Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = diabetic neuropathy management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3767 KiB  
Case Report
Confirming the Presence of Neurapraxia and Its Potential for Immediate Reversal by Novel Diagnostic and Therapeutic Ultrasound-Guided Hydrodissection Using 5% Dextrose in Water Without Local Anesthetics: Application in a Case of Acute Radial Nerve Palsy
by Ho Won Lee, Jihyo Hwang, Chanwool Park, Minjae Lee, Yonghyun Yoon, Yeui-Seok Seo, Hyemi Yu, Rowook Park, Jaehyun Shim, Junhyuk Ann, Daniel Chiung-Jui Su, Teinny Suryadi, Keneath Dean Reeves and King Hei Stanley Lam
Diagnostics 2025, 15(15), 1880; https://doi.org/10.3390/diagnostics15151880 - 26 Jul 2025
Viewed by 2091
Abstract
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia [...] Read more.
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia as the underlying pathology. Case Presentation: A 54-year-old diabetic female presented with acute left wrist drop without trauma. Examination confirmed radial nerve palsy (MRC grade 0 wrist extension), while radiographs ruled out structural causes. Ultrasound revealed fascicular swelling at the spiral groove. Under real-time guidance, 50 mL D5W (no local anesthetic) was injected to hydrodissect the radial nerve. Immediate post-procedure assessment showed restored wrist extension (medical research council (MRC) grade 4+). At one- and three-month follow-ups, the patient maintained complete resolution of symptoms and normal function. Conclusions: This case highlights two key findings: (1) HD with D5W can serve as both a diagnostic tool (confirming reversible neurapraxia through immediate response) and therapeutic intervention, and (2) early HD may circumvent prolonged disability associated with conservative management. The absence of electrodiagnostic studies limits objective severity assessment, though ultrasound localized the lesion. While promising, these observations require validation through controlled trials comparing HD to standard care, particularly in diabetic patients with heightened compression susceptibility. Technical considerations—including optimal injectate volume and the role of adjuvant therapies—warrant further investigation. US-guided HD with D5W emerges as a minimally invasive, surgery-sparing option for acute compressive radial neuropathies, with potential to redefine treatment paradigms when applied at symptom onset. Full article
(This article belongs to the Special Issue Recent Advances and Application of Point of Care Ultrasound)
Show Figures

Figure 1

14 pages, 1359 KiB  
Article
Delving into the Perception, Use, and Context of Duloxetine in Clinical Practice: An Analysis Based on the Experience of Healthcare Professionals
by Oscar Fraile-Martinez, Cielo Garcia-Montero, Miguel Angel Alvarez-Mon, Miguel A. Ortega, Melchor Alvarez-Mon and Javier Quintero
Brain Sci. 2025, 15(7), 757; https://doi.org/10.3390/brainsci15070757 - 17 Jul 2025
Viewed by 390
Abstract
Background and objectives: Duloxetine is widely used for the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and various types of neuropathic pain. While its efficacy is well documented in clinical trials, less is known about how it is perceived and [...] Read more.
Background and objectives: Duloxetine is widely used for the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and various types of neuropathic pain. While its efficacy is well documented in clinical trials, less is known about how it is perceived and utilized in routine psychiatric practice. To address this knowledge gap, we conducted a cross-sectional observational study involving 80 psychiatrists from Spain to assess real-world clinical attitudes toward duloxetine. Methods: Participants completed a 20-item multiple-choice questionnaire that examined familiarity, perceived efficacy in multiple conditions (MDD, GAD, neuropathic pain, somatization, and quality of life), and perspectives on tolerability, safety, adherence, and overall satisfaction. Results: Survey results indicated that a large majority of psychiatrists frequently prescribe duloxetine, particularly for patients with MDD and comorbid chronic pain. Notably, 94% rated it as either “more effective” or “much more effective” for diabetic peripheral neuropathic pain. Psychiatrists reported a high perceived efficacy of duloxetine: 94% rated it as “more effective” or “much more effective” for diabetic peripheral neuropathy, and 93% gave similarly positive ratings for general neuropathic pain. For somatization, 70% found it “effective” or “very effective”, and 83% observed improvements in quality of life for many of their patients. Psychiatrists generally reported favorable perceptions of duloxetine’s tolerability profile: 97.5% rated it as the antidepressant associated with the least weight gain, and 82.5% perceived fewer sexual side effects compared to other options. Sedation and gastrointestinal side effects were generally considered mild or less severe. In terms of treatment adherence, 69% rated it as “better” or “much better” than other antidepressants, and 80% found its combination with other antidepressants to be “favorable” or “very favorable”. Overall satisfaction was high, with 99% of psychiatrists reporting being either “satisfied” or “very satisfied” with its use. The side effect profile was generally viewed as manageable, with low perceived rates of weight gain, sedation, and sexual dysfunction. Furthermore, 96% of respondents expressed a willingness to recommend duloxetine to their colleagues. Conclusions: Psychiatrists reported highly favorable attitudes toward duloxetine, viewing it as a flexible treatment option in routine care. However, these findings reflect clinicians’ subjective perceptions rather than objective clinical outcomes and should be interpreted accordingly. Full article
(This article belongs to the Special Issue Anxiety, Depression and Stress)
Show Figures

