Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound
Abstract
:1. Introduction
2. Biosynthesis and Synthesis of ALA
2.1. Biosynthesis of ALA
2.2. Synthesis of ALA
2.2.1. Chemical Resolution
2.2.2. Enzymatic Resolution
2.2.3. Chiral Pool Synthesis
2.2.4. Chemical Asymmetric Catalysis
2.2.5. Enzymatic Asymmetric Catalysis
3. Pharmacokinetics
4. Mechanism of Action
4.1. Antioxidant Properties
4.2. Regulation of Cellular Redox Status
4.3. Mitochondrial Function and Energy Production
4.4. Insulin Sensitivity and Glucose Metabolism
4.5. Effects on Gene Transcription
5. Pharmacodynamics
5.1. Neuroprotective Effects
5.2. Anti-Inflammatory Effects
5.3. Effects on Microcirculation
6. Drug Interactions
7. Clinical Implications of ALA
7.1. Effects of ALA on Oxidative Stress
7.2. ALA in the Treatment of DPN
7.3. Systematic Reviews and Meta-Analysis
7.4. Dosage Regime
7.4.1. Posology in Adults
7.4.2. Posology in the Pediatric Population
8. Safety Pharmacology
8.1. Effects on the Cardiovascular System
8.2. Effects on the Respiratory System
8.3. Effects on the Central Nervous System
8.4. Effects on the Liver and Kidneys
8.5. Reproductive and Developmental Toxicity
8.6. Insulin Autoimmune Syndrome
8.7. Overdosage
9. Market Share of ALA
10. Discussion
11. Conclusions
12. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Superti, F.; Russo, R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants 2024, 13, 1228. [Google Scholar] [CrossRef] [PubMed]
- Vafaee, F.; Derakhshani, M.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Alpha-lipoic acid, as an effective agent against toxic elements: A review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 3345–3372. [Google Scholar] [CrossRef]
- Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 1149–1160. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Selim, M.A.; El-Sayed, N.M. α-Lipoic acid ameliorates oral mucositis and oxidative stress induced by methotrexate in rats. Histological and immunohistochemical study. Life Sci. 2017, 171, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Shanaida, M.; Lysiuk, R.; Mykhailenko, O.; Hudz, N.; Abdulsalam, A.; Gontova, T.; Oleshchuk, O.; Ivankiv, Y.; Shanaida, V.; Lytkin, D. Alpha-lipoic acid: An antioxidant with anti-aging properties for disease therapy. Curr. Med. Chem. 2025, 32, 23–54. [Google Scholar] [CrossRef] [PubMed]
- Anthony, R.M.; MacLeay, J.M.; Gross, K.L. Alpha-lipoic acid as a nutritive supplement for humans and animals: An overview of its use in dog food. Animals 2021, 11, 1454. [Google Scholar] [CrossRef]
- Solmonson, A.; DeBerardinis, R.J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 2018, 293, 7522–7530. [Google Scholar] [CrossRef]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K.; Bishen, S.M.; Mishra, H.; Khurana, A. Molecular and therapeutic insights of alpha-lipoic acid as a potential molecule for disease prevention. Rev. Bras. Farmacogn. 2023, 33, 272–287. [Google Scholar] [CrossRef]
- Biewenga, G.P.; Haenen, G.R.; Bast, A. The pharmacology of the antioxidant lipoic acid. Gen. Pharmacol. Vasc. Syst. 1997, 29, 315–331. [Google Scholar] [CrossRef]
- Andrea Moura, F.; Queiroz de Andrade, K.; Celia Farias dos Santos, J.; Oliveira Fonseca Goulart, M. Lipoic acid: Its antioxidant and anti-inflammatory role and clinical applications. Curr. Top. Med. Chem. 2015, 15, 458–483. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Karunakaran, U.; Ho Jeoung, N.; Jeon, J.-H.; Lee, I.-K. Physiological effect and therapeutic application of alpha lipoic acid. Curr. Med. Chem. 2014, 21, 3636–3645. [Google Scholar] [CrossRef]
- Gomes, M.B.; Negrato, C.A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 2014, 6, 80. [Google Scholar] [CrossRef]
- Gorąca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid–biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858. [Google Scholar] [CrossRef]
- Viana, M.D.M.; Lauria, P.S.S.; Lima, A.A.d.; Opretzka, L.C.F.; Marcelino, H.R.; Villarreal, C.F. Alpha-lipoic acid as an antioxidant strategy for managing neuropathic pain. Antioxidants 2022, 11, 2420. [Google Scholar] [CrossRef] [PubMed]
- Laher, I. Diabetes and alpha lipoic acid. Front. Pharmacol. 2011, 2, 15229. [Google Scholar]
- Ensmenger, P.J. Alpha Lipoic Acid: A Review and Comparison to Current Treatment Guidelines of Diabetic Peripheral Neuropathy. Master’s Thesis, Arcadia University, Glenside, PA, USA, 2025. [Google Scholar]
- Quiroz-Aldave, J.; Durand-Vásquez, M.; Gamarra-Osorio, E.; Suárez-Rojas, J.; Roseboom, P.J.; Alcalá-Mendoza, R.; Coronado-Arroyo, J.; Zavaleta-Gutiérrez, F.; Concepción-Urteaga, L.; Concepción-Zavaleta, M. Diabetic neuropathy: Past, present, and future. Casp. J. Intern. Med. 2023, 14, 153. [Google Scholar]
- Anandhanarayanan, A.; Teh, K.; Goonoo, M.; Tesfaye, S.; Selvarajah, D. Diabetic Neuropathies. In Endotext. South Dartmouth; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2022. [Google Scholar] [PubMed]
- Bodman, M.A.; Dreyer, M.A.; Varacallo, M. Diabetic peripheral neuropathy. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Wukich, D.K.; Raspovic, K.M.; Suder, N.C. Patients with diabetic foot disease fear major lower-extremity amputation more than death. Foot Ankle Spec. 2018, 11, 17–21. [Google Scholar] [CrossRef]
- Baicus, C.; Purcarea, A.; von Elm, E.; Delcea, C.; Furtunescu, F.L. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst. Rev. 2024, 1, CD012967. [Google Scholar] [CrossRef]
- Atmaca, A.; Ketenci, A.; Sahin, I.; Sengun, I.S.; Oner, R.I.; Erdem Tilki, H.; Adas, M.; Soyleli, H.; Demir, T. Expert opinion on screening, diagnosis and management of diabetic peripheral neuropathy: A multidisciplinary approach. Front. Endocrinol. 2024, 15, 1380929. [Google Scholar] [CrossRef]
- Koufaki, Μ. Therapeutic applications of lipoic acid: A patent review (2011–2014). Expert Opin. Ther. Pat. 2014, 24, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Ramachanderan, R.; Schaefer, B. Lipoic acid. ChemTexts 2019, 5, 18. [Google Scholar] [CrossRef]
- Pop, A.L.; Crișan, S.; Bârcă, M.; Ciobanu, A.-M.; Varlas, V.N.; Pop, C.; Pali, M.-A.; Cauni, D.; Ozon, E.A.; Udeanu, D. Evaluation of dissolution profiles of a newly developed solid oral immediate-release formula containing alpha-lipoic acid. Processes 2021, 9, 176. [Google Scholar] [CrossRef]
- Mayr, J.A.; Feichtinger, R.G.; Tort, F.; Ribes, A.; Sperl, W. Lipoic acid biosynthesis defects. J. Inherit. Metab. Dis. 2014, 37, 553–563. [Google Scholar] [CrossRef]
- Witkowski, A.; Joshi, A.K.; Smith, S. Mechanism of the β-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 2002, 41, 10877–10887. [Google Scholar] [CrossRef]
- Zhang, L.; Joshi, A.K.; Smith, S. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: Malonyltransferase and acyl carrier protein. J. Biol. Chem. 2003, 278, 40067–40074. [Google Scholar] [CrossRef]
- Zhang, L.; Joshi, A.K.; Hofmann, J.; Schweizer, E.; Smith, S. Cloning, expression, and characterization of the human mitochondrial β-ketoacyl synthase: Complementation of the yeast cem1 knock-out strain. J. Biol. Chem. 2005, 280, 12422–12429. [Google Scholar] [CrossRef]
- Chen, Z.; Leskinen, H.; Liimatta, E.; Sormunen, R.T.; Miinalainen, I.J.; Hassinen, I.E.; Hiltunen, J.K. Myocardial overexpression of Mecr, a gene of mitochondrial FAS II leads to cardiac dysfunction in mouse. PLoS ONE 2009, 4, e5589. [Google Scholar] [CrossRef]
- Kastaniotis, A.J.; Autio, K.J.; Sormunen, R.T.; Hiltunen, J.K. Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology. Mol. Microbiol. 2004, 53, 1407–1421. [Google Scholar] [CrossRef]
- Autio, K.J.; Kastaniotis, A.J.; Pospiech, H.; Miinalainen, I.J.; Schonauer, M.S.; Dieckmann, C.L.; Hiltunen, J.K. An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing. FASEB J. 2008, 22, 569–578. [Google Scholar] [CrossRef]
- Chen, Z.; Kastaniotis, A.J.; Miinalainen, I.J.; Rajaram, V.; Wierenga, R.K.; Hiltunen, J.K. 17β-Hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS. FASEB J. 2009, 23, 3682–3691. [Google Scholar] [CrossRef]
- Schonauer, M.S.; Kastaniotis, A.J.; Kursu, V.S.; Hiltunen, J.K.; Dieckmann, C.L. Lipoic acid synthesis and attachment in yeast mitochondria. J. Biol. Chem. 2009, 284, 23234–23242. [Google Scholar] [CrossRef]
- Douglas, P.; Kriek, M.; Bryant, P.; Roach, P.L. Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner. Angew. Chem. Int. Ed. 2006, 45, 5197–5199. [Google Scholar] [CrossRef]
- Carothers, D.J.; Pons, G.; Patel, M.S. Dihydrolipoamide dehydrogenase: Functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases. Arch. Biochem. Biophys. 1989, 268, 409–425. [Google Scholar] [CrossRef]
- Hiltunen, J.K.; Autio, K.J.; Schonauer, M.S.; Kursu, V.S.; Dieckmann, C.L.; Kastaniotis, A.J. Mitochondrial fatty acid synthesis and respiration. Biochim. Biophys. Acta (BBA)-Bioenerg. 2010, 1797, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-J.; Moini, H.; Shon, H.-K.; Chung, A.-S.; Packer, L. α-Lipoic acid decreases thiol reactivity of the insulin receptor and protein tyrosine phosphatase 1B in 3T3-L1 adipocytes. Biochem. Pharmacol. 2003, 66, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Q.; Ling, X.; Wang, H.-J.; Chen, F.-E. α-Lipoic acid chemistry: The past 70 years. RSC Adv. 2023, 13, 36346–36363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Zhang, W.X.; Zheng, G.W.; Xu, J.H. Identification of an ε-Keto Ester Reductase for the Efficient Synthesis of an (R)-α-Lipoic Acid Precursor. Adv. Synth. Catal. 2015, 357, 1697–1702. [Google Scholar] [CrossRef]
- Fadnavis, N.; Babu, R.L.; Vadivel, S.K.; Deshpande, A.A.; Bhalerao, U. Lipase catalyzed regio-and stereospecific hydrolysis: Chemoenzymatic synthesis of both (R)-and (S)-enantiomers of α-lipoic acid. Tetrahedron Asymmetry 1998, 9, 4109–4112. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Ni, Y.; Zheng, G.-W.; Chen, H.-H.; Zhu, Z.-R.; Xu, J.-H. Enzymatic resolution of a chiral chlorohydrin precursor for (R)-α-lipoic acid synthesis via lipase catalyzed enantioselective transacylation with vinyl acetate. J. Mol. Catal. B Enzym. 2014, 99, 102–107. [Google Scholar] [CrossRef]
