lubricants13070286 - 26 Jun 2025
Viewed by 435
Abstract
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy [...] Read more.
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy and surface quality. To achieve high-quality and efficient processing of pure copper, this paper proposes to use nanographene water-based lubricant (NGWL) to regulate its removal behavior. A single-grain diamond scribing test and a micro-milling test were carried out to systematically study the action mechanism of NGWL on removal behavior of pure copper. The results showed that, compared with dry scribing at normal forces of 100, 400, 700, and 1000 mN, the material removal efficiency induced by NGWL was increased by 54.1%, 80.7%, 44.8%, and 30.3%, respectively. Compared with dry micro-milling at feed speeds of 200, 600, 1000, and 1400 μm/s, for the 75°XT4E tool, the surface roughness Sa with NGWL-assisted micro-milling was reduced by 75.5%, 73.1%, 61.4%, and 44.2%, respectively. Similarly, for the 65°UDT4E tool, compared to dry micro-milling, the Sa with NGWL lubrication was also reduced by 28.9%, 52.2%, 54.4%, and 36.9%, respectively. The Sa of pure copper induced by NGWL could be as low as about 20 nm without scales. Overall, NGWL can regulate removal behavior of pure copper by alleviating plastic deformation and promoting ductile fracture, thereby providing a new approach to achieving high-quality and efficient processing of pure copper. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

20 pages, 13699 KiB  
Article
Modeling and Cutting Mechanics in the Milling of Polymer Matrix Composites
by Krzysztof Ciecieląg, Andrzej Kawalec, Michał Gdula and Piotr Żurek
Materials 2025, 18(13), 3017; https://doi.org/10.3390/ma18133017 - 25 Jun 2025
Viewed by 318
Abstract
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting [...] Read more.
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting forces and the determination of mathematical models of these forces. The models describe the values of forces as a function of the milling parameters. In addition, the cutting resistance of the composites was determined. The influence of the material and rake angle of individual tools on the cutting force components was also determined. Measurements of the main (tangential) cutting force showed that, using large rake angles for uncoated carbide tools, one could obtain maximum force values that were similar to those obtained with polycrystalline diamond tools with a small rake angle. The results of the analysis of the tangential component of cutting resistance showed that, regardless of the rake angle, the values range from 140 N to 180 N. An analysis of the feed component of cutting resistance showed that the maximum values of this force ranged from 46 N to 133 N. The results showed that the highest values of the feed component of cutting resistance occurred during the machining of polymer composites with carbon fibers and that they were most affected by feed per tooth. It was also shown that the force models determined during milling with diamond insert tools had the highest coefficient of determination in the range of 0.90–0.99. The cutting resistance analysis showed that the values tested are in the range of 3.8 N/mm2 to 15.5 N/mm2. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

22 pages, 8548 KiB  
Article
Study on the Motion Trajectory of Abrasives and Surface Improvement Mechanism in Ultrasonic-Assisted Diamond Wire Sawing Monocrystalline Silicon
by Honghao Li, Yufei Gao, Shengtan Hu and Zhipu Huo
Micromachines 2025, 16(6), 708; https://doi.org/10.3390/mi16060708 - 13 Jun 2025
Viewed by 417
Abstract
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of [...] Read more.
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of ultrasonic vibration on the cutting arc length, cutting depth, and interference of multi-abrasive trajectories was analyzed through the establishment of an abrasive motion trajectory model. The ultrasonic vibration transforms the abrasive trajectory from linear to sinusoidal, thereby increasing the cutting arc length while reducing the cutting depth. A lower wire speed was found to be more conducive to exploiting the advantages of ultrasonic vibration. Furthermore, the intersecting interference of multi-abrasive trajectories contributes to enhanced surface quality. Experimental studies were conducted on monocrystalline silicon (mono-Si) to verify the effectiveness of ultrasonic vibration in improving surface morphology and reducing wire marks during the sawing process. The experimental results demonstrate that, compared with DWS, UADWS achieves a significantly lower surface roughness Ra and generates micro-pits. The ultrasonic vibration induces a micro-grinding effect on both peaks and valleys of wire marks, effectively reducing their peak–valley (PV) height. This study provides a theoretical basis for optimizing UADWS process parameters and holds significant implications for improving surface quality in mono-Si wafer slicing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

12 pages, 7645 KiB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 389
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