Figure 1

15 pages, 1274 KiB  
Review
Dietary and Nutritional Strategies to Prevent Uremic Toxin Formation and Slow the Progression of Diabetic Kidney Disease
by Karolina Kędzierska-Kapuza, Anna Grudniewska, Anna Durma, Robert Małecki, Edward Franek and Małgorzata Szczuko
J. Clin. Med. 2025, 14(13), 4701; https://doi.org/10.3390/jcm14134701 - 3 Jul 2025
Viewed by 549
Abstract
Background: Type 2 diabetes (T2D) is the leading cause of chronic kidney disease (CKD), responsible for approximately 60% of cases. Diabetic kidney disease (DKD) affects 20–50% of individuals with diabetes, with diabetes-related ESKD cases rising steadily worldwide from 22.1% in 2000 to 31.3% [...] Read more.
Background: Type 2 diabetes (T2D) is the leading cause of chronic kidney disease (CKD), responsible for approximately 60% of cases. Diabetic kidney disease (DKD) affects 20–50% of individuals with diabetes, with diabetes-related ESKD cases rising steadily worldwide from 22.1% in 2000 to 31.3% in 2015. Methods: This review examines the literature published up to 25 February 2025, using a systematic search in PubMed and Scopus. Keywords included uremic toxins and diabetic kidney disease and/or gut microbiota, or dysbiosis or gut–kidney axis. Studies were independently assessed by a minimum of three authors, with discrepancies resolved through consensus. Results: Gut microbiota dysbiosis is a key driver of DKD progression, making the gut–kidney axis a promising therapeutic target. A “nuts and fruits” dietary pattern reduces the DKD risk by 43.3%, while an animal protein intake lowers the diabetic peripheral neuropathy risk by 42.8%. High-fiber diets and supplements like resistant starch may reduce uremic toxins through microbiota modulation. Conclusions: Microbiota-targeted interventions, including probiotics, synbiotic, and dietary modifications, show potential in reducing uremic toxin production and inflammation, though DKD-specific evidence remains limited. Lactobacillus and Bifidobacterium strains may help lower urea and creatinine levels, but outcomes vary by disease stage. Further research is needed to confirm the efficacy of dietary and probiotic approaches in DKD management. Full article
Show Figures