- Brookes, M.H.; Golding, B.T.; Hudson, A.T. Syntheses of α-(R)-and α-(S)-lipoic acid from (S)-malic acid. J. Chem. Soc. Perkin Trans. 1988, 1, 9–12. [Google Scholar] [CrossRef]
- Yadav, J.; Mysorekar, S.V.; Pawar, S.M.; Gurjar, M. Synthesis of (3R, 4R)-1,2-divinylglycol and its unsymmetrical derivatives: An application to the synthesis of R-(+)-α-lipoic acid. J. Carbohydr. Chem. 1990, 9, 307–316. [Google Scholar] [CrossRef]
- Page, P.C.B.; Rayner, C.M.; Sutherland, I.O. Enantioselective synthesis of R-(+)-α-lipoic acid. J. Chem. Soc. Chem. Commun. 1986, 18, 1408–1409. [Google Scholar] [CrossRef]
- Zimmer, R.; Hain, U.; Berndt, M.; Gewald, R.; Reissig, H.-U. Enantioselective synthesis of (S)-and (R)-6-hydroxy-8-nonene-carboxylates by asymmetric catalysis: A formal synthesis of (R)-α-lipoic acid and its (S)-antipode. Tetrahedron Asymmetry 2000, 11, 879–887. [Google Scholar] [CrossRef]
- Upadhya, T.; Nikalje, M.; Sudalai, A. Asymmetric dihydroxylation and hydrogenation approaches to the enantioselective synthesis of R-(+)-α-lipoic acid. Tetrahedron Lett. 2001, 42, 4891–4893. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Zhang, J.; Wang, W.; Duan, W. An enantioselective formal synthesis of (+)-(R)-α-lipoic acid by an l-proline-catalyzed aldol reaction. Synthesis 2008, 2008, 383–386. [Google Scholar]
- Sih, C.J.; ZHOU, B.N.; Gopalan, A.S.; SHIEH, W.R.; CHEN, C.S.; Girdaukas, G.; Vanmiddlesworth, F. Enantioselective Reductions of β-keto-Esters by Bakers’ Yeast. Ann. N. Y. Acad. Sci. 1984, 434, 186–193. [Google Scholar] [CrossRef]
- Adger, B.; Bes, M.T.; Grogan, G.; McCague, R.; Pedragosa-Moreau, S.; Roberts, S.M.; Villa, R.; Wan, P.W.H.; Willetts, A.J. Application of enzymic Baeyer–Villiger oxidations of 2-substituted cycloalkanones to the total synthesis of (R)-(+)-lipoic acid. J. Chem. Soc. Chem. Commun. 1995, 15, 1563–1564. [Google Scholar] [CrossRef]
- Breithaupt-Grögler, K.; Niebch, G.; Schneider, E.; Erb, K.; Hermann, R.; Blume, H.H.; Schug, B.S.; Belz, G.G. Dose-proportionality of oral thioctic acid—Coincidence of assessments via pooled plasma and individual data. Eur. J. Pharm. Sci. 1999, 8, 57–65. [Google Scholar] [CrossRef]
- Bulut, B.; Sarraçoğlu, N.; Pınarbaşlı, O. Alpha lipoic acid bioequivalence study redesigned: A candidate for highly variable drugs. Istanb. J. Pharm. 2021, 51, 8–15. [Google Scholar] [CrossRef]
- Yadav, V.; Marracci, G.H.; Munar, M.Y.; Cherala, G.; Stuber, L.E.; Alvarez, L.; Shinto, L.; Koop, D.R.; Bourdette, D.N. Pharmacokinetic study of lipoic acid in multiple sclerosis: Comparing mice and human pharmacokinetic parameters. Mult. Scler. J. 2010, 16, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Mignini, F.; Nasuti, C.C.; Gioventu, G.; Napolioni, V.; Di Martino, P. Human bioavailability and pharmacokinetic profile of different formulations delivering alpha lipoic acid. J. Bioequiv. Bioavailab. 2012, 1, 1–6. [Google Scholar]
- Hermann, R.; Mungo, J.; Cnota, P.J.; Ziegler, D. Enantiomer-selective pharmacokinetics, oral bioavailability, and sex effects of various alpha-lipoic acid dosage forms. Clin. Pharmacol. Adv. Appl. 2014, 6, 195–204. [Google Scholar] [CrossRef]
- Teichert, J.; Hermann, R.; Ruus, P.; Preiss, R. Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J. Clin. Pharmacol. 2003, 43, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Cassanego, G.; Rodrigues, P.; Bauermann, L.D.F.; Trevisan, G. Evaluation of the analgesic effect of α-lipoic acid in treating pain disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2022, 177, 106075. [Google Scholar] [CrossRef]
- Hermann, R.; Niebch, G.; Borbe, H.; Fieger-Büschges, H.; Ruus, P.; Nowak, H.; Riethmüller-Winzen, H.; Peukert, M.; Blume, H. Enantioselective pharmacokinetics and bioavailability of different racemic α-lipoic acid formulations in healthy volunteers. Eur. J. Pharm. Sci. 1996, 4, 167–174. [Google Scholar] [CrossRef]
- Brufani, M.; Figliola, R. (R)-α-lipoic acid oral liquid formulation: Pharmacokinetic parameters and therapeutic efficacy. Acta Bio-Medica Atenei Parm. 2014, 85, 108–115. [Google Scholar]
- Zicker, S.C.; Avila, A.; Joshi, D.K.; Gross, K.L. Pharmacokinetics of orally administered DL-α-lipoic acid in dogs. Am. J. Vet. Res. 2010, 71, 1377–1383. [Google Scholar] [CrossRef]
- Teichert, J.; Tuemmers, T.; Achenbach, H.; Preiss, C.; Hermann, R.; Ruus, P.; Preiss, R. Pharmacokinetics of alpha-lipoic acid in subjects with severe kidney damage and end-stage renal disease. J. Clin. Pharmacol. 2005, 45, 313–328. [Google Scholar] [CrossRef]
- Keith, D.J.; Butler, J.A.; Bemer, B.; Dixon, B.; Johnson, S.; Garrard, M.; Sudakin, D.L.; Christensen, J.M.; Pereira, C.; Hagen, T.M. Age and gender dependent bioavailability of R-and R, S-α-lipoic acid: A pilot study. Pharmacol. Res. 2012, 66, 199–206. [Google Scholar] [CrossRef]
- Basile, G.A.; Iannuzzo, F.; Xerra, F.; Genovese, G.; Pandolfo, G.; Cedro, C.; Muscatello, M.R.A.; Bruno, A. Cognitive and mood effect of alpha-lipoic acid supplementation in a nonclinical elder sample: An open-label pilot study. Int. J. Environ. Res. Public Health 2023, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Capece, U.; Moffa, S.; Improta, I.; Di Giuseppe, G.; Nista, E.C.; Cefalo, C.M.; Cinti, F.; Pontecorvi, A.; Gasbarrini, A.; Giaccari, A. Alpha-lipoic acid and glucose metabolism: A comprehensive update on biochemical and therapeutic features. Nutrients 2022, 15, 18. [Google Scholar] [CrossRef]
- Ou, P.; Tritschler, H.J.; Wolff, S.P. Thioctic (lipoic) acid: A therapeutic metal-chelating antioxidant? Biochem. Pharmacol. 1995, 50, 123–126. [Google Scholar] [CrossRef]
- Low, P.A.; Nickander, K.K.; Tritschler, H.J. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 1997, 46, S38–S42. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Moini, H.; Packer, L.; Saris, N.-E.L. Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 2002, 182, 84–90. [Google Scholar] [CrossRef]
- Gupta, M.; Knezevic, N.N.; Abd-Elsayed, A.; Ray, M.; Patel, K.; Chowdhury, B. Treatment of painful diabetic neuropathy—A narrative review of pharmacological and interventional approaches. Biomedicines 2021, 9, 573. [Google Scholar] [CrossRef]
- Ziegler, D.; Tesfaye, S.; Spallone, V.; Gurieva, I.; Al Kaabi, J.; Mankovsky, B.; Martinka, E.; Radulian, G.; Nguyen, K.T.; Stirban, A.O. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res. Clin. Pract. 2022, 186, 109063. [Google Scholar] [CrossRef]
- Sementina, A.; Cierzniakowski, M.; Rogalska, J.; Piechowiak, I.; Spichalski, M.; Araszkiewicz, A. A novel approach to alpha-lipoic acid therapy in the treatment of diabetic peripheral neuropathy. J. Med. Sci. 2022, 91, e714. [Google Scholar] [CrossRef]
- Nagamatsu, M.; Nickander, K.K.; Schmelzer, J.D.; Raya, A.; Wittrock, D.A.; Tritschler, H.; Low, P.A. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 1995, 18, 1160–1167. [Google Scholar] [CrossRef]
- Sahin, Z.; Ozkaya, A.; Yilmaz, O.; Yuce, A.; Gunes, M. Investigation of the role of α-lipoic acid on fatty acids profile, some minerals (zinc, copper, iron) and antioxidant activity against aluminum-induced oxidative stress in the liver of male rats. J. Basic. Clin. Physiol. Pharmacol. 2017, 28, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Kraemer, K.; Rimbach, G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 2001, 17, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Coppey, L.J.; Gellett, J.S.; Davidson, E.P.; Dunlap, J.A.; Lund, D.D.; Yorek, M.A. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001, 50, 1927–1937. [Google Scholar] [CrossRef]
- Skibska, B.; Kochan, E.; Stanczak, A.; Lipert, A.; Skibska, A. Antioxidant and anti-inflammatory effects of α-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch. Immunol. Ther. Exp. 2023, 71, 16. [Google Scholar] [CrossRef] [PubMed]
- Morcos, M.; Borcea, V.; Isermann, B.; Gehrke, S.; Ehret, T.; Henkels, M.; Schiekofer, S.; Hofmann, M.; Amiral, J.; Tritschler, H. Effect of α-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: An exploratory study. Diabetes Res. Clin. Pract. 2001, 52, 175–183. [Google Scholar] [CrossRef]
- Fratantonio, D.; Speciale, A.; Molonia, M.; Bashllari, R.; Palumbo, M.; Saija, A.; Cimino, F.; Monastra, G.; Virgili, F. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch. Biochem. Biophys. 2018, 655, 18–25. [Google Scholar] [CrossRef]
- Zonooz, S.R.; Hasani, M.; Morvaridzadeh, M.; Pizarro, A.B.; Heydari, H.; Yosaee, S.; Rezamand, G.; Heshmati, J. Effect of alpha-lipoic acid on oxidative stress parameters: A systematic review and meta-analysis. J. Funct. Foods 2021, 87, 104774. [Google Scholar] [CrossRef]
- Sun, H.; Guo, X.; Wang, Z.; Wang, P.; Zhang, Z.; Dong, J.; Zhuang, R.; Zhou, Y.; Ma, G.; Cai, W. Alphalipoic acid prevents oxidative stress and peripheral neuropathy in nab-paclitaxel-treated rats through the Nrf2 signalling pathway. Oxidative Med. Cell. Longev. 2019, 2019, 3142732. [Google Scholar] [CrossRef]
- Cameron, N.E.; Jack, A.M.; Cotter, M.A. Effect of α-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic. Biol. Med. 2001, 31, 125–135. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Jacob, S.; Streeper, R.S.; Fogt, D.L.; Hokama, J.Y.; Tritschler, H.J. Stimulation by α-lipoic acid of glucose transport activity in skeletal muscle of lean and obese Zucker rats. Life Sci. 1997, 61, 805–812. [Google Scholar] [CrossRef]
- Konrad, D.; Somwar, R.; Sweeney, G.; Yaworsky, K.; Hayashi, M.; Ramlal, T.; Klip, A. The antihyperglycemic drug α-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes 2001, 50, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Hanefeld, M.; Ruhnau, K.-J.; Hasche, H.; Lobisch, M.; Schütte, K.; Kerum, G.; Malessa, R. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999, 22, 1296–1301. [Google Scholar] [CrossRef]
- Choi, S.Y.; Yu, J.H.; Kim, H. Mechanism of α-Lipoic Acid-Induced Apoptosis of Lung Cancer Cells: Involvement of Ca2+. Ann. N. Y. Acad. Sci. 2009, 1171, 149–155. [Google Scholar] [CrossRef]
