Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications
Abstract
1. Introduction
2. Materials and Methods
- Peer-reviewed articles published in English;
- Studies addressing the use of digital health tools in diabetes care, including type 1 diabetes, type 2 diabetes, and gestational diabetes;
- Articles focusing on therapeutic strategies, monitoring technologies, and the management or prevention of complications.
3. Results
3.1. Unmet Needs in PwD
3.2. Telehealth and Its Application in Diabetes Care
3.2.1. Continuous Glucose Monitoring
3.2.2. Connected Insulin Pens
3.2.3. Automatic Insulin Delivery
3.2.4. Digital Health Apps
3.2.5. Websites and Cloud-Upload Technologies
3.2.6. Televisits
3.3. Management of Diabetes Complications
Risk Factors
3.4. Reduction in Diabetic Complications
3.4.1. Stroke and Cardiovascular Diseases
3.4.2. Diabetic Neuropathy and Diabetic Foot Syndrome
3.4.3. Mental Illness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AID | Automatic Insulin Delivery |
CGM | Continuous Glucose Monitoring |
COPD | Chronic Obstructive Pulmonary Disease |
CSII | Continuous Subcutaneous Insulin Infusion |
DM | Diabetes Mellitus |
HCPs | Healthcare Providers |
isCGM | Intermittently Scanned Continuous Glucose Monitoring |
LGS | Low Glucose Suspend |
MDI | Multiple Daily Injection of Insulin |
NCDs | Non-Communicable Chronic Diseases |
PLGS | Predictive Low Glucose Suspend |
PwD | People With Diabetes |
RCTs | Randomized Controlled Trials |
rtCGM | Real-Time Continuous Glucose Monitoring |
SBGM | Self-Blood Glucose Monitoring |
SIPs | Smart Insulin Pens |
T1DM | Type 1 Diabetes Mellitus |
T2DM | Type 2 Diabetes Mellitus |
TIPs | Tracking Insulin Pens |
TIR | Time In Range |
References
- World Health Organisation—Noncommunicable Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 10 April 2025).
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Giugliano, D.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Clinical inertia, reverse clinical inertia, and medication non-adherence in type 2 diabetes. J. Endocrinol. Invest. 2019, 42, 495–503. [Google Scholar] [CrossRef]
- Rodriguez-Gutierrez, R.; Gionfriddo, M.R.; Ospina, N.S.; Maraka, S.; Tamhane, S.; Montori, V.M.; Brito, J.P. Shared decision making in endocrinology: Present and future directions. Lancet Diabetes Endocrinol. 2016, 4, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Phillip, M.; Bergenstal, R.M.; Close, K.L.; Danne, T.; Garg, S.K.; Heinemann, L.; Hirsch, I.B.; Kovatchev, B.P.; Laffel, L.M.; Mohan, V.; et al. The Digital/Virtual Diabetes Clinic: The Future Is Now-Recommendations from an International Panel on Diabetes Digital Technologies Introduction. Diabetes Technol. Ther. 2021, 23, 146–154. [Google Scholar] [CrossRef]
- Peyrot, M.; Rubin, R.R.; Lauritzen, T.; Snoek, F.J.; Matthews, D.R.; Skovlund, S.E. Psychosocial problems and barriers to improved diabetes management: Results of the Cross-National Diabetes Attitudes, Wishes and Needs (DAWN) Study. Diabet. Med. 2005, 22, 1379–1385. [Google Scholar] [CrossRef]
- Peyrot, M.; Rubin, R.R.; Lauritzen, T.; Snoek, F.J.; Matthews, D.R.; Skovlund, S.E. Diabetes Attitudes Wishes and Needs 2 (DAWN2): A multinational, multi-stakeholder study of psychosocial issues in diabetes and person-centred diabetes care. Diabetes Res. Clin. Pract. 2013, 99, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Raposo, J.F.; Shestakova, M.V.; Lu, J.; Court, E.; Mayorov, A.Y. Identifying the unmet needs of individuals with Type 2 diabetes: An international web-based survey. J. Comp. Eff. Res. 2021, 10, 613–624. [Google Scholar] [CrossRef]
- Wannheden, C.; Åberg-Wennerholm, M.; Dahlberg, M.; Revenäs, Å.; Tolf, S.; Eftimovska, E.; Brommels, M. Digital Health Technologies Enabling Partnerships in Chronic Care Management: Scoping Review. J. Med. Internet Res. 2022, 24, e38980. [Google Scholar] [CrossRef]
- Telling and gpTRAC (Great Plains Tele-health Resource & Assistance Center). Tele-health Start-Up and Resource Guide, Version 1.1, October 2010. Available online: https://www.healthit.gov/sites/default/files/playbook/pdf/telehealth-startup-and-resource-guide.pdf (accessed on 10 April 2025).
- Ministero della Salute. Telemedicina Linee di Indirizzo Nazionali. Available online: https://www.salute.gov.it/new/it/tema/telemedicina/linee-di-indirizzo-nazionali-sulla-telemedicina/ (accessed on 10 April 2025).