27 pages, 10923 KiB  
Article
Food Processing with UHP Waterjets
by Mohamed Hashish
Appl. Sci. 2025, 15(11), 6246; https://doi.org/10.3390/app15116246 - 1 Jun 2025
Viewed by 562
Abstract
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, [...] Read more.
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, sensors, cutting heads, and software. While UHP technology is commercially available at 621 MPa of pressure, most food cutting systems’ pressure is below 400 MPa. Highly focused waterjets are important for efficient slicing of food and thus diamond orifices with sharp entry edges are used in specially designed cutting using fast acting on/off valves. Automation is at an advanced level for fish, pin bone removal, poultry, meat, and vegetable processing systems where upstream sensor data are used with CNC controllers to determine the paths of the cutting jet(s) at relatively high production rates for portioning or trimming to tight specifications. Harvesting lettuce proved to be highly successful in improving the overall productivity and working environment ergonomics. An important advantage of the waterjet in increasing the shelf life of trimmed food is presented. For example, celery and lettuce shelf life increases by days over mechanical cutting. The use of salt as an abrasive material in abrasive waterjet cutting nozzles was found to be impractical for cutting meat with bone and more work is needed in this area. Bakery, cake, and sandwich cutting applications are utilized in actual plants in the USA and Europe. For example, small envelop cake cutting machines using relatively low-power jets are used for cutting cake into different shapes. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 456
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 2553 KiB  
Article
Investigating the Influence of Mechanical Loads on Built-Up Edge Formation Across Different Length Scales at Diamond–Transition Metal Interfaces
by Mazen S. Alghamdi, Mohammed T. Alamoudi, Rami A. Almatani and Meenakshisundaram Ravi Shankar
J. Manuf. Mater. Process. 2025, 9(6), 176; https://doi.org/10.3390/jmmp9060176 - 28 May 2025
Viewed by 488
Abstract
Investigating failure mechanisms in cutting tools used in advanced industries like biomedical and aerospace, which operate under extreme mechanical and chemical conditions, is essential to prevent failures, optimize performance, and minimize financial losses. The diamond-turning process, operating at micrometer-length scales, forms a tightly [...] Read more.
Investigating failure mechanisms in cutting tools used in advanced industries like biomedical and aerospace, which operate under extreme mechanical and chemical conditions, is essential to prevent failures, optimize performance, and minimize financial losses. The diamond-turning process, operating at micrometer-length scales, forms a tightly bonded built-up edge (BUE). The tribochemical interactions between a single-crystal diamond and its deformed chip induce inter-diffusion and contact, rapidly degrading the cutting edge upon BUE fracture. These effects intensify at higher deformation speeds, contributing to the observed rapid wear of diamond tools during d-shell-rich metal machining in industrial settings. In this study, these interactions were studied with niobium (Nb) as the transition metal. Tribochemical effects were observed at low deformation speeds (quasistatic; <1 mm/s), where thermal effects were negligible under in situ conditions inside the FEI /SEM vacuum chamber room. The configuration of the interface region of diamond and transition metals was characterized and analyzed using focused ion beam (FIB) milling and subsequently characterized through transmission electron microscopy (TEM). The corresponding inter-diffusion was examined by elucidating the phase evolution, element concentration profiles, and microstructure evolution via high-resolution TEM/Images equipped with an TEM/EDS system for elemental characterization. Full article
Show Figures

Figure 1

17 pages, 2426 KiB  
Article
Explanatory Model of the Material Removal Mechanisms and Grinding Wheel Wear During Grinding of PCD with Water-Based Cooling Lubricants
by Peter Breuer, Eike Reuter, Sebastian Prinz and Thomas Bergs
Processes 2025, 13(6), 1671; https://doi.org/10.3390/pr13061671 - 26 May 2025
Viewed by 423
Abstract
Polycrystalline diamond (PCD), which is widely used to manufacture cutting tools due to its extreme hardness, in most cases requires grinding for machining. The cooling lubricant selected for PCD grinding largely affects the frictional conditions and the thermo-mechanical load collective between the diamond [...] Read more.
Polycrystalline diamond (PCD), which is widely used to manufacture cutting tools due to its extreme hardness, in most cases requires grinding for machining. The cooling lubricant selected for PCD grinding largely affects the frictional conditions and the thermo-mechanical load collective between the diamond grinding wheel and the PCD. As a consequence of this, the material removal and grinding wheel wear mechanisms during grinding PCD depend on the cooling lubricant used. In this study, experimental and numerical investigations were taken into account, demonstrating that using a water-based cooling lubricant during PCD grinding predominantly leads to a mechanical load on workpiece and grinding wheel rather than thermal loads. These original findings can be used to complement existing explanatory models of the PCD grinding process valid for grinding with oil as a cooling lubricant. The aim of this work is to contribute a novel extension to the existing material removal and grinding wheel wear models to enable them for the grinding process with a water-based cooling lubricant. The knowledge obtained from this work is intended to serve as a basis for future industrial process design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