- Ziegler, D. Pathogenetic treatments for diabetic peripheral neuropathy. Diabetes Res. Clin. Pract. 2023, 206, 110764. [Google Scholar] [CrossRef]
- Seo, E.Y.; Ha, A.W.; Kim, W.K. α-Lipoic acid reduced weight gain and improved the lipid profile in rats fed with high fat diet. Nutr. Res. Pract. 2012, 6, 195–200. [Google Scholar] [CrossRef] [PubMed]
- McIlduff, C.E.; Rutkove, S.B. Critical appraisal of the use of alpha lipoic acid (thioctic acid) in the treatment of symptomatic diabetic polyneuropathy. Ther. Clin. Risk Manag. 2011, 7, 377–385. [Google Scholar]
- Ziegler, D.; Reljanovic, M.; Mehnert, H.; Gries, F. α-Lipoic acid in the treatment of diabetic polyneuropathy in Germany: Current evidence from clinical trials. Exp. Clin. Endocrinol. Diabetes 1999, 107, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D. Thioctic acid for patients with symptomatic diabetic polyneuropathy: A critical review. Treat. Endocrinol. 2004, 3, 173–189. [Google Scholar] [CrossRef]
- Foster, T.S. Efficacy and safety of α-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy. Diabetes Educ. 2007, 33, 111–117. [Google Scholar] [CrossRef]
- Papanas, N.; Maltezos, E. α-Lipoic acid, diabetic neuropathy, and Nathan’s prophecy. Angiology 2012, 63, 81–83. [Google Scholar] [CrossRef]
- Papanas, N.; Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert. Opin. Pharmacother. 2014, 15, 2721–2731. [Google Scholar] [CrossRef]
- Pingali, U.; Kammila, S.; Mekala, P.; Yareeda, S.; Penugonda, S. A study to evaluate the effect of alpha-lipoic acid on neuropathic symptoms in diabetic neuropathy patients on gabapentin or pregabalin. Cureus 2024, 16, e70299. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. 2024, 14, 1265372. [Google Scholar] [CrossRef] [PubMed]
- Csiha, S.; Hernyák, M.; Molnár, Á.; Lőrincz, H.; Katkó, M.; Paragh, G.; Bodor, M.; Harangi, M.; Sztanek, F.; Berta, E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines 2025, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Lee, N.Y.; Park, T.S.; Jin, H.Y. Comparison of peripheral nerve protection between insulin-based glucose control and alpha lipoic acid (ALA) in the streptozotocin (STZ)-induced diabetic rat. Endocrine 2018, 61, 58–67. [Google Scholar] [CrossRef]
- Pittenger, G.; Vinik, A. Nerve growth factor and diabetic neuropathy. J. Diabetes Res. 2003, 4, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Guo, J.; Tian, Y.; Zhao, K.; Li, J.; Xiao, Q. α-lipoic acid can greatly alleviate the toxic effect of AGES on SH-SY5Y cells. Int. J. Mol. Med. 2018, 41, 2855–2864. [Google Scholar] [CrossRef]
- Khan, N.; Smith, M.T. Neurotrophins and neuropathic pain: Role in pathobiology. Molecules 2015, 20, 10657–10688. [Google Scholar] [CrossRef]
- Stevens, M.J.; Obrosova, I.; Cao, X.; Van Huysen, C.; Greene, D.A. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000, 49, 1006–1015. [Google Scholar] [CrossRef]
- Cameron, N.; Cotter, M. Alpha-Lipoic Acid Effects And Combination Therapy With Gamma-Linolenic Acid. J. Peripher. Nerv. Syst. 2000, 5, 169–170. [Google Scholar] [CrossRef]
- Gorąca, A.; Asłanowicz-Antkowiak, K. Prophylaxis with α-lipoic acid against lipopolysaccharide-induced brain injury in rats. Arch. Immunol. Ther. Exp. 2009, 57, 141–146. [Google Scholar] [CrossRef]
- Wang, J.; Lou, Z.; Xi, H.; Li, Z.; Li, L.; Li, Z.; Zhang, K.; Asakawa, T. Verification of neuroprotective effects of alpha-lipoic acid on chronic neuropathic pain in a chronic constriction injury rat model. Open Life Sci. 2021, 16, 222–228. [Google Scholar] [CrossRef]
- Bast, A.; Haenen, G. Lipoic acid: A multifunctional antioxidant. In Thiol Metabolism and Redox Regulation of Cellular Function; Pompella, A., Banhegyi, G., Wellman-Rousseau, M., Eds.; IOS Press: Washington, DC, USA, 2002; pp. 230–237. [Google Scholar]
- Maritim, A.; Sanders, R.; Watkins Iii, J. Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 2003, 14, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Pershadsingh, H.A. α-Lipoic acid: Physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert. Opin. Investig. Drugs 2007, 16, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Cadenas, E. Lipoic acid: Energy metabolism and redox regulation of transcription and cell signaling. J. Clin. Biochem. Nutr. 2010, 48, 26–32. [Google Scholar] [CrossRef]
- Ziegler, D.; Porta, M.; Papanas, N.; Mota, M.; Jermendy, G.; Beltramo, E.; Mazzeo, A.; Caccioppo, A.; Striglia, E.; Serhiyenko, V. The role of biofactors in diabetic microvascular complications. Curr. Diabetes Rev. 2022, 18, 20–45. [Google Scholar] [CrossRef]
- Khan, H.; Singh, T.G.; Dahiya, R.S.; Abdel-Daim, M.M. α-Lipoic acid, an organosulfur biomolecule a novel therapeutic agent for neurodegenerative disorders: An mechanistic perspective. Neurochem. Res. 2022, 47, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Haak, E.; Usadel, K.; Kusterer, K.; Amini, P.; Frommeyer, R.; Tritschler, H.; Haak, T. Effects of alpha-lipoic acid on microcirculation in patients with peripheral diabetic neuropathy. Exp. Clin. Endocrinol. Diabetes 2000, 108, 168–174. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Tziona, P.; Rekka, E.A. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol. Biol. Rep. 2021, 48, 6539–6550. [Google Scholar] [CrossRef]
- Cameron, N.E.; Cotter, M.A. Pro-inflammatory mechanisms in diabetic neuropathy: Focus on the nuclear factor kappa B pathway. Curr. Drug Targets 2008, 9, 60–67. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhang, Y.L.; Sun, Q.; Zhang, P.A.; Wang, X.X.; Xu, G.Y.; Hu, J.; Zhang, H.H. Alpha-lipoic acid downregulates TRPV1 receptor via NF-κB and attenuates neuropathic pain in rats with diabetes. CNS Neurosci. Ther. 2020, 26, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Wei, H.; Hagen, T.; Frei, B. α-Lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc. Natl. Acad. Sci. USA 2007, 104, 4077–4082. [Google Scholar] [CrossRef]
- Ajith, T.A. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1883–1890. [Google Scholar] [CrossRef]
- Nádró, B.; Lőrincz, H.; Molnár, Á.; Szentpéteri, A.; Zöld, E.; Seres, I.; Páll, D.; Paragh, G.; Kempler, P.; Harangi, M. Effects of alpha-lipoic acid treatment on serum progranulin levels and inflammatory markers in diabetic neuropathy. J. Int. Med. Res. 2021, 49, 03000605211012213. [Google Scholar] [CrossRef]
- Gao, N.; Li, M.; Wang, W.; Liu, Z.; Guo, Y. The dual role of TRPV1 in peripheral neuropathic pain: Pain switches caused by its sensitization or desensitization. Front. Mol. Neurosci. 2024, 17, 1400118. [Google Scholar] [CrossRef]
- Yazğan, B.; Yazğan, Y.; Nazıroğlu, M. Alpha-lipoic acid modulates the diabetes mellitus-mediated neuropathic pain via inhibition of the TRPV1 channel, apoptosis, and oxidative stress in rats. J. Bioenerg. Biomembr. 2023, 55, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Pacini, A.; Tomassoni, D.; Trallori, E.; Micheli, L.; Amenta, F.; Ghelardini, C.; Di Cesare Mannelli, L.; Traini, E. Comparative assessment of the activity of racemic and dextrorotatory forms of thioctic (Alpha-Lipoic) acid in low back pain: Preclinical results and clinical evidences from an open randomized trial. Front. Pharmacol. 2021, 12, 607572. [Google Scholar] [CrossRef]
- Midaoui, A.E.; Elimadi, A.; Wu, L.; Haddad, P.S.; De Champlain, J. Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am. J. Hypertens. 2003, 16, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Lu, J.; Chen, B.; Yuan, L.; Chen, L.; Ju, L.; Cai, W.; Wu, J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants 2024, 13, 897. [Google Scholar] [CrossRef]
- El Amrousy, D.; El-Afify, D. Effects of alpha lipoic acid as a supplement in obese children and adolescents. Cytokine 2020, 130, 155084. [Google Scholar] [CrossRef]
- Barrientos, G.; Schuman, M.L.; Landa, M.S.; Robello, E.; Incardona, C.; Conrad, M.L.; Galleano, M.; García, S.I. Therapeutic effect of alpha lipoic acid in a rat preclinical model of preeclampsia: Focus on maternal signs, fetal growth and placental function. Antioxidants 2024, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- Slepneva, I.A.; Sergeeva, S.V.; Khramtsov, V.V. Reversible inhibition of NADPH-cytochrome P450 reductase by α-lipoic acid. Biochem. Biophys. Res. Commun. 1995, 214, 1246–1253. [Google Scholar] [CrossRef]
- Makhova, A.A.; Shikh, E.V.; Bulko, T.V.; Gilep, A.A.; Usanov, S.A.; Shumyantseva, V.V. No effect of lipoic acid on catalytic activity of cytochrome P450 3A4. Drug Metab. Pers. Ther. 2020, 35, 20200105. [Google Scholar] [CrossRef] [PubMed]
- Phua, L.C.; New, L.S.; Goh, C.W.; Neo, A.H.; Browne, E.R.; Chan, E.C. Investigation of the drug–drug interaction between α-lipoic acid and valproate via mitochondrial β-oxidation. Pharm. Res. 2008, 25, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Della Croce, C.; Bronzetti, G.; Cini, M.; Caltavuturo, L.; Poi, G. Protective effect of lipoic acid against hydrogen peroxide in yeast cells. Toxicol. in Vitro 2003, 17, 753–759. [Google Scholar] [CrossRef]
- Gleiter, C.H.; Schreeb, K.H.; Freudenthaler, S.; Thomas, M.; Elze, M.; Fieger-Büschges, H.; Potthast, H.; Schneider, E.; Schug, B.S.; Blume, H.H.; et al. Lack of interaction between thioctic acid, glibenclamide and acarbose. Br. J. Clin. Pharmacol. 1999, 48, 819–825. [Google Scholar] [CrossRef]
- ALI, R.S.; Hameed, B.J.; Shari, F.H. Synergistic Antihyperglycemic Effect of Alpha Lipoic Acid with Antidiabetic Agents in the Normoglycemic and Streptozotocin-Induced Type 2 Diabetic Rats. Acta Pol. Pharm. 2023, 80, 483–491. [Google Scholar]
- Mathew, T.; Zubair, M.; Tadi, P. Blood Glucose Monitoring. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Camiolo, G.; Tibullo, D.; Giallongo, C.; Romano, A.; Parrinello, N.L.; Musumeci, G.; Di Rosa, M.; Vicario, N.; Brundo, M.V.; Amenta, F. α-Lipoic acid reduces iron-induced toxicity and oxidative stress in a model of iron overload. Int. J. Mol. Sci. 2019, 20, 609. [Google Scholar] [CrossRef]
- Multum, C. Alpha Lipoic Acid. Available online: https://www.drugs.com/mtm/alpha-lipoic-acid.html (accessed on 20 March 2025).