Figure 1

26 pages, 561 KiB  
Review
Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications
by Max Denisson Maurício Viana, Sthefane Silva Santos, Anna Beatriz Oliveira Cruz, Maria Vitória Abreu Cardoso de Jesus, Pedro Santana Sales Lauria, Marvin Paulo Lins and Cristiane Flora Villarreal
Antioxidants 2025, 14(7), 767; https://doi.org/10.3390/antiox14070767 - 22 Jun 2025
Viewed by 715
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which [...] Read more.
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which contribute to disease progression. In this context, probiotics have emerged as promising therapeutic agents due to their ability to modulate oxidative stress, improve glycemic control, and influence gut microbial balance. This review summarizes preclinical and clinical evidence supporting the antioxidant potential of probiotics in DM management, with a focus on underlying mechanisms. Strains from the Lactobacillus and Bifidobacterium genera are the most extensively studied and have demonstrated hypoglycemic and antioxidant effects, including the enhancement of key antioxidant enzymes and reductions in lipid peroxidation and nitrosative stress markers. Probiotics have also shown beneficial effects in DM-associated complications, particularly diabetic neuropathy and nephropathy. While clinical data are still limited, recent findings underscore oxidative stress as a critical therapeutic target influenced by probiotic interventions. Overall, current evidence supports probiotics as a complementary strategy for managing DM and its complications, highlighting the need for further well-designed clinical trials exploring diverse strains, formulations, and dosing regimens. Full article
Show Figures

Figure 1

19 pages, 469 KiB  
Review
Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications
by Elisabetta Maida, Paola Caruso, Simona Bonavita, Gianmarco Abbadessa, Giuseppina Miele, Miriam Longo, Lorenzo Scappaticcio, Eleonora Ruocco, Francesca Trojsi, Katherine Esposito, Luigi Lavorgna and Maria Ida Maiorino
J. Clin. Med. 2025, 14(12), 4240; https://doi.org/10.3390/jcm14124240 - 14 Jun 2025
Viewed by 1130
Abstract
Background/Objectives: Despite the recent advances in glucose-lowering therapy, achieving diabetes control remains challenging. With the advancing progress of innovative digital health technologies, management of diabetes is taking advantage from telehealth and telemedicine, which allow for remote assistance, virtual visits, and monitoring of [...] Read more.
Background/Objectives: Despite the recent advances in glucose-lowering therapy, achieving diabetes control remains challenging. With the advancing progress of innovative digital health technologies, management of diabetes is taking advantage from telehealth and telemedicine, which allow for remote assistance, virtual visits, and monitoring of diabetes-related parameters, and facilitate the exchange of documents and reports to support clinical decisions. We aim to provide an overview of the impact of telehealth and digital technologies on the care of people with diabetes, from therapeutic management to the assessment of complications. Methods: A comprehensive literature search was conducted using PubMed to assess the impact of digital technologies and telemedicine on diabetes care. Results: From the comprehensive PubMed search, 86 peer-reviewed studies were selected based on relevance, clinical significance, and methodological quality. The selected literature addressed digital health tools such as continuous glucose monitoring, connected insulin pens, automatic insulin delivery systems, mobile applications, and telemedicine systems. These interventions were associated with improved glycemic control (e.g., reduced HbA1c, increased time in range), better adherence to therapy, enhanced patient engagement, and more efficient management of complications such as neuropathy, retinopathy, and cardiovascular risk. Conclusions: Telehealth may offer a fully patient-centered approach to disease management through a tailored individual management plan. This may lead to an improvement in adherence to proper therapy and lifestyle, resulting in a subsequent increase in the quality of life. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