27 pages, 3616 KiB  
Review
The Global Potato-Processing Industry: A Review of Production, Products, Quality and Sustainability
by Xiaoye Hu, Hong Jiang, Zixuan Liu, Mingjie Gao, Gang Liu, Shilong Tian and Fankui Zeng
Foods 2025, 14(10), 1758; https://doi.org/10.3390/foods14101758 - 15 May 2025
Cited by 1 | Viewed by 2271
Abstract
The global potato industry has changed dramatically over the past half century—the potato-planting area in Poland decreased from 2,819,200 hectares in 1961 to 188,580 hectares in 2023, representing a 1394.96% relative decrease; South Africa’s potato production increased from 332,000 tons in 1961 to [...] Read more.
The global potato industry has changed dramatically over the past half century—the potato-planting area in Poland decreased from 2,819,200 hectares in 1961 to 188,580 hectares in 2023, representing a 1394.96% relative decrease; South Africa’s potato production increased from 332,000 tons in 1961 to 2.42 million tons in 2023, representing a 627.60% relative increase. This study provides a comprehensive comparison of the potato-processing industries in China and major global producers. The global potato-processing market was valued at USD 40.97 billion in 2023 and is projected to reach USD 60.08 billion by 2031, with significant variations in production and consumption patterns across countries. As the world’s largest potato producer, China processes approximately 15% of its total potato output, whereas India, the second-largest producer, processes only about 7%. In contrast, developed countries such as the United States, Canada, and leading European nations—including Germany, the Netherlands, France, and Belgium—demonstrate significantly higher levels of processing, underpinned by advanced technologies, automation, and efficient quality-control systems. In order to conduct an in-depth analysis of the competitiveness of China’s potato-processing industry, this paper employs the Diamond Model to carry out relevant research. Despite rapid progress, China’s potato-processing industry still lags behind these global leaders in key aspects such as automation, production efficiency, and product quality. Differences remain evident in major processed potato products, including French fries, potato chips, potato flakes, and starch, as well as in raw-material supply chains, environmental sustainability, and market competitiveness. However, China’s role in the global potato-processing industry is evolving. A major milestone was reached in 2022 when China became a net exporter of frozen French fries for the first time, signaling a shift in its position in the international market. This transformation highlights China’s emergence as a key player in global French fry exports and suggests a potential restructuring of the industry. While challenges remain, the growing acceptance of Chinese French fries in international markets reflects improving product quality. Future industry trends point toward increased automation, product innovation, circular economy practices, and greater international market integration. To enhance its competitiveness, China must further modernize its processing industry, adopt cutting-edge technologies, strengthen quality control, and expand its global footprint to secure a stronger position in the evolving international potato-processing landscape. Full article
(This article belongs to the Special Issue Potato Processing and Comprehensive Utilization of Its By-Products)
Show Figures