- El-Gowelli, H.M.; Saad, E.I.; Abdel-Galil, A.-G.A.; Ibrahim, E.R. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade. Toxicol. Appl. Pharmacol. 2015, 288, 300–312. [Google Scholar] [CrossRef]
- Werida, R.H.; Elshafiey, R.A.; Ghoneim, A.; Elzawawy, S.; Mostafa, T.M. Role of alpha-lipoic acid in counteracting paclitaxel-and doxorubicin-induced toxicities: A randomized controlled trial in breast cancer patients. Support. Care Cancer 2022, 30, 7281–7292. [Google Scholar] [CrossRef]
- Guo, Y.; Jones, D.; Palmer, J.L.; Forman, A.; Dakhil, S.R.; Velasco, M.R.; Weiss, M.; Gilman, P.; Mills, G.; Noga, S.J. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled trial. Support. Care Cancer 2014, 22, 1223–1231. [Google Scholar] [CrossRef]
- Lateef Al-Awsi, G.R.; Arshed, U.; Arif, A.; Ramírez-Coronel, A.A.; Alhassan, M.S.; Mustafa, Y.F.; Rahman, F.F.; Zabibah, R.S.; Gupta, J.; Iqbal, M.S. The chemoprotective potentials of alpha-lipoic acid against cisplatin-induced ototoxicity: A systematic review. Curr. Med. Chem. 2024, 31, 3588–3603. [Google Scholar] [CrossRef]
- Frediani, J.K.; Lal, A.A.; Kim, E.; Leslie, S.L.; Boorman, D.W.; Singh, V. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review. Pain Pract. 2024, 24, 186–210. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, H.; Bakal, U. The effect of lipoic acid on macro and trace metal levels in living tissues exposed to oxidative stress. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2009, 9, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Zahabi, E.; Abdollahzad, H. Alpha Lipoic Acid Supplementation and Iron Homeostasis: A Comprehensive Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Int. J. Vitam. Nutr. Res. 2024, 95, 36623. [Google Scholar] [CrossRef] [PubMed]
- Segermann, J.; Hotze, A.; Ulrich, H.; Rao, G. Effect of alpha-lipoic acid on the peripheral conversion of thyroxine to triiodothyronine and on serum lipid-, protein-and glucose levels. Arzneim. Forsch. 1991, 41, 1294–1298. [Google Scholar]
- Khoder, N.M.; Sawie, H.G.; Sharada, H.M.; Hosny, E.N.; Khadrawy, Y.A.; Abdulla, M.S. Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats. J. Diabetes Metab. Disord. 2022, 21, 1327–1337. [Google Scholar] [CrossRef]
- GAL, E. Reversal of Selective Toxicity of (â)-α-Lipoic Acid by Thiamine in Thiamine-deficient Rats. Nature 1965, 207, 535. [Google Scholar] [CrossRef]
- Du, X.; Edelstein, D.; Brownlee, M. Oral benfotiamine plus α-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia 2008, 51, 1930–1932. [Google Scholar] [CrossRef]
- Popa, A.R.; Bungau, S.; Vesa, C.M.; Bondar, A.C.; Pantis, C.; Maghiar, O.; Dimulescu, I.A.; Nistor-Cseppento, D.; Rus, M. Evaluating the efficacy of the treatment with benfotiamine and alpha-lipoic acid in distal symmetric painful diabetic polyneuropathy. Rev. Chim. 2019, 70, 3108–3114. [Google Scholar] [CrossRef]
- Zempleni, J.; Trusty, T.A.; Mock, D.M. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liver. J. Nutr. 1997, 127, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Hermann, R.; Wildgrube, H.J.; Ruus, P.; Niebch, G.; Nowak, H.; Gleiter, C.H. Gastric emptying in patients with insulin dependent diabetes mellitus and bioavailability of thioctic acid-enantiomers. Eur. J. Pharm. Sci. 1998, 6, 27–37. [Google Scholar] [CrossRef]
- Vallianou, N.; Evangelopoulos, A.; Koutalas, P. Alpha-lipoic acid and diabetic neuropathy. Rev. Diabet. Stud. 2010, 6, 230. [Google Scholar] [CrossRef] [PubMed]
- Rahayu, I.; Arfian, N.; Kustanti, C.Y.; Wahyuningsih, M.S.H. The effectiveness of antioxidant agents in delaying progression of diabetic nephropathy: A systematic review of randomized controlled trials. BioImpacts BI 2024, 15, 30129. [Google Scholar] [CrossRef]
- Ansar, H.; Mazloom, Z.; Kazemi, F.; Hejazi, N. Effect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. Saudi Med. J. 2011, 32, 584–588. [Google Scholar] [PubMed]
- Porasuphatana, S.; Suddee, S.; Nartnampong, A.; Konsil, J.; Harnwong, B.; Santaweesuk, A. Glycemic and oxidative status of patients with type 2 diabetes mellitus following oral administration of alphalipoic acid: A randomized double-blinded placebocontrolled study. Asia Pac. J. Clin. Nutr. 2012, 21, 12–21. [Google Scholar]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Han, T.; Bai, J.; Liu, W.; Hu, Y. THERAPY OF ENDOCRINE DISEASE: A systematic review and meta-analysis of α-lipoic acid in the treatment of diabetic peripheral neuropathy. Eur. J. Endocrinol. 2012, 167, 465–471. [Google Scholar] [CrossRef]
- Rosen, P.; Tritschler, H.J.; King, G.A.; Azzi, A. Antioxidants in Diabetes Management; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Strokov, I.; Manukhina, E.; Bakhtina, L.Y.; Malyshev, I.Y.; Zoloev, G.; Kazikhanova, S.; Ametov, A. The function of endogenous protective systems in patients with insulin-dependent diabetes mellitus and polyneuropathy: Effect of antioxidant therapy. Bull. Exp. Biol. Med. 2000, 130, 986–990. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D. α-Lipoic acid: A multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol. Ther. 2000, 2, 401–413. [Google Scholar] [CrossRef]
- Cameron, N.; Cotter, M.; Horrobin, D.; Tritschler, H. Effects of α-lipoic acid on neurovascular function in diabetic rats: Interaction with essential fatty acids. Diabetologia 1998, 41, 390–399. [Google Scholar] [CrossRef]
- Keegan, A.; Cotter, M.; Cameron, N.E. Effects of diabetes and treatment with the antioxidant α-lipoic acid on endothelial and neurogenic responses of corpus cavernosum in rats. Diabetologia 1999, 42, 343–350. [Google Scholar] [CrossRef]
- Sima, A. The heterogeneity of diabetic neuropathy. Front. Biosci. 2008, 13, 4809–4816. [Google Scholar] [CrossRef]
- Dillon, B.R.; Ang, L.; Pop-Busui, R. Spectrum of diabetic neuropathy: New insights in diagnosis and treatment. Annu. Rev. Med. 2024, 75, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.A.; Zhang, W. Mechanisms of diabetic neuropathy: Axon dysfunction. Handb. Clin. Neurol. 2014, 126, 429–442. [Google Scholar] [PubMed]
- Merlin, E.; Salio, C.; Ferrini, F. Painful Diabetic Neuropathy: Sex-Specific Mechanisms and Differences from Animal Models to Clinical Outcomes. Cells 2024, 13, 2024. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Luo, N.; Zeng, Y.; Chen, Y.; Wie, L.J.; Fang, J. Bibliometric and visualized analysis of 2014–2024 publications on therapy for diabetic peripheral neuropathy. Front. Neurosci. 2024, 18, 1434756. [Google Scholar] [CrossRef]
- Basu, P.; Prasoon, P.; Susuki, K. Understanding and managing diabetic neuropathy: Current perspectives and future directions. Front. Neurosci. 2025, 19, 1582123. [Google Scholar] [CrossRef]
- Ismail, C.A.N. Issues and challenges in diabetic neuropathy management: A narrative review. World J. Diabetes 2023, 14, 741. [Google Scholar] [CrossRef]
- Abubaker, S.A.; Alonazy, A.M.; Abdulrahman, A.; Abubaker, S.; Alonazy, A.; Albasseet, A. Effect of alpha-lipoic acid in the treatment of diabetic neuropathy: A systematic review. Cureus 2022, 14, e25750. [Google Scholar] [CrossRef]
- Baum, P.; Toyka, K.V.; Blüher, M.; Kosacka, J.; Nowicki, M. Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)—New aspects. Int. J. Mol. Sci. 2021, 22, 10835. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.Z.; Menkes, D.L.; Souayah, N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov. Today 2024, 29, 104087. [Google Scholar] [CrossRef] [PubMed]
- Haghighatdoost, F.; Hariri, M. The effect of alpha-lipoic acid on inflammatory mediators: A systematic review and meta-analysis on randomized clinical trials. Eur. J. Pharmacol. 2019, 849, 115–123. [Google Scholar] [CrossRef]
- Ziegler, D.; Papanas, N.; Schnell, O.; Nguyen, B.D.T.; Nguyen, K.T.; Kulkantrakorn, K.; Deerochanawong, C. Current concepts in the management of diabetic polyneuropathy. J. Diabetes Investig. 2021, 12, 464–475. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol. 2016, 791, 8–24. [Google Scholar] [CrossRef]
- Qureshi, Z.; Ali, M.N.; Khalid, M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J. Diabetes Res. 2022, 2022, 9989272. [Google Scholar] [CrossRef]
- Hsieh, R.-Y.; Huang, I.-C.; Chen, C.; Sung, J.-Y. Effects of oral alpha-lipoic acid treatment on diabetic polyneuropathy: A meta-analysis and systematic review. Nutrients 2023, 15, 3634. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Gallagher, G.; Fridman, V.; Feldman, E.L. Diabetic neuropathy: What does the future hold? Diabetologia 2020, 63, 891–897. [Google Scholar] [CrossRef]
- Price, R.; Smith, D.; Franklin, G.; Gronseth, G.; Pignone, M.; David, W.S.; Armon, C.; Perkins, B.A.; Bril, V.; Rae-Grant, A. Oral and topical treatment of painful diabetic polyneuropathy: Practice guideline update summary: Report of the AAN guideline subcommittee. Neurology 2022, 98, 31–43. [Google Scholar] [CrossRef]
- Cernea, S.; Raz, I. Management of diabetic neuropathy. Metabolism 2021, 123, 154867. [Google Scholar] [CrossRef]
- Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021, 17, 400–420. [Google Scholar] [CrossRef]
- Yorek, M. Combination therapy is it in the future for successfully treating peripheral diabetic neuropathy? Front. Endocrinol. 2024, 15, 1357859. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Fonseca, V. From guideline to patient: A review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J. Diabetes Its Complicat. 2015, 29, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, L.E.; Wiffen, P.J.; Moore, R.A.; Gilron, I. Combination pharmacotherapy for the treatment of neuropathic pain in adults. Cochrane Database Syst. Rev. 2012, 2012, CD008943. [Google Scholar] [PubMed]
- Rosenberg, C.J.; Watson, J.C. Treatment of painful diabetic peripheral neuropathy. Prosthet. Orthot. Int. 2015, 39, 17–28. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Y. Analysis of MDA, SOD, TAOC, MNCV, SNCV, and TSS scores in patients with diabetes peripheral neuropathy. Open Life Sci. 2024, 19, 20220945. [Google Scholar] [CrossRef]
- Preston, F.G.; Riley, D.R.; Azmi, S.; Alam, U. Painful diabetic peripheral neuropathy: Practical guidance and challenges for clinical management. Diabetes Metab. Syndr. Obes. 2023, 16, 1595–1612. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Farrar, J.T.; Young, J.P., Jr.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- Dworkin, R.H.; O’Connor, A.B.; Audette, J.; Baron, R.; Gourlay, G.K.; Haanpää, M.L.; Kent, J.L.; Krane, E.J.; LeBel, A.A.; Levy, R.M. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin. Proc. 2010, 85, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Moulin, D.; Clark, A.; Gilron, I.; Ware, M.; Watson, C.; Sessle, B.; Coderre, T.; Morley-Forster, P.; Stinson, J.; Boulanger, A. Pharmacological management of chronic neuropathic pain–consensus statement and guidelines from the Canadian Pain Society. Pain Res. Manag. 2007, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Ang, L.; Boulton, A.J.; Feldman, E.L.; Marcus, R.L.; Mizokami-Stout, K.; Singleton, J.R.; Ziegler, D. Diagnosis and treatment of painful diabetic peripheral neuropathy. Am. Diabetes Assoc. 2022, 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Checchia, G.; Letizia Mauro, G.; Morico, G.; Lisi, C.; Polimeni, V.; Lucia, M.; Ranieri, M. Observational multicentric study on chronic sciatic pain: Clinical data from 44 Italian centers. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1653–1664. [Google Scholar]
- Ran, G.-L.; Li, Y.-P.; Lu, L.-C.; Lan, S.-H. Disease-modifying therapies for diabetic peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Its Complicat. 2024, 38, 108691. [Google Scholar] [CrossRef] [PubMed]
- Dy, S.M.; Bennett, W.L.; Sharma, R.; Zhang, A.; Waldfogel, J.M.; Nesbit, S.A.; Yeh, H.-C.; Chelladurai, Y.; Feldman, D.; Wilson, L.M. Preventing Complications and Treating Symptoms of Diabetic Peripheral Neuropathy; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2017. [Google Scholar]