16 pages, 1606 KiB  
Article
Coherence Analysis of Cardiovascular Signals for Detecting Early Diabetic Cardiac Autonomic Neuropathy: Insights into Glycemic Control
by Yu-Chen Chen, Wei-Min Liu, Hsin-Ru Liu, Huai-Ren Chang, Po-Wei Chen and An-Bang Liu
Diagnostics 2025, 15(12), 1474; https://doi.org/10.3390/diagnostics15121474 - 10 Jun 2025
Viewed by 408
Abstract
Background: Cardiac autonomic neuropathy (CAN) is a common yet frequently underdiagnosed complication of diabetes. While our previous study demonstrated the utility of multiscale cross-approximate entropy (MS-CXApEn) in detecting early CAN, the present study further investigates the use of frequency-domain coherence analysis between systolic [...] Read more.
Background: Cardiac autonomic neuropathy (CAN) is a common yet frequently underdiagnosed complication of diabetes. While our previous study demonstrated the utility of multiscale cross-approximate entropy (MS-CXApEn) in detecting early CAN, the present study further investigates the use of frequency-domain coherence analysis between systolic blood pressure (SBP) and R-R intervals (RRI) and evaluates the effects of insulin treatment on autonomic function in diabetic rats. Methods: At the onset of diabetes induced by streptozotocin (STZ), rats were assessed for cardiovascular autonomic function both before and after insulin treatment. Spectral and coherence analyses were performed to evaluate baroreflex function and autonomic regulation. Parameters assessed included low-frequency power (LFP) and high-frequency power (HFP) of heart rate variability, coherence between SBP and RRI at low and high-frequency bands (LFCoh and HFCoh), spontaneous and phenylephrine-induced baroreflex sensitivity (BRSspn and BRSphe), HRV components derived from fast Fourier transform, and MS-CXApEn at multiple scales. Results: Compared to normal controls (LFCoh: 0.14 ± 0.07, HFCoh: 0.19 ± 0.06), early diabetic rats exhibited a significant reduction in both LFCoh (0.08 ± 0.04, p < 0.05) and HFCoh (0.16 ± 0.10, p > 0.05), indicating impaired autonomic modulation. Insulin treatment led to a recovery of LFCoh (0.11 ± 0.04) and HFCoh (0.24 ± 0.12), though differences remained statistically insignificant (p > 0.05 vs. normal). Additionally, low-frequency LFP increased at the onset of diabetes and decreased after insulin therapy in most rats significantly, while MS-CXApEn at all scale levels increased in the early diabetic rats, and MS-CXApEnlarge declined following hyperglycemia correction. The BRSspn and BRSphe showed no consistent trend. Conclusions: Coherence analysis provides valuable insights into autonomic dysfunction in early diabetes. The significant reduction in LFCoh in early diabetes supports its role as a potential marker for CAN. Although insulin treatment partially improved coherence, the lack of full recovery suggests persistent autonomic impairment despite glycemic correction. These findings underscore the importance of early detection and long-term management strategies for diabetic CAN. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

12 pages, 305 KiB  
Article
Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study
by Laura Armeli Grigio, Denisa Boci, Giacoma Di Vieste, Gianluca Cassanelli, Oscar Massimiano Epis, Alessandro Viadana, Federico Bertuzzi and Basilio Pintaudi
Biomedicines 2025, 13(6), 1407; https://doi.org/10.3390/biomedicines13061407 - 8 Jun 2025
Viewed by 791
Abstract
Background/Objectives. Diabetic peripheral neuropathy is a debilitating disease-related complication with a significant impact on quality of life. Its management represents a therapeutic challenge. Antioxidant agents such as α-lipoic acid, N-acetyl cysteine, and glutatione may be useful treatment strategies. Methods. A real-world, [...] Read more.
Background/Objectives. Diabetic peripheral neuropathy is a debilitating disease-related complication with a significant impact on quality of life. Its management represents a therapeutic challenge. Antioxidant agents such as α-lipoic acid, N-acetyl cysteine, and glutatione may be useful treatment strategies. Methods. A real-world, observational, retrospective, case–control study involving consecutive subjects with type 2 diabetes with diabetic peripheral neuropathy was performed. Participants who were supplemented with three different formulations for 12 weeks (high-dose α-lipoic acid (800 mg); low-dose α-lipoic acid (100 mg) plus glutathione (200 mg) plus Vitamin D (800 IU); N-acetyl cysteine (600 mg) plus glutathione (200 mg) plus Vitamin D (800 IU)) were compared with a non-treated control group. Questionnaires aimed at investigating the degree of disability and quality of life were administered. The primary endpoint was the change in neuropathic pain intensity measured by the Numerical Rating Scale (NRS). Results. Among 750 consecutive screened subjects with type 2 diabetes, 98 (13%) had diabetic neuropathy (mean age 66.7 ± 7.6 years, diabetes duration 11.3 ± 6.7 years, HbA1c 8.1 ± 1.5%, 43.8% insulin-treated). When comparing the differences between treatment groups in the changes in individual questionnaire scores between baseline and follow-up, all three supplements showed significant reductions compared to the control group in the NRS scale scores. No side effects have been reported during the study. Conclusions. As well as lipoic acid, other substances with specific activity on the genesis of neuropathic pain, such as N-acetyl cysteine and glutathione, have proved effective in reducing the intensity of pain. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