Figure 1

12 pages, 1944 KiB  
Article
An Experimental Study on Mud Adhesion Performance of a PDC Drill Bit Based on a Biomimetic Non-Smooth Surface
by Ming Chen and Qingchao Li
Processes 2025, 13(5), 1464; https://doi.org/10.3390/pr13051464 - 10 May 2025
Viewed by 679
Abstract
In recent years, polycrystalline diamond compact (PDC) drill bits have seen significant advancements. They have replaced over 90% of the workload traditionally handled by roller cone bits and have become the predominant choice in energy drilling due to their superior efficiency and durability. [...] Read more.
In recent years, polycrystalline diamond compact (PDC) drill bits have seen significant advancements. They have replaced over 90% of the workload traditionally handled by roller cone bits and have become the predominant choice in energy drilling due to their superior efficiency and durability. However, PDC drill bits are susceptible to adhesion of rock cuttings during drilling in muddy formations, leading to mud accumulation on the bit surface. This phenomenon can cause drill bit failure and may contribute to downhole complications, including tool failure and borehole instability. The adhesion issue between PDC drill bits and mud rock cuttings underground is primarily influenced by the normal adhesion force between the drill bit surface and the mud rock cuttings. Therefore, biological non-smooth surface technology is applied to the prevention and control of drill bit balling. It is an optimal selection of biomimetic non-smooth surface structures with reduced adhesion and detachment properties. A non-smooth surface model for the PDC drill bit body is established through the analysis of the morphological characteristics of natural biological non-smooth surfaces. An experimental platform is designed and manufactured to evaluate the adhesion performance of non-smooth surface specimens. Indoor experiments are conducted to test the normal adhesion force of non-smooth surface specimens under varying morphologies, sizes, and contact times with clay. Finally, the anti-adhesion performance of the non-smooth surface unit structures is then analyzed. The normal adhesion force with a contact time of 12 h is as follows: 340 Pa of big square raised, 250 Pa of middle square raised, 190 Pa of small square raised, 315 Pa of big circular groove, 280 Pa of middle circular groove, 200 Pa of small circular groove, 225 Pa of big dot pit, 205 Pa of middle dot pit, and 130 Pa of small dot pit. Compared with the normal adhesion force of 550 Pa for smooth surface specimens with a contact time of 12 h, the anti-adhesion properties of the three non-smooth surface unit structure specimens designed in this paper were verified. We analyzed the anti-adhesion performance of non-smooth surface unit structures. At the critical contact time when the adhesion force tends to stabilize, the adhesion forces of different specimens are as follows: 330 Pa of big square raised, 237.5 Pa of middle square raised, 175 Pa of small square raised, 290 Pa of big circular groove, 250 Pa of middle circular groove, 160 Pa of small circular groove, 210 Pa of big dot pit, 185 Pa of middle dot pit, and 115 Pa of small dot pit. The results indicate that the anti-adhesion effect of small dot pit structures is the most effective, while the anti-adhesion effect of large square convex structures is the least effective. As the size of the unit structure decreases, it becomes more similar to the surface size of the organism. Additionally, a shorter contact time with clay leads to a better anti-adhesion effect. These findings provide new insights and research directions for the effective prevention and control of mud wrapping on PDC drill bits. Full article
Show Figures

Figure 1

17 pages, 7177 KiB  
Article
Wear Resistance of the Refractory WC–Co Diamond-Reinforced Composite with Zirconia Additive
by Boranbay Ratov, Volodymyr Mechnik, Edvin Hevorkian, Miroslaw Rucki, Daniel Pieniak, Nikolai Bondarenko, Vasyl Kolodnitskyi, Sergii Starik, Viktor Bilorusets, Volodymyr Chishkala, Perizat Sundetova, Aldabergen Bektilevov, Anar Shukmanova and Askar Seidaliyev
Materials 2025, 18(9), 1965; https://doi.org/10.3390/ma18091965 - 25 Apr 2025
Viewed by 758
Abstract
This paper provides deeper insights into the performance of diamond particulate reinforced refractory composites used for cutting tools in the oil and gas industries. In particular, 25Cdiamond–70.5WC–4.5Co composites were enhanced with zirconia additives in proportions of 4 wt.% and 10 wt.% [...] Read more.
This paper provides deeper insights into the performance of diamond particulate reinforced refractory composites used for cutting tools in the oil and gas industries. In particular, 25Cdiamond–70.5WC–4.5Co composites were enhanced with zirconia additives in proportions of 4 wt.% and 10 wt.% via the spark plasma sintering method. Wear tests were performed, and the analyses of elemental composition, morphology, and microstructure were completed. It was found that the addition of yttria-stabilized zirconia increased the plasticity of the matrix and thus introduced the ductile fracture mechanism, reducing the role of abrasive wear. As a result, the specific wear rate was reduced by 44% after the addition of 4 wt.% of zirconia and by 80% with 10 wt.% of ZrO2. The presence of zirconia contributed to the increase in the retention force between the matrix and diamond grits, which further reduced the intensity of the abrasive mechanism. Full article
Show Figures

Figure 1

Back to TopTop