- Reljanovic, M.; Reichel, G.; Rett, K.; Lobisch, M.; Schuette, K.; Möller, W.; Tritschler, H.-J.; Mehnert, H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Free Radic. Res. 1999, 31, 171–179. [Google Scholar] [CrossRef]
- Ziegler, D.; Ametov, A.; Barinov, A.; Dyck, P.J.; Gurieva, I.; Low, P.A.; Munzel, U.; Yakhno, N.; Raz, I.; Novosadova, M. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy: The SYDNEY 2 trial. Diabetes Care 2006, 29, 2365–2370. [Google Scholar] [CrossRef]
- Ziegler, D.; Low, P.A.; Litchy, W.J.; Boulton, A.J.; Vinik, A.I.; Freeman, R.; Samigullin, R.; Tritschler, H.; Munzel, U.; Maus, J. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: The NATHAN 1 trial. Diabetes Care 2011, 34, 2054–2060. [Google Scholar] [CrossRef]
- Vijayakumar, P.A.; Kalshetti, S.; Bhatt, J. Supplementation of α-lipoic acid in diabetic peripheral neuropathy: A prospective open label randomized controlled trial. Int. J. Pharm. Pharm. Sci. 2014, 6, 90–93. [Google Scholar]
- El-Nahas, M.R.; Elkannishy, G.; Abdelhafez, H.; Elkhamisy, E.T.; El-Sehrawy, A.A. Oral alpha lipoic acid treatment for symptomatic diabetic peripheral neuropathy: A randomized double-blinded placebo-controlled study. Endocr. Metab. Immune Disord.-Drug Targets Former. Curr. Drug Targets-Immune Endocr. Metab. Disord. 2020, 20, 1531–1534. [Google Scholar] [CrossRef]
- Won, J.C.; Kwon, H.-S.; Moon, S.-S.; Chun, S.W.; Kim, C.H.; Park, I.B.; Kim, I.J.; Lee, J.; Cha, B.Y.; Park, T.S. γ-Linolenic acid versus α-lipoic acid for treating painful diabetic neuropathy in adults: A 12-week, double-placebo, randomized, noninferiority trial. Diabetes Metab. J. 2020, 44, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Siddique, N.; Awais, F.; Shakil, M.; Sarwar, S.; Kakar, N.H.; Ullah, M.I. Effect of anti-oxidant (α-lipoic acid) treatment on improvement of diabetic neuropathic pain. Rawal Med. J. 2021, 46, 33. [Google Scholar]
- Hahm, J.R.; Kim, B.-J.; Kim, K.-W. Clinical experience with thioctacid (thioctic acid) in the treatment of distal symmetric polyneuropathy in Korean diabetic patients. J. Diabetes Its Complicat. 2004, 18, 79–85. [Google Scholar] [CrossRef]
- Garcia-Alcala, H.; Santos Vichido, C.I.; Islas Macedo, S.; Genestier-Tamborero, C.N.; Minutti-Palacios, M.; Hirales Tamez, O.; García, C.; Ziegler, D. Treatment with α-lipoic acid over 16 weeks in type 2 diabetic patients with symptomatic polyneuropathy who responded to initial 4-week high-dose loading. J. Diabetes Res. 2015, 2015, 189857. [Google Scholar] [CrossRef]
- Elbadawy, A.M.; Abd Elmoniem, R.O.; Elsayed, A.M. Alpha lipoic acid and diabetes mellitus: Potential effects on peripheral neuropathy and different metabolic parameters. Alex. J. Med. 2021, 57, 113–120. [Google Scholar] [CrossRef]
- Jermendy, G.; Rokszin, G.; Fábián, I.; Kempler, P.; Wittmann, I. Morbidity and mortality of patients with diabetic neuropathy treated with pathogenetically oriented alpha-lipoic acid versus symptomatic pharmacotherapies–a nationwide database analysis from Hungary. Diabetes Res. Clin. Pract. 2023, 201, 110734. [Google Scholar] [CrossRef]
- Fogacci, F.; Rizzo, M.; Krogager, C.; Kennedy, C.; Georges, C.M.; Knežević, T.; Liberopoulos, E.; Vallée, A.; Pérez-Martínez, P.; Wenstedt, E.F. Safety evaluation of α-lipoic acid supplementation: A systematic review and meta-analysis of randomized placebo-controlled clinical studies. Antioxidants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Dugbartey, G.J.; Alornyo, K.K.; N’guessan, B.B.; Atule, S.; Mensah, S.D.; Adjei, S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed. Pharmacother. 2022, 149, 112818. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Low, P.A.; Freeman, R.; Tritschler, H.; Vinik, A.I. Predictors of improvement and progression of diabetic polyneuropathy following treatment with α-lipoic acid for 4 years in the NATHAN 1 trial. J. Diabetes Its Complicat. 2016, 30, 350–356. [Google Scholar] [CrossRef]
- Akbari, M.; Ostadmohammadi, V.; Lankarani, K.B.; Tabrizi, R.; Kolahdooz, F.; Khatibi, S.R.; Asemi, Z. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism 2018, 87, 56–69. [Google Scholar] [CrossRef]
- Karalis, D.T.; Karalis, T.; Karalis, S.; Kleisiari, A.S.; Malakoudi, F.; Maimari, K.E.V. The effect of alpha-lipoic acid on diabetic peripheral neuropathy and the upcoming depressive disorders of type II diabetics. Cureus 2021, 13, e12773. [Google Scholar] [CrossRef] [PubMed]
- Mijnhout, G.S.; Kollen, B.J.; Alkhalaf, A.; Kleefstra, N.; Bilo, H.J. Alpha lipoic acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials. Int. J. Endocrinol. 2012, 2012, 456279. [Google Scholar] [CrossRef]
- Çakici, N.; Fakkel, T.; Van Neck, J.; Verhagen, A.; Coert, J. Systematic review of treatments for diabetic peripheral neuropathy. Diabet. Med. 2016, 33, 1466–1476. [Google Scholar] [CrossRef]
- Nguyen, N.; Takemoto, J.K. A case for alpha-lipoic acid as an alternative treatment for diabetic polyneuropathy. J. Pharm. Pharm. Sci. 2018, 21, 192s–199s. [Google Scholar] [CrossRef]
- Amato Nesbit, S.; Sharma, R.; Waldfogel, J.M.; Zhang, A.; Bennett, W.L.; Yeh, H.-C.; Chelladurai, Y.; Feldman, D.; Robinson, K.A.; Dy, S.M. Non-pharmacologic treatments for symptoms of diabetic peripheral neuropathy: A systematic review. Curr. Med. Res. Opin. 2019, 35, 15–25. [Google Scholar] [CrossRef]
- Jibril, A.T.; Jayedi, A.; Shab-Bidar, S. Efficacy and safety of oral alpha-lipoic acid supplementation for type 2 diabetes management: A systematic review and dose–response meta-analysis of randomized trials. Endocr. Connect. 2022, 11, e220322. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Donoso, M.; López-Chaparro, M.; Barahona-Vásquez, M.; Santana-Machuca, A.; Bruna-Mejias, A.; Nova-Baeza, P.; Valenzuela-Fuenzalida, J.J. Effectiveness of alpha-lipoic acid in patients with neuropathic pain associated with type I and type II diabetes mellitus: A systematic review and meta-analysis. Medicine 2023, 102, e35368. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Viswanatha, G.L.; Kishore, A.; Nandakumar, K. Safety and efficacy of oral Alpha lipoic acid in the management of Diabetic Neuropathy: A Systematic Review and Meta-Analysis. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Prado, M.B., Jr.; Adiao, K.J.B. Ranking alpha lipoic acid and gamma linolenic acid in terms of efficacy and safety in the management of adults with diabetic peripheral neuropathy: A systematic review and network meta-analysis. Can. J. Diabetes 2024, 48, 233–243.e210. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, D.; Zhang, Y.; Zhang, S.; Wang, H.; Liu, Z.; Wang, H. Using corneal confocal microscopy to compare Mecobalamin intramuscular injections vs oral tablets in treating diabetic peripheral neuropathy: A RCT. Sci. Rep. 2021, 11, 14697. [Google Scholar] [CrossRef]
- Agathos, E.; Tentolouris, A.; Eleftheriadou, I.; Katsaouni, P.; Nemtzas, I.; Petrou, A.; Papanikolaou, C.; Tentolouris, N. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J. Int. Med. Res. 2018, 46, 1779–1790. [Google Scholar] [CrossRef]
- Gilron, I.; Robb, S.; Tu, D.; Holden, R.R.; Jackson, A.C.; Duggan, S.; Milev, R. Randomized, double-blind, controlled trial of a combination of alpha-lipoic acid and pregabalin for neuropathic pain: The PAIN-CARE trial. Pain 2022, 165, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Bertolotto, F.; Massone, A. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs RD 2012, 12, 29–34. [Google Scholar] [CrossRef]
- Jiang, D.-Q.; Li, M.-X.; Ma, Y.-J.; Wang, Y.; Wang, Y. Efficacy and safety of prostaglandin E1 plus lipoic acid combination therapy versus monotherapy for patients with diabetic peripheral neuropathy. J. Clin. Neurosci. 2016, 27, 8–16. [Google Scholar] [CrossRef]
- Jiang, D.-Q.; Xu, L.-C.; Jiang, L.-L.; Li, M.-X.; Wang, Y. Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Medicine 2018, 97, e11390. [Google Scholar] [CrossRef]
- Xu, Q.; Pan, J.; Yu, J.; Liu, X.; Liu, L.; Zuo, X.; Wu, P.; Deng, H.; Zhang, J.; Ji, A. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res. Clin. Pract. 2013, 101, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sawangjit, R.; Thongphui, S.; Chaichompu, W.; Phumart, P. Efficacy and safety of mecobalamin on peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J. Altern. Complement. Med. 2020, 26, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, J.-Y.; Chu, Y.-D.; Zhu, Y.-B.; Luo, L.; Bu, S.-Z. Efficacy of epalrestat plus α-lipoic acid combination therapy versus monotherapy in patients with diabetic peripheral neuropathy: A meta-analysis of 20 randomized controlled trials. Neural Regen. Res. 2018, 13, 1087–1095. [Google Scholar] [CrossRef]
- Ruhnau, K.J.; Meissner, H.; Finn, J.R.; Reljanovic, M.; Lobisch, M.; Schütte, K.; Nehrdich, D.; Tritschler, H.; Mehnert, H.; Ziegler, D. Effects of 3-week oral treatment with the antioxidant thioctic acid (α-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet. Med. 1999, 16, 1040–1043. [Google Scholar] [CrossRef]
- Ziegler, D.; Hanefeld, M.; Ruhnau, K.; Mei\Ner, H.; Lobisch, M.; Schütte, K.; Gries, F.; Group, A.S. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant α-lipoic acid: A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 1995, 38, 1425–1433. [Google Scholar] [CrossRef]
- Ametov, A.S.; Barinov, A.; Dyck, P.J.; Hermann, R.; Kozlova, N.; Litchy, W.J.; Low, P.A.; Nehrdich, D.; Novosadova, M.; O’Brien, P.C.; et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: The SYDNEY trial. Diabetes Care 2003, 26, 770–776. [Google Scholar] [CrossRef]
- Lazutka, J.R.; Daniūnaitė, K.; Dedonytė, V.; Popandopula, A.; Žukaitė, K.; Visockienė, Ž.; Šiaulienė, L. Effects of Short-Term Treatment with α-Lipoic Acid on Neuropathic Pain and Biomarkers of DNA Damage in Patients with Diabetes Mellitus. Pharmaceuticals 2024, 17, 1538. [Google Scholar] [CrossRef] [PubMed]
- Ruessmann, H.J. Switching from pathogenetic treatment with α-lipoic acid to gabapentin and other analgesics in painful diabetic neuropathy: A real-world study in outpatients. J. Diabetes Its Complicat. 2009, 23, 174–177. [Google Scholar] [CrossRef]
- Hegazy, S.K.; Tolba, O.A.; Mostafa, T.M.; Eid, M.A.; El-Afify, D.R. Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. Rev. Diabet. Stud. 2013, 10, 58. [Google Scholar] [CrossRef]
- Puliappadamb, H.M.; Satpathy, A.K.; Mishra, B.R.; Maiti, R.; Jena, M. Evaluation of Safety and Efficacy of Add-on Alpha-Lipoic Acid on Migraine Prophylaxis in an Adolescent Population: A Randomized Controlled Trial. J. Clin. Pharmacol. 2023, 63, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Tromba, L.; Perla, F.M.; Carbotta, G.; Chiesa, C.; Pacifico, L. Effect of alpha-lipoic acid supplementation on endothelial function and cardiovascular risk factors in overweight/obese youths: A double-blind, placebo-controlled randomized trial. Nutrients 2019, 11, 375. [Google Scholar] [CrossRef]
- Scaramuzza, A.; Giani, E.; Redaelli, F.; Ungheri, S.; Macedoni, M.; Giudici, V.; Bosetti, A.; Ferrari, M.; Zuccotti, G.V. Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. J. Diabetes Res. 2015, 2015, 474561. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.A.; Gitelman, S.E. The effect of oral alpha-lipoic acid on oxidative stress in adolescents with type 1 diabetes mellitus. Pediatr. Diabetes 2008, 9, 69–73. [Google Scholar] [CrossRef]
- Korkina, L.G.; Afanas’ef, I.B.; Diplock, A.T. Antioxidant therapy in children affected by irradiation from the Chernobyl nuclear accident. Biochem. Soc. Trans. 1993, 21, 314S. [Google Scholar] [CrossRef]
- Rathmann, W.; Haastert, B.; Delling, B.; Gries, F.; Giani, G. Postmarketing surveillance of adverse drug reactions: A correlational study approach using multiple data sources. Pharmacoepidemiol. Drug Saf. 1998, 7, 51–57. [Google Scholar] [CrossRef]
- Tang, J.; Wingerchuk, D.M.; Crum, B.A.; Rubin, D.I.; Demaerschalk, B.M. Alpha-lipoic acid may improve symptomatic diabetic polyneuropathy. Neurol. 2007, 13, 164–167. [Google Scholar] [CrossRef]
- Cremer, D.; Rabeler, R.; Roberts, A.; Lynch, B. Safety evaluation of α-lipoic acid (ALA). Regul. Toxicol. Pharmacol. 2006, 46, 29–41. [Google Scholar] [CrossRef]