14 pages, 1380 KiB  
Article
Impact of Isomaltulose on Glycemic Response in Diabetic and Healthy Populations: A Meta-Analysis
by Zhaojie Chen, Fangting Gu and Jianyong Wu
Nutrients 2025, 17(11), 1940; https://doi.org/10.3390/nu17111940 - 5 Jun 2025
Viewed by 1274
Abstract
Background: Effective management of postprandial glycemic control is critical for diabetic patients, as elevated postprandial glucose levels can lead to complications such as cardiovascular disease and neuropathy. This study evaluates isomaltulose, a low-glycemic-index carbohydrate, as an alternative to sucrose in mitigating postprandial glucose [...] Read more.
Background: Effective management of postprandial glycemic control is critical for diabetic patients, as elevated postprandial glucose levels can lead to complications such as cardiovascular disease and neuropathy. This study evaluates isomaltulose, a low-glycemic-index carbohydrate, as an alternative to sucrose in mitigating postprandial glucose spikes. Objectives: To synthesize evidence from existing studies and assess the efficacy of isomaltulose in reducing postprandial glycemic levels compared to sucrose in diabetic populations. Methods: A systematic review and meta-analysis were conducted following PRISMA guidelines. Searches were performed across PubMed, Cochrane Library, and ClinicalTrials.gov for randomized controlled trials or crossover studies comparing isomaltulose and sucrose. Data were extracted, and the Cochrane Risk of Bias tool was used to assess study quality. Results: Ten studies were included, involving 367 participants. The meta-analysis showed that isomaltulose significantly reduced plasma glucose level at 60 min post-meal, though the actual effect could be modest in terms of clinical relevance compared to sucrose (MD: −7.99, 95% CI: −8.58, −7.39, p < 0.00001). Notable variability in the study results was observed, which may be attributed to multiple factors such as participant demographics and meal composition. Conclusions: The findings from the analysis are supportive for the use of isomaltulose as a beneficial dietary alternative to sucrose for managing postprandial glycemic levels in diabetic patients. Future research effort is suggested to focus on larger, diverse populations to enhance generalizability and explore the impact of dietary context on glycemic response. Full article
(This article belongs to the Special Issue Polysaccharides for Nutraceuticals and Future Foods)
Show Figures

Figure 1

26 pages, 771 KiB  
Review
Are Cannabis-Based Medicines a Useful Treatment for Neuropathic Pain? A Systematic Review
by Nawaf Almuntashiri, Basma M. El Sharazly and Wayne G. Carter
Biomolecules 2025, 15(6), 816; https://doi.org/10.3390/biom15060816 - 4 Jun 2025
Viewed by 1343
Abstract
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic [...] Read more.
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic pain. A review of the relevant studies was conducted to evaluate the effectiveness of CBMs in treating neuropathic pain. Scientific literature was systematically searched from January 2003 to December 2024 using the Web of Science Core Collection, PubMed, and MEDLINE. A total of 22 randomized controlled trials (RCTs) were identified that considered the use of 1′,1′-dimethylheptyl-Δ8-tetrahydrocannabinol-11-oic acid (CT-3), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), combinations of Δ9-THC with CBD, and cannabidivarin for treatment of neuropathic pain. Significant reductions in pain were reported in 15 studies focused on the treatment of multiple sclerosis, spinal cord injuries, diabetic neuropathy, postherpetic neuralgia, HIV-associated sensory neuropathy, peripheral neuropathic pain, complex regional pain syndrome, chronic radicular neuropathic pain, and peripheral neuropathy of the lower extremities. These positive outcomes often adopted personalized and adjusted dosing strategies. By contrast, seven RCTs observed no significant pain relief compared to placebo, although some had minor improvements in secondary outcomes, such as mood and sleep. Collectively, CBM treatments may improve pain scores, but study limitations such as small sample sizes and study durations, high placebo response rates, and trial unblinding because of the psychoactive effects of cannabinoids all hinder data interpretation and the extrapolation to chronic pain conditions. Hence, future RCTs will need to have larger numbers and be more extended studies that explore optimal dosing and delivery methods and identify patient subgroups that are most likely to benefit. While CBMs show potential, their current use balances modest benefits against possible adverse effects and variable outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