- Cremer, D.; Rabeler, R.; Roberts, A.; Lynch, B. Long-term safety of α-lipoic acid (ALA) consumption: A 2-year study. Regul. Toxicol. Pharmacol. 2006, 46, 193–201. [Google Scholar] [CrossRef]
- Anthony, R.M.; MacLeay, J.M.; Jewell, D.E.; Brejda, J.J.; Gross, K.L. Alpha-lipoic acid is an effective nutritive antioxidant for healthy adult dogs. Animals 2021, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; D’Angelo, A.; Preti, P.; Maffioli, P. Safety and efficacy of alpha lipoic acid during 4 years of observation: A retrospective, clinical trial in healthy subjects in primary prevention. Drug Des. Dev. Ther. 2020, 14, 5367–5374. [Google Scholar] [CrossRef]
- Ziegler, D.; Nowak, H.; Kempler, P.; Vargha, P.; Low, P. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: A meta-analysis. Diabet. Med. 2004, 21, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Parente, E.; Colannino, G.; Picconi, O.; Monastra, G. Safety of oral alpha-lipoic acid treatment in pregnant women: A retrospective observational study. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4219–4227. [Google Scholar]
- Yadav, V.; Marracci, G.; Lovera, J.; Woodward, W.; Bogardus, K.; Marquardt, W.; Shinto, L.; Morris, C.; Bourdette, D. Lipoic acid in multiple sclerosis: A pilot study. Mult. Scler. J. 2005, 11, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Vigil, M.; Berkson, B.M.; Garcia, A.P. Adverse effects of high doses of intravenous alpha lipoic acid on liver mitochondria. Glob. Adv. Health Med. 2014, 3, 25–27. [Google Scholar] [CrossRef]
- Dudek, M.; Bednarski, M.; Bilska, A.; Iciek, M.; Sokołowska-Jeżewicz, M.; Filipek, B.; Włodek, L. The role of lipoic acid in prevention of nitroglycerin tolerance. Eur. J. Pharmacol. 2008, 591, 203–210. [Google Scholar] [CrossRef]
- Kotańska, M.; Razny, K.; Bilska-Wilkosz, A.; Iciek, M.; Sapa, J.; Włodek, L.B.; Filipek, B. Hypotensive effect of alpha-lipoic acid after a single administration in rats. Anatol. J. Cardiol. 2016, 16, 306–309. [Google Scholar]
- Lee, Y.; Naseem, R.H.; Park, B.-H.; Garry, D.J.; Richardson, J.A.; Schaffer, J.E.; Unger, R.H. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochem. Biophys. Res. Commun. 2006, 344, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Abuyassin, B.; Golbidi, S.; Ayas, N.; Laher, I. Alpha lipoic acid improves endothelial function and oxidative stress in mice exposed to chronic intermittent hypoxia. Oxidative Med. Cell. Longev. 2019, 2019, 4093018. [Google Scholar] [CrossRef]
- He, L.; Liu, B.; Dai, Z.; Zhang, H.-F.; Zhang, Y.-S.; Luo, X.-J.; Ma, Q.-L.; Peng, J. Alpha lipoic acid protects heart against myocardial ischemia–reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation. Eur. J. Pharmacol. 2012, 678, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Al-Rasheed, N.M.; Al-Rasheed, N.M.; Attia, H.A.; Hasan, I.H.; Al-Amin, M.; Al-Ajmi, H.; Mohamad, R.A. Adverse cardiac responses to alpha-lipoic acid in a rat-diabetic model: Possible mechanisms? J. Physiol. Biochem. 2013, 69, 761–778. [Google Scholar] [CrossRef]
- Cho, Y.S.; Lee, J.; Lee, T.-H.; Lee, E.Y.; Lee, K.-U.; Park, J.Y.; Moon, H.-B. α-Lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. J. Allergy Clin. Immunol. 2004, 114, 429–435. [Google Scholar]
- GOR, A.; CA, B.S. Beneficial effect of α-lipoic acid on lipopolysaccharide-induced oxidative stress in bronchoalveolar lavage fluid. J. Physiol. Pharmacol. 2008, 59, 379–386. [Google Scholar]
- Khamaisi, M.; Rudich, A.; Potashnik, R.; Tritschler, H.J.; Gutman, A.; Bashan, N. Lipoic acid acutely induces hypoglycemia in fasting nondiabetic and diabetic rats. Metabolism 1999, 48, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Loftin, E.G.; Herold, L.V. Therapy and outcome of suspected alpha lipoic acid toxicity in two dogs. J. Vet. Emerg. Crit. Care 2009, 19, 501–506. [Google Scholar] [CrossRef]
- Tolunay, O.; Çelik, T.; Kömür, M.; Gezgin, A.E.; Kaya, M.S.; Çelik, Ü. A rare cause of status epilepticus; alpha lipoic acid intoxication, case report and review of the literature. Eur. J. Paediatr. Neurol. 2015, 19, 730–732. [Google Scholar] [CrossRef]
- Kuhla, A.; Derbenev, M.; Shih, H.Y.; Vollmar, B. Prophylactic and abundant intake of α-lipoic acid causes hepatic steatosis and should be reconsidered in usage as an anti-aging drug. Biofactors 2016, 42, 179–189. [Google Scholar] [CrossRef]
- Cakatay, U.; Kayaliı, R. Plasma protein oxidation in aging rats after alpha-lipoic acid administration. Biogerontology 2005, 6, 87–93. [Google Scholar]
- Çakatay, U. Pro-oxidant actions of α-lipoic acid and dihydrolipoic acid. Med. Hypotheses 2006, 66, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, L.V.; Aksenov, I.V.; Nikitin, N.S.; Guseva, G.V.; Avrenyeva, L.I.; Trusov, N.V.; Balakina, A.S.; Tutelyan, V.A. Lipoic acid exacerbates oxidative stress and lipid accumulation in the liver of Wistar rats fed a hypercaloric choline-deficient diet. Nutrients 2021, 13, 1999. [Google Scholar] [CrossRef]
- Stabler, S.P.; Sekhar, J.; Allen, R.H.; O’Neill, H.C.; White, C.W. α-Lipoic acid induces elevated S-adenosylhomocysteine and depletes S-adenosylmethionine. Free Radic. Biol. Med. 2009, 47, 1147–1153. [Google Scholar] [CrossRef]
- Offersen, C.M.; Skjoeth-Rasmussen, J. Evaluation of the risk of liver damage from the use of 5-aminolevulinic acid for intra-operative identification and resection in patients with malignant gliomas. Acta Neurochir. 2017, 159, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.F.; Osman, K.; Das, S.; Othman, A.M.; Majid, N.A.; Rahman, M.P.A. A study of the antioxidant effect of alpha lipoic acids on sperm quality. Clinics 2008, 63, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Prathima, P.; Pavani, R.; Sukeerthi, S.; Sainath, S.B. α-Lipoic acid inhibits testicular and epididymal oxidative damage and improves fertility efficacy in arsenic-intoxicated rats. J. Biochem. Mol. Toxicol. 2018, 32, e22016. [Google Scholar] [CrossRef]
- Deore, M.S.; Keerthana, S.; Naqvi, S.; Kumar, A.; Flora, S. Alpha-lipoic acid protects co-exposure to lead and zinc oxide nanoparticles induced neuro, immuno and male reproductive toxicity in rats. Front. Pharmacol. 2021, 12, 626238. [Google Scholar] [CrossRef]
- Said, R.S.; Mohamed, H.A.; Kassem, D.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-γ pathways. Toxicology 2020, 442, 152536. [Google Scholar] [CrossRef]
- Naderi, N.; Darmishonnejad, Z.; Tavalaee, M.; Nasr-Esfahani, M.H. The effect of alpha-lipoic acid on sperm functions in rodent models for male infertility: A systematic review. Life Sci. 2023, 323, 121383. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Yang, F.; Li, J.; Yu, X.; Li, Y. Effect of oral alpha-lipoic acid (ALA) on the treatment of male infertility: A protocol for systematic review and meta-analysis. Medicine 2019, 98, e18453. [Google Scholar] [CrossRef]
- Al Ghafli, M.; Padmanabhan, R.; Kataya, H.; Berg, B. Effects of α-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat foetuses. Mol. Cell. Biochem. 2004, 261, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, R.; Mohamed, S.; Singh, S. Beneficial effect of supplemental lipoic acid on diabetes-induced pregnancy loss in the mouse. Ann. N. Y. Acad. Sci. 2006, 1084, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Di Tucci, C.; Galati, G.; Mattei, G.; Bonanni, V.; Capri, O.; D’Amelio, R.; Muzii, L.; Benedetti Panici, P. The role of alpha lipoic acid in female and male infertility: A systematic review. Gynecol. Endocrinol. 2021, 37, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Rozzana, M.; Zaiton, Z.; Rajikin, M.; Fadzilah, S.; Zanariyah, A. Supplementation with alpha lipoic acid improves the in vitro development of embryos in nicotine-treated mice. Biomed. Res. 2005, 16, 28–32. [Google Scholar]
- Cilio, S.; Rienzo, M.; Villano, G.; Mirto, B.F.; Giampaglia, G.; Capone, F.; Ferretti, G.; Di Zazzo, E.; Crocetto, F. Beneficial effects of antioxidants in male infertility management: A narrative review. Oxygen 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Ye, J.-J.; Chen, Z.-Y.; Wang, Q.-H.; Liao, X.-Y.; Wang, X.-Y.; Zhang, C.-C.; Liu, L.-R.; Wei, Q.; Bao, Y.-G. Current treatment for male infertility: An umbrella review of systematic reviews and meta-analyses. Asian J. Androl. 2024, 26, 645–652. [Google Scholar] [CrossRef]
- Banihani, S.A. Role of Lipoic Acid in Testosterone Production in Males. World J. Men’s Health 2024, 43, 41. [Google Scholar] [CrossRef]
- Attia, M.; Essa, E.A.; Zaki, R.M.; Elkordy, A.A. An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment. Antioxidants 2020, 9, 359. [Google Scholar] [CrossRef]
- Porcaro, G.; Brillo, E.; Giardina, I.; DI IORIO, R. Alpha Lipoic Acid (ALA) effects on subchorionic hematoma. Preliminary clinical results. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3426–3432. [Google Scholar]
- Petca, A.; Bot, M.; Maru, N.; Calo, I.G.; Borislavschi, A.; Dumitrascu, M.C.; Petca, R.-C.; Sandru, F.; Zvanca, M.E. Benefits of α-lipoic acid in high-risk pregnancies. Exp. Ther. Med. 2021, 22, 1232. [Google Scholar] [CrossRef] [PubMed]
- Di Tucci, C.; Di Feliciantonio, M.; Vena, F.; Capone, C.; Schiavi, M.C.; Pietrangeli, D.; Muzii, L.; Benedetti Panici, P. Alpha lipoic acid in obstetrics and gynecology. Gynecol. Endocrinol. 2018, 34, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Chen, Y.; Ning, J. Insulin autoimmune syndrome: A systematic review. Int. J. Endocrinol. 2023, 2023, 1225676. [Google Scholar] [CrossRef]
- Cappellani, D.; Sardella, C.; Campopiano, M.; Falorni, A.; Marchetti, P.; Macchia, E. Spontaneously remitting insulin autoimmune syndrome in a patient taking alpha-lipoic acid. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 18-0122. [Google Scholar] [CrossRef]
- Moffa, S.; Improta, I.; Rocchetti, S.; Mezza, T.; Giaccari, A. Potential cause-effect relationship between insulin autoimmune syndrome and alpha lipoic acid: Two case reports. Nutrition 2019, 57, 1–4. [Google Scholar] [CrossRef]
- Gullo, D.; Evans, J.L.; Sortino, G.; Goldfine, I.D.; Vigneri, R. Insulin autoimmune syndrome (Hirata Disease) in European Caucasians taking α-lipoic acid. Clin. Endocrinol. 2014, 81, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Uchigata, Y.; Hirata, Y.; Omori, Y.; Iwamoto, Y.; Tokunaga, K. Worldwide differences in the incidence of insulin autoimmune syndrome (Hirata disease) with respect to the evolution of HLA-DR4 alleles. Hum. Immunol. 2000, 61, 154–157. [Google Scholar] [CrossRef]
- Yao, D.; Jiang, J.; Zhou, Q.; Feng, C.; Chu, J.; Chen, Z.; Yang, J.; Xia, J.; Chen, Y. HLA Alleles Associate with Insulin Autoimmune Syndrome. Diabetes Metab. Syndr. Obes. 2024, 17, 3463–3475. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition; Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the relationship between intake of alpha-lipoic acid (thioctic acid) and the risk of insulin autoimmune syndrome. EFSA J. 2021, 19, e06577. [Google Scholar]
- Veltroni, A.; Zambon, G.; Cingarlini, S.; Davì, M. Autoimmune hypoglycaemia caused by alpha-lipoic acid: A rare condition in Caucasian patients. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 18-0011. [Google Scholar] [CrossRef]
- Chen, F.; Yang, J.; Liu, Y.; Wang, W.; Zhu, L.; Wang, W.; Yang, J.; You, W. Insulin autoimmune syndrome: Three case reports. Medicine 2018, 97, e13486. [Google Scholar] [CrossRef] [PubMed]
- Baburaj, K.; MP, J.; MV, V. Alpha-lipoic acid induced insulin autoimmune antibody syndrome. Egypt. J. Intern. Med. 2024, 36, 64. [Google Scholar] [CrossRef]
- Li, Z.; Su, Y.; Yi, D.; Wu, C.; Fang, W.; Wang, C. Analysis of the clinical characteristics of insulin autoimmune syndrome induced by alpha-lipoic acid. J. Clin. Pharm. Ther. 2021, 46, 1295–1300. [Google Scholar] [CrossRef]
- Food, D.; Safety of Alpha-Lipoic Acid Use in Food Supplements. DTU Doc 2017. Available online: https://food.ec.europa.eu/system/files/2020-06/labelling-nutrition_vitamins-minerals_add_alpha-lipoic-acid_nfi-da.pdf (accessed on 15 January 2025).
- Censi, S.; Mian, C.; Betterle, C. Insulin autoimmune syndrome: From diagnosis to clinical management. Ann. Transl. Med. 2018, 6, 335. [Google Scholar] [CrossRef]
- Emir, D.F.; Ozturan, I.U.; Yilmaz, S. Alpha lipoic acid intoxicatıon: An adult. Am. J. Emerg. Med. 2018, 36, 1125.e3–1125.e5. [Google Scholar] [CrossRef]
- Moretti, R.; Angeletti, C.; Minora, S. Multiple organ failure and shock following acute alpha lipoic acid (ALA) intoxication. Clin. Toxicol. 2019, 57, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Özçetin, M.; Yilmaz, R.; Tetikçok, R.; Karaaslan, E.; Dürer, Z.; Narin, B. Alpha lipoic acid intoxication in a 10 months old infant; a case report. Anatol. J. Clin. Investig. 2012, 6, 267–268. [Google Scholar]
- Karaarslan, U.; İşgüder, R.; Bağ, Ö.; Kışla, M.; Ağın, H.; Ünal, N. Alpha lipoic acid intoxication, treatment and outcome. Clin. Toxicol. 2013, 51, 522. [Google Scholar] [CrossRef]
- Polat, S.; Kılıçaslan, Ö.; Sönmez, F.T. Alpha-lipoic acid intoxication in an adolescent girl: Case report and review of the literature. Turk. Arch. Pediatr. /Türk. Pediatri. Arşivi. 2020, 55, 328. [Google Scholar] [CrossRef]
- Halabi, Z.; El Helou, C.; Al Balushi, H.; Gittinger, M.; Steck, A.R.; Kaakour, A.; Abu-Alfa, A.; El Zahran, T. Alpha lipoic acid toxicity: The first reported mortality in an adult patient after multiorgan failure. J. Emerg. Med. 2023, 64, 190–194. [Google Scholar] [CrossRef]
- Hadzik, B.; Grass, H.; Mayatepek, E.; Daldrup, T.; Hoehn, T. Fatal non-accidental alpha-lipoic acid intoxication in an adolescent girl. Klin. Pädiatr. 2014, 226, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Alpha Lipoic Acid Market Size, Share, Competitive Landscape and Trend Analysis Report, by Product Type and Application: Global Opportunity Analysis and Industry Forecast, 2021–2030. Available online: https://www.alliedmarketresearch.com/alpha-lipoic-acid-market-A13701 (accessed on 16 April 2025).
- Alpha-Lipoic Acid Market Size, Share & Trends Analysis Report by Product (R Alpha Lipoic Acid, S Alpha Lipoic Acid), by Application (Dietary Supplements, Cosmetics), by Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/alpha-lipoic-acid-market-report# (accessed on 16 April 2025).
- Alpha Lipoic Acid Market Research Report Information by Product Type (R Alpha Lipoic Acid And S Alpha Lipoic Acid), by Application (Dietary Supplements, Cosmetics, Pharmaceuticals, and Others), and by Region (North America, Europe, Asia-Pacific, and Rest of the World)–Market Forecast Till 2032. Available online: https://www.marketresearchfuture.com/reports/alpha-lipoic-acid-market-22178 (accessed on 16 April 2025).
- Alpha-Lipoic Acid Market Size and Share Analysis—Growth Trends and Forecasts (2025–2032). Available online: https://www.coherentmarketinsights.com/industry-reports/alpha-lipoic-acid-market (accessed on 16 April 2025).
Drugs [References] | Effects of ALA |
---|---|
Insulin and Oral Antidiabetic Drugs [65,130,131,132] | Enhances insulin sensitivity, amplifies the effects of insulin and other antidiabetic medications (e.g., metformin, sulfonylureas), and raises the risk of hypoglycemia. |
Antioxidants [68,133] | They may have synergistic effects, but antagonistic interactions might also impact the pharmacodynamics of these supplements. |
Metal-binding Drugs [66,68,133] | May affect the effectiveness of certain metal-based medications or supplements, including some antibiotics and cancer treatments. |
Chemotherapy Drugs [123,134,135,136,137,138,139] | May hinder the effectiveness of certain chemotherapy drugs, particularly those that produce free radicals. Its antioxidant properties might diminish the efficacy of chemotherapeutic agents that operate through oxidative stress. Some studies indicated that ALA could enhance the effect of certain chemotherapeutics by reducing oxidative damage to normal cells. ALA has been shown to counteract the adverse effects of anticancer agents, including neuropathy. |
Iron/Calcium/Magnesium Supplements [68,134,140,141] | This may decrease their absorption and effectiveness. This interaction is relevant only to products administered orally. Supplementation with ALA did not show a statistically significant impact on iron-related measures. Analysis of subgroups indicated a notable increase in ALA’s effect on hemoglobin among patients with hematological conditions and in studies that lasted longer than eight weeks. |
Thyroid Medications [134,142,143] | It may impact thyroid hormone levels and affect the efficacy of thyroid medications in some individuals. |
Alcohol [68,144,145,146] | Chronic alcohol consumption may decrease the effectiveness of ALA, as it can impair the absorption and utilization of antioxidants. In addition, alcohol can lower the amount of thiamine (vit. B1) in the body. Thiamine is crucial for nerve function and energy metabolism in the brain. Thiamine deficiency, if induced or exacerbated by high-dose ALA, can lead to conditions such as Wernicke-Korsakoff syndrome, which manifests in CNS-related symptoms like confusion, ataxia (lack of coordination), and memory problems. However, this is more of a concern for individuals already thiamine-deficient than for the general population. |
Biotin [14,64,147] | The chemical structure of biotin is similar to that of ALA, and there is some evidence that high concentrations of lipoic acid can compete with biotin for transport across cell membranes. |
Participants/Patients Treated with PO 600 mg ALA | ALA Dose/Duration of the Study | Main Outcomes | Safety |
---|---|---|---|
A randomized, placebo-controlled study [151] | |||
29 T2DM (age > 18) | 300 mg/day for 8 weeks | The ALA group showed a significant decrease in FBG and PPG levels, IR-HOMA index, and GPx levels. There is a significant difference between FBG and IR at the beginning and end of the study in the ALA-treated and PLA-groups. | ND |
A randomized, double-blinded, placebo-controlled study [152] | |||
30 T2DM (age > 18) | 300, 600, 900, 1200 mg/day for 24 weeks | FBG and HbA1c trended to decrease in a dose-dependent manner. An increase of urinary F2α-IsoP was noted in PLA but not ALA-treated groups, suggesting a potential inhibitory effect of ALA on lipid peroxidation in individuals with DM. | Well tolerated; minor side effects (1 patient—anorexia; 2 patients—skin rash) |
Study [Reference] | Population | Duration | Intervention | Control | Efficacy | Safety | Issues |
---|---|---|---|---|---|---|---|
Randomized controlled trials | |||||||
ALADIN II [194] Multi-center, prospective, randomized, double-blind, placebo-controlled clinical trial | 299 T1/T2 DM participants with mild to moderate DPN and on NCS (age 18–60; mean 57.8 ± 9.73) | 96 weeks (2 years) | ALA of 1200 or 600 mg/day or PLA was IV administered for 5 consecutive days before enrolling the patients in the long-term PO phase. 18 given ALA 1200 PO (G1: 6 × 200 mg), 27 given ALA 600 PO (G2: 3 × 200 mg + 3 × 200 mg PLA) | 20 given PLA tablets (G3: 6 × 200 mg PLA) | 2-year treatment may exert favorable effect on the peripheral nerve function of DM patients; Neurophysiologic markers: sural NCV statistically significant improvement for ALA1200 and ALA600 vs. PLA. NSD between the three groups were noted for NDS changes from baseline to 24 months (−0.2 ±2.9 points in ALA 1200, −0.19 ± 2.13 points in ALA 600, and −0.6 ± 3.1 points in PLA). | Treatment-emergent AEs and laboratory tests showed no differences between the groups. The global assessment of tolerability was very good and/or good in 100% of the patients in the PLA group, 89% in ALA 600 and 94% in ALA 1200. | Multicenter (32 outpatient centers) nature increases variability of results. Major problems were faced even before completion of the study, including a high rate of drop-outs (n = 52), withdrawal due to concurrent disease (n = 15) or AEs (n = 3), protocol violators (n = 31), and patients with peripheral vascular disease (n = 29). The primary analysis, therefore included 169 patients, who had completed the 24-month trial. |
ALADIN III [85] Multicenter, randomized, double-blind, placebo-controlled clinical trial | 503 T2DM participants with TSS > 4 and NIS > 2 (age 18–65; mean 56.9 ± 6.23) | 24 weeks | ALA-ALA group (n = 165): 600 mg ALA once daily IV for 3 weeks, followed by 600 mg ALA t.i.d PO for 6 months | ALA-PLA group (n = 173): 600 mg ALA once daily IV for 3 weeks, followed by PLA t.i.d PO for 6 months PLA-PLA group (n = 165); PLA once daily IV for 3 weeks, followed by PLA t.i.d PO for 6 months | Could not demonstrate any effect after 19 days; mean TSS change from baseline to day 19: ALA600: −3.7 (−12.6 to 5), PLA: −3 (−12.3 to 8), NSD; TSS after 7 months: NDS between 2 groups; mean NIS change from baseline to day 19: ALA600: −4.34 ± 0.35, PLA: −3.49 ± 0.58, p = 0.02 | During the oral treatment phase, the rates of AEs were 77/167 (46.1%) in ALA-ALA, 66/174 (37.9%) in ALA-P, and 75/168 (44.6%) in P-PLA, with NSD between the groups. | Multicenter (71 outpatient centers) Nature of the study increases variability of results. The total withdrawal rate was 25% with NSD between the groups. |
SYDNEY 2 [195] Multicenter, randomized, double-blind, placebo-controlled clinical trial | 181 T1/T2 DM participants and TSS > 7.5 and NIS-LL > 2 (age 18–74; mean 57.5 ± 11) | 5 weeks | 45 given ALA600 PO, 47 given ALA1200 PO, 46 given ALA 1800 PO | 43 given PLA | Efficacy of PO ALA600 on neuropathic pain is comparable with ALA600 IV; PO ALA600 is the most appropriate dose; TSS mean change from baseline to end of study: ALA600 vs. ALA1200 vs. ALA1800 vs. PLA (−4.9 vs. −4.5 vs. −4.7 vs. −2.9, p < 0.05 vs. PLA) | TEAEs were 21% in the PLA group, 27% in the ALA600 group (NSD), 43% in the ALA1200 group (p < 0.05 vs. PLA), and 54% in the ALA1800 group (p < 0.05 vs. PLA). | 15 (8%) subjects discontinued during the treatment period because of AEs: 1 in PLA group, 0 in the ALA600, 5 in ALA1200, and 6 in ALA1800. |
NATHAN 1 [196] Multicenter, randomized, double-blind, placebo-controlled clinical trial | 460 T1/T2 DM participants with mild-to-moderate DPN and TSS < 5 NIS-LL > 2 (age 18–64; mean 53.6 ± 7.95) | 216 weeks (4 years) | 231 given ALA 600 mg/day PO | 225 given PLA | ALA600 PO for 4 years was associated with the improvement of neuropathic impairments but not neurophysiologic markers. TSS and NIS change at 4 years: ALA vs. PLA (NSD) | GAT by investigators and patients showed NSD between the groups. Serious AEs occurred in 38.1% of patients in the ALA group and 28.0% of PLA group. | Two (0.9%) patients on ALA and one (0.7%) on PLA discontinued the study as a result of lack of tolerability (“likely” causal relationship to study medication as judged by the investigator). |
India ALA [197] A randomized, open-label, placebo-controlled trial | 20 T2DM with DPN (age 40–65) | 12 weeks | 10 given PO 600 mg/day ALA | 10 given PLA | NCV significantly increased in the ALA group. ALA slows the progression of nerve degeneration and improves patient compliance; however, it does not alter glycemic control. | NDA | Open-label design |
Egypt ALA [198] A prospective, double-blind, placebo-controlled trial | 200 T2DM with DPN | 24 weeks | 100 given 600 mg ALA b.i.d. | 100 given PLA | Improvement in NSS after 6 months treatment (60.9 ± 32.9% for ALA vs. 23.2 ± 14.1% for PLA). NDS and VPT improved after 1 month of treatment. Reduction of pain was not evident by VAS. | No AEs were reported. | Various assessment scales should be considered when interpreting the data. |