39 pages, 1821 KiB  
Review
Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound
by Iliya Mangarov, Yulian Voynikov, Valentina Petkova, Simeon Iliev, Ivanka Kostadinova, Lyubomir Marinov and Irina Nikolova
Curr. Issues Mol. Biol. 2025, 47(6), 402; https://doi.org/10.3390/cimb47060402 - 29 May 2025
Viewed by 3421
Abstract
Alpha-lipoic acid (ALA, also known as thioctic acid) was discovered nearly 90 years ago and began to be used in clinical practice in the late 1950s. Numerous nonclinical and clinical studies have investigated ALA for treating diabetic peripheral neuropathy (DPN) and various other [...] Read more.
Alpha-lipoic acid (ALA, also known as thioctic acid) was discovered nearly 90 years ago and began to be used in clinical practice in the late 1950s. Numerous nonclinical and clinical studies have investigated ALA for treating diabetic peripheral neuropathy (DPN) and various other diseases. The rising global prevalence of DPN necessitates timely treatment; however, there is currently no effective cure. Current guideline-recommended therapies for DPN provide symptom relief rather than modifying the disease. Among the pathogenesis-oriented therapies, ALA holds a unique position as a universal antioxidant, essential for every cell in the body. This review highlights the ongoing issues and challenges in using ALA to treat DPN. While confronting a complex disease with poorly understood pathophysiology, we also have an endogenous substance with pleiotropic effects on all cells in the human body. It becomes clear that this is a highly multifactorial process that will likely never be precisely defined. This does not diminish the significance of ALA in treating DPN but underscores the need for a deeper understanding of when to start therapy, dosage, duration, and monitoring. In this comprehensive review, we evaluate the achievements of the past 70 years and highlight gaps in ALA’s role in treating DPN. Full article
Show Figures

Figure 1

35 pages, 3292 KiB  
Review
Photocatalysis and Photodynamic Therapy in Diabetic Foot Ulcers (DFUs) Care: A Novel Approach to Infection Control and Tissue Regeneration
by Paweł Mikziński, Karolina Kraus, Rafał Seredyński, Jarosław Widelski and Emil Paluch
Molecules 2025, 30(11), 2323; https://doi.org/10.3390/molecules30112323 - 26 May 2025
Viewed by 835
Abstract
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, [...] Read more.
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, in combination, or with the addition of antibiotics, lysozyme, or phage enzymes—offer promising solutions for wound treatment. These approaches are particularly effective even in the presence of comorbidities such as angiopathies, neuropathies, and immune system disorders, which are common among diabetic patients. Notably, the use of combination therapies holds great potential for addressing challenges within diabetic foot ulcers, including hypoxia, poor circulation, high glucose levels, increased oxidative stress, and rapid biofilm formation—factors that significantly hinder wound healing in diabetic patients. The integration of modern therapeutic strategies is essential for effective clinical practice, starting with halting infection progression, ensuring its effective eradication, and promoting proper tissue regeneration, especially considering that, according to the WHO, 830 million people worldwide suffer from diabetes. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Figure 1

15 pages, 242 KiB  
Review
Bowel Preparation for Colonoscopy in Patients with Diabetes Mellitus—A Gap We Have to Bridge: A Review
by Ivana Jukic and Jonatan Vukovic
J. Clin. Med. 2025, 14(10), 3336; https://doi.org/10.3390/jcm14103336 - 11 May 2025
Viewed by 875
Abstract
Colonoscopy is an essential diagnostic and therapeutic tool in gastroenterology, significantly impacting colorectal cancer (CRC) detection and management. Effective bowel preparation is critical for optimal visualization, directly influencing colonoscopy accuracy and patient outcomes. However, diabetic patients frequently encounter challenges achieving adequate bowel preparation, [...] Read more.
Colonoscopy is an essential diagnostic and therapeutic tool in gastroenterology, significantly impacting colorectal cancer (CRC) detection and management. Effective bowel preparation is critical for optimal visualization, directly influencing colonoscopy accuracy and patient outcomes. However, diabetic patients frequently encounter challenges achieving adequate bowel preparation, primarily due to gastroparesis, autonomic neuropathy, altered colonic motility, fluid–electrolyte imbalances, and complexities related to antihyperglycemic medication adjustments. This review aims to evaluate the current literature on bowel preparation efficacy in diabetic patients undergoing colonoscopy, assess existing guidelines from leading gastroenterological societies, and highlight the necessity for detailed, diabetes-specific recommendations. We conducted a comprehensive PubMed search identifying 20 pertinent studies, including randomized controlled trials, meta-analyses, multicenter studies, cohort studies, and reviews. The findings consistently indicate diabetes as an independent predictor of inadequate bowel preparation. Furthermore, an evaluation of guidelines from the European Society of Gastrointestinal Endoscopy (ESGE), the US Multi-Society Task Force, and the Canadian Association of Gastroenterology revealed either absent or insufficiently detailed diabetes-specific recommendations. Given the rising global prevalence of diabetes and CRC, inadequate bowel preparation significantly impacts the quality of colonoscopy, adenoma detection rates, patient safety, and healthcare costs. This review underscores the urgent need for additional research focusing on tailored bowel preparation strategies for diabetic patients. Ultimately, the implementation of standardized, evidence-based protocols designed explicitly for this high-risk group is essential to enhance diagnostic efficacy, improve patient outcomes, and reduce CRC-related morbidity and mortality. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
17 pages, 3318 KiB  
Article
Intraplantar β-Caryophyllene Alleviates Pain and Inflammation in STZ-Induced Diabetic Peripheral Neuropathy via CB2 Receptor Activation
by Amina M. Bagher
Int. J. Mol. Sci. 2025, 26(9), 4430; https://doi.org/10.3390/ijms26094430 - 7 May 2025
Cited by 1 | Viewed by 975
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2 [...] Read more.
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2) may represent a promising target for managing neuropathic pain and inflammation. This study investigates the therapeutic potential of intraplantar β-Caryophyllene (BCP), a selective CB2 receptor agonist, administered as a topical intervention in a streptozotocin (STZ)-induced DPN mouse model. Hyperglycemia was induced by STZ injections, and diabetic mice received intraplantar BCP (9, 18, or 27 µg) daily for 21 days. Mechanical allodynia was assessed using von Frey filaments, and levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and oxidative stress markers (MDA, SOD, CAT) were quantified in hind paw tissues. BCP dose-dependently alleviated STZ-induced mechanical allodynia, with the 27 µg dose producing the most pronounced effect (p < 0.001). The anti-allodynic effects of BCP were mediated through CB2 receptor activation, confirmed by reversal with the CB2 antagonist AM630 (p < 0.001), while the CB1 antagonist AM251 had no significant impact. In addition, BCP significantly reduced pro-inflammatory cytokines (p < 0.01) and oxidative stress markers (p < 0.001) while restoring antioxidant enzyme activities (p < 0.05). A control group treated with a clinically available topical analgesic cream containing capsaicin 0.075% exhibited limited efficacy. These findings position topical BCP administration as a novel therapeutic strategy for DPN, offering sustained pain relief and modulation of neuroinflammatory and oxidative pathways with minimal systemic exposure. Further clinical studies are warranted to validate its potential for translation into therapeutic practice. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