Korea 2 ALA [199] A double-placebo, randomized, noninferiority trial | 100 T2DM with DPN | 12 weeks | Active comparator: 52 given PO 600 mg/day ALA + PLA b.i.d | 48 given GLA 320 mg/day b.i.d + PLA q.d. | The mean VAS score at baseline was 5.58 ± 1.35, compared to 3.92 ± 2.12 after 12 weeks of treatment. The TSS significantly decreased from 5.15 ± 3.35 at baseline to 3.52 ± 3.39 after 12 weeks of treatment (p < 0.001). | Patients tolerated the treatment well, as no new safety concerns or events related to ALA were reported. | 73 completed the 12-week treatment period |
Pakistan ALA [200] A randomized controlled trial | 110 T1/T2 DM with TSS ≥ 4. (age 20–70; mean 46.88 ± 11.26) | 24 weeks | 55 given PO 600 mg/day ALA | 55 in the control group | The mean change in TSS in the treatment group was 2.38 ± 1.99, and in the control group was 0.53 ± 1.32 (p < 0.001). The comparison of TSS was significantly reduced for other variables (HbA1c, numbness, burning, and paresthesia) in the post-treatment group than the pretreatment group (p < 0.001). | No AEs were reported ALA was well tolerated, and no patient discontinued treatment. | The control group is not strictly defined. PLA treatment is not included. |
Uncontrolled studies | |||||||
Korea ALA [201] Single-center, open-label clinical trial | 61 DM with mild to moderate DPN and abnormal NCS and TSS ≥ 6 (age 18–70; mean 58.7 ± 6.2) | 8 weeks | 38 given ALA 600 mg PO once daily | The response rates increased during the study, achieving 47.4% at 4 weeks and 71% at 8 weeks; improvement in TSS: responders (n = 27) vs. non-responders (n = 11) (57.3 ± 15.93% vs. 15.44 ± 14.05%, p = 0.01) | 86.8% (33/38) and 76.3% (29/38) had good or satisfactory efficacy at the end of the study, as rated by the physician and patients, respectively. Global tolerance was rated as good or satisfactory by physicians and all 38 patients. | Among the 23 (37.7%) withdrawals, 17 (27.9%) dropped out due to protocol violation, 5 (8.2%) patients due to AEs, and 1 (1.6%) patient due to consent withdrawal. | |
Mexico ALA [202] A multicenter randomized withdrawal open-label study | 45 T2DM with DPN and TSS > 7 who responded to (Phase 1) (mean age 58.2 ± 10.5) | 20 weeks | Phase 1: Initial 4-week high LD of 600 mg ALA t.i.d. to determine responders. Responders who decreased ≥3 TSS points after phase 1 were randomized to receive 600 mg/day of ALA orally for 16 weeks or ALA withdrawal. Phase 2: 16 were given 600 mg/day for 16 weeks, and 17 controls (withdrawal group) were given PLA t.i.d. | Responders During phase 1, the TSS decreased from 8.9 ± 1.8 to 3.46 ± 2.0. During phase 2, TSS improved from 3.7 ± 1.9 points to 2.5 ± 2.5 in the ALA group (p < 0.05) and remained unchanged in the ALA withdrawal group. | No TEAEs were observed throughout the study. | No PLA treatment during phase 2 of the study; compared responders vs. nonresponders. | |
Egypt 2 ALA [203] A prospective, interventional study | 90 T2DM with DPN (age 50–60.3; mean 52) | 12 weeks | 90 given PO 600 mg/day ALA (compared to pre- and post-treatment) | ALA significantly improved NCV, LDL, HDL, HbA1c, and BMI. Failed to prove the effect of ALA on the nerve cross-section area. | NDA | It is unclear whether the improvements are related to ALA or to the improvement in glycemic control. |
Reference | Focus | Clinical Trials | ALA Efficacy Findings | ALA Safety Findings |
---|---|---|---|---|
Ziegler et al. [91] | A comprehensive systematic review and meta-analysis of antioxidant therapy with ALA in DPN. | 4 RCTs (n = 1258) | ALA (600 mg/day PO) significantly improved TSS, reducing neuropathic deficits and symptoms, such as pain and burning sensations. | ALA was generally well-tolerated, with minimal AEs, which were mostly mild GIT symptoms. |
Mcllduff & Rutkove [89] | A critical appraisal of IV and PO ALA in treating symptomatic DPN. | 5 RCTs (n = 1160) | ALA (600 mg/day PO) for up to 5 weeks) demonstrates beneficial effects for managing DPN. | No significant AEs were reported. |
Mijnhout et al. [210] | Systematic review and meta-analysis of RCTs on ALA in DPN. | 4 RCTs (n = 653) | A significant and clinically relevant decrease in neuropathic pain when administered for 3 weeks at 600 mg/day (grade A recommendation). | AEs were mild, including minor GIT disturbances, similar to those in PLA groups. No serious AEs were reported. |
Han et al. [154] | A systematic review and meta-analysis to evaluate the efficacy and safety of ALA in treating DPN. | 15 RCTs (n = 1052) | ALA (300–600 mg/day i.v. for 2–4 weeks) significantly improves NCV and neuropathic symptoms. Nonetheless, the evidence might not be robust due to the poor methodological quality of the studies included in this review. | ALA is a safe option for managing DPN, but it is emphasized that the higher doses result in increased rates of GIT side effects. |
Çakici et al. [211] | A systematic review and meta-analysis to evaluate the efficacy and safety of various treatments for DPN. | 27 RCTs; 19 different interventions; ALA treatment (6 studies) | ALA, along with other treatments, had significant beneficial effects on managing DPN symptoms. Significant improvements in TSS were observed compared with PLA in five trials. Oral 600 mg/day ALA affected DPN symptoms, identical to those of IV ALA treatment. | ALA was generally well-tolerated. The most common AEs were mild GIT issues, as nausea and abdominal discomfort. However, these AEs were not severe and did not result in treatment discontinuation for most patients. |
Dy et al. [193] | Preventing Complications and Treating Symptoms of DPN. | 62 RCTs and nonrandomized studies for prevention or treatment of DPN symptoms | 5 RCTs: ALA was more effective than PLA in reducing pain, although the studies were short-term (<3 months) and had a low SOE. Inconsistency across the studies and unclear risk of bias. | Specific adverse effects occurring in more than 10% of patients in at least one study arm receiving ALA included nausea (1% to 25%), vomiting (0% to 26%), and vertigo (4% to 11%). Rates were dose-dependent, with the highest rates in the 1800 mg group. |
Nguyen & Takemoto [212] | Evaluation of efficacy, safety, and cost of ALA compared to other DPN treatments. | 25 RCTs and 3 open-label studies | Although studies on ALA provided lower strength of evidence, given the limitations of other pharmacologic approaches, ALA could be of particular value. Current data provides evidence of ALA’s benefits in DPN treatment at 600 mg/day, IV or PO, for at least 3 weeks. | Minimal side effects compared to other pharmacological treatments for DPN, such as gabapentin and duloxetine. Favorable cost and tolerability of ALA compared to other DPN treatments. |
Amato et al. [213] | Follow-up ranged from 3 weeks to 4 years, with 4 RCTs 5 weeks or less in duration | 23 RCTs assessing non-pharmacologic intervention therapies for DPN | 6 RCTs: ALA was more effective than PLA for the outcome of pain (low SOE) | 3 RCTs of ALA reported adverse effects. Rates occurring in more than 10% of participants in at least one study arm included nausea (ranging from 1% to 25%), vomiting (ranging from 0% to 26%), and vertigo (ranging from 4% to 11%). Rates were dose-dependent, with the highest rates in the 1800 mg group. |
Fogacci et al. [205] | A systematic review and meta-analysis of the side effects of ALA from the available RCTs | 71 clinical studies, comprising 155 treatment arms, which included 2558 subjects treated with ALA and 2294 assigned to PLA | Not evaluated | ALA was safe and not associated with an increased risk of any TEAE. |
Jibril et al. [214] | A Cochrane systematic review and meta-analysis of ALA effects on cardiometabolic risk factors in patients with T2DM | 16 RCTs (n = 1035) | Although statistically significant effects of ALA supplementation on cardiometabolic risk factors were found, these effects were smaller than MCID thresholds for all primary outcomes. | Minor adverse events, including anorexia, diarrhea, heartburn, and other GIT problems. |
Hsieh et al. [175] | A systematic review and meta-analysis to evaluate the effects of oral ALA on DPN | 10 RCTs (n = 1242) | ALA (600 mg/day PO) is an effective and safe option for managing DPN, as evidenced by improvements in TSS, NDS, and GSS. No significant improvements were observed in secondary outcomes, including VAS, VPT, NIS-LL, and NCS results. | Oral ALA treatment was generally safe and well-tolerated. Higher doses (above 600 mg daily) were associated with increased AEs, suggesting a dose-dependent safety profile. The most common side effects reported were mild GIT disturbances, such as nausea and vomiting. |
Orellana-Donoso et al. [215] | A systematic review and meta-analysis evaluating the effectiveness of ALA in improving functional and symptomatic outcomes in patients with T1/T2 DM. | 6 RCTs (n = 1077) | Compared to PLA, ALA did not exhibit significant differences in terms of pain reduction and various functional scales. | ALA was generally well-tolerated. The study did not report any severe AEs or significant safety concerns associated with the use of ALA for DPN. |
Das et al. [216] | A systematic review and meta-analysis evaluating the efficacy and safety of oral ALA in managing DPN. | 8 RCTs (n = 1797) | Oral 600 mg/day ALA (for up to 24 months) is an effective option for managing diabetic neuropathy. | At 600 mg/day, ALA was well-tolerated with minimal AEs. Higher doses (above 600 mg daily when given for ≥5 weeks) were associated with increased adverse effects, suggesting a dose-dependent safety profile. |
Prado et al. [217] | A systematic review and meta-analysis to evaluate the efficacy and safety of oral ALA and GLA in managing DPN. | 11 RCTs 9 RCTs using ALA (n = 1950) | 9 RCTs: Oral 600 mg/day ALA is an effective and safe option for managing DPN. A dose-dependent response was observed, with higher doses correlating with greater symptom relief. No significant improvements were noted in secondary outcomes such as VPT, NIS-LL, and NCS results. | ALA treatment was generally well-tolerated, with mild GIT disturbances being the most common AEs. |
Baicus et al. [22] | A systematic Cochrane review on the effectiveness of ALA in DPN | 3 RCTs (n = 1262) | ALA, compared with PLA, has little or no effect on TSS and NIS-LL. A significant benefit cannot be ruled out because the lower 95% CI limit surpasses the MCID by 2 points. | There is minimal or no distinction between ALA and PLA regarding adverse events that result in treatment discontinuation within six months. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangarov, I.; Voynikov, Y.; Petkova, V.; Iliev, S.; Kostadinova, I.; Marinov, L.; Nikolova, I. Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound. Curr. Issues Mol. Biol. 2025, 47, 402. https://doi.org/10.3390/cimb47060402
Mangarov I, Voynikov Y, Petkova V, Iliev S, Kostadinova I, Marinov L, Nikolova I. Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound. Current Issues in Molecular Biology. 2025; 47(6):402. https://doi.org/10.3390/cimb47060402
Chicago/Turabian StyleMangarov, Iliya, Yulian Voynikov, Valentina Petkova, Simeon Iliev, Ivanka Kostadinova, Lyubomir Marinov, and Irina Nikolova. 2025. "Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound" Current Issues in Molecular Biology 47, no. 6: 402. https://doi.org/10.3390/cimb47060402
APA StyleMangarov, I., Voynikov, Y., Petkova, V., Iliev, S., Kostadinova, I., Marinov, L., & Nikolova, I. (2025). Alpha-Lipoic Acid in Diabetic Peripheral Neuropathy: Addressing the Challenges and Complexities Surrounding a 70-Year-Old Compound. Current Issues in Molecular Biology, 47(6), 402. https://doi.org/10.3390/cimb47060402