15 pages, 7624 KiB  
Article
Microenvironment Self-Adaptive Ce-Ag-Doped Mesoporous Silica Nanomaterials (CA@MSNs) for Multidrug-Resistant Bacteria-Infected Diabetic Wound Treatment
by Wuhao Yang, Hui Yuan, Hao Sun, Jiangshan Hu, Yaping Xu, Yuhang Li and Yan Qiu
Molecules 2025, 30(8), 1848; https://doi.org/10.3390/molecules30081848 - 20 Apr 2025
Viewed by 483
Abstract
Chronic wound healing remains a major challenge in diabetes management due to prolonged inflammation, autonomic neuropathy, and bacterial infections. In particular, multidrug-resistant bacterial infections are important to the development of diabetic wounds, leading to persistent inflammation and delayed healing. To address this issue, [...] Read more.
Chronic wound healing remains a major challenge in diabetes management due to prolonged inflammation, autonomic neuropathy, and bacterial infections. In particular, multidrug-resistant bacterial infections are important to the development of diabetic wounds, leading to persistent inflammation and delayed healing. To address this issue, we developed a self-adaptive nanozyme designed to modulate infectious and inflammatory microenvironments by doping Ce and Ag into mesoporous silicon nanomaterials (MSNs). The resulting CA@MSNs exhibited strong bacterial capture capabilities via electrostatic attraction. Additionally, the synergistic effects of Ce and Ag endowed CA@MSNs with peroxidase (POD)-like activity, enabling the generation of reactive oxygen species (ROS) to eradicate bacteria in infectious microenvironments. Notably, CA@MSNs also demonstrated the ability to scavenge a broad spectrum of ROS, including hydroxyl free radicals, hydrogen peroxide, and superoxide radicals, in inflammatory microenvironments. This dual functionality helped mitigate inflammation and promote endothelial cell migration. Consequently, treatment with CA@MSNs significantly reduced inflammation, enhanced fibroblast activation, and facilitated collagen deposition, ultimately accelerating the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic mice. In conclusion, this study presents a promising therapeutic strategy for chronic diabetic wounds, offering a novel approach to overcoming infection-related healing delays. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

27 pages, 7099 KiB  
Article
Diabetes: Non-Invasive Blood Glucose Monitoring Using Federated Learning with Biosensor Signals
by Narmatha Chellamani, Saleh Ali Albelwi, Manimurugan Shanmuganathan, Palanisamy Amirthalingam and Anand Paul
Biosensors 2025, 15(4), 255; https://doi.org/10.3390/bios15040255 - 16 Apr 2025
Cited by 1 | Viewed by 1689
Abstract
Diabetes is a growing global health concern, affecting millions and leading to severe complications if not properly managed. The primary challenge in diabetes management is maintaining blood glucose levels (BGLs) within a safe range to prevent complications such as renal failure, cardiovascular disease, [...] Read more.
Diabetes is a growing global health concern, affecting millions and leading to severe complications if not properly managed. The primary challenge in diabetes management is maintaining blood glucose levels (BGLs) within a safe range to prevent complications such as renal failure, cardiovascular disease, and neuropathy. Traditional methods, such as finger-prick testing, often result in low patient adherence due to discomfort, invasiveness, and inconvenience. Consequently, there is an increasing need for non-invasive techniques that provide accurate BGL measurements. Photoplethysmography (PPG), a photosensitive method that detects blood volume variations, has shown promise for non-invasive glucose monitoring. Deep neural networks (DNNs) applied to PPG signals can predict BGLs with high accuracy. However, training DNN models requires large and diverse datasets, which are typically distributed across multiple healthcare institutions. Privacy concerns and regulatory restrictions further limit data sharing, making conventional centralized machine learning (ML) approaches less effective. To address these challenges, this study proposes a federated learning (FL)-based solution that enables multiple healthcare organizations to collaboratively train a global model without sharing raw patient data, thereby enhancing model performance while ensuring data privacy and security. In the data preprocessing stage, continuous wavelet transform (CWT) is applied to smooth PPG signals and remove baseline drift. Adaptive cycle-based segmentation (ACBS) is then used for signal segmentation, followed by particle swarm optimization (PSO) for feature selection, optimizing classification accuracy. The proposed system was evaluated on diverse datasets, including VitalDB and MUST, under various conditions with data collected during surgery and anesthesia. The model achieved a root mean square error (RMSE) of 19.1 mg/dL, demonstrating superior predictive accuracy. Clarke error grid analysis (CEGA) confirmed the model’s clinical reliability, with 99.31% of predictions falling within clinically acceptable limits. The FL-based approach outperformed conventional deep learning models, making it a promising method for non-invasive, privacy-preserving glucose monitoring. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

Back to TopTop