- Eberle, C.; Stichling, S. Clinical Improvements by Telemedicine Interventions Managing Type 1 and Type 2 Diabetes: Systematic Meta-review. J. Med. Internet Res. 2021, 23, e23244. [Google Scholar] [CrossRef]
- Macdonald, E.M.; Perrin, B.M.; Kingsley, M.I. Enablers and barriers to using two-way information technology in the management of adults with diabetes: A descriptive systematic review. J. Telemed. Telecare. 2018, 24, 319–340. [Google Scholar] [CrossRef]
- Tchero, H.; Kangambega, P.; Briatte, C.; Brunet-Houdard, S.; Retali, G.R.; Rusch, E. Clinical Effectiveness of Telemedicine in Diabetes Mellitus: A Meta-Analysis of 42 Randomized Controlled Trials. Telemed. J. E Health 2019, 25, 569–583. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.W.H. Telemedicine Cost-Effectiveness for Diabetes Management: A Systematic Review. Diabetes Technol. Ther. 2018, 20, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Darkins, A.; Ryan, P.; Kobb, R.; Foster, L.; Edmonson, E.; Wakefield, B.; Lancaster, A.E. Care Coordination/Home Telehealth: The systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemed. J. E Health 2008, 14, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Mars, M. Telemedicine and advances in urban and rural healthcare delivery in Africa. Prog. Cardiovasc. Dis. 2013, 56, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S126–S144. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Juvenile Diabetes Research Foundation. Tamborlane, W.V.; Beck, R.W.; Bode, B.W.; Buckingham, B.; Chase, H.P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.A.; Gilliam, L.K.; Hirsch, I.B.; et al. Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar]
- Battelino, T.; Phillip, M.; Bratina, N.; Nimri, R.; Oskarsson, P.; Bolinder, J. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 2011, 34, 795–800. [Google Scholar] [CrossRef]
- Battelino, T.; Conget, I.; Olsen, B.; Schütz-Fuhrmann, I.; Hommel, E.; Hoogma, R.; Schierloh, U.; Sulli, N.; Bolinder, J.; SWITCH Study Group. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial. Diabetologia 2012, 55, 3155–3162. [Google Scholar] [CrossRef] [PubMed]
- Little, S.A.; Leelarathna, L.; Walkinshaw, E.; Tan, H.K.; Chapple, O.; Lubina-Solomon, A.; Chadwick, T.J.; Barendse, S.; Stocken, D.D.; Brennand, C.; et al. Recovery of hypoglycemia awareness in long-standing type 1 diabetes: A multicenter 2 × 2 factorial randomized controlled trial comparing insulin pump with multiple daily injections and continuous with conventional glucose self-monitoring (HypoCOMPaSS). Diabetes Care 2014, 37, 2114–2122. [Google Scholar] [CrossRef]
- van Beers, C.A.; DeVries, J.H.; Kleijer, S.J.; Smits, M.M.; Geelhoed-Duijvestijn, P.H.; Kramer, M.H.; Diamant, M.; Snoek, F.J.; Serné, E.H. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): A randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016, 4, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Riddlesworth, T.; Ruedy, K.; Ahmann, A.; Bergenstal, R.; Haller, S.; Kollman, C.; Kruger, D.; McGill, J.B.; Polonsky, W.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA 2017, 317, 371–378. [Google Scholar] [CrossRef]
- Beck, R.W.; Riddlesworth, T.D.; Ruedy, K.; Ahmann, A.; Haller, S.; Kruger, D.; McGill, J.B.; Polonsky, W.; Price, D.; Aronoff, S.; et al. Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving Multiple Daily Insulin Injections: A Randomized Trial. Ann. Intern. Med. 2017, 167, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, L.; Freckmann, G.; Ehrmann, D.; Faber-Heinemann, G.; Guerra, S.; Waldenmaier, D.; Hermanns, N. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): A multicentre, randomised controlled trial. Lancet 2018, 391, 1367–1377. [Google Scholar] [CrossRef]
- Pratley, R.E.; Kanapka, L.G.; Rickels, M.R.; Ahmann, A.; Aleppo, G.; Beck, R.; Bhargava, A.; Bode, B.W.; Carlson, A.; Chaytor, N.S.; et al. Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) Study Group. Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults with Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2020, 323, 2397–2406. [Google Scholar] [CrossRef]
- Martens, T.; Beck, R.W.; Bailey, R.; Ruedy, K.J.; Calhoun, P.; Peters, A.L.; Pop-Busui, R.; Philis-Tsimikas, A.; Bao, S.; Umpierrez, G.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients with Type 2 Diabetes Treated with Basal Insulin: A Randomized Clinical Trial. JAMA 2021, 325, 2262–2272. [Google Scholar] [CrossRef]
- Pickup, J.C.; Freeman, S.C.; Sutton, A.J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: Meta-analysis of randomised controlled trials using individual patient data. BMJ 2011, 343, d3805. [Google Scholar] [CrossRef]
- Jackson, M.A.; Ahmann, A.; Shah, V.N. Type 2 Diabetes and the Use of Real-Time Continuous Glucose Monitoring. Diabetes Technol Ther. 2021, 23 (S1), S27–S34. [Google Scholar] [CrossRef]
- Feig, D.S.; Donovan, L.E.; Corcoy, R.; Murphy, K.E.; Amiel, S.A.; Hunt, K.F.; Asztalos, E.; Barrett, J.F.R.; Sanchez, J.J.; de Leiva, A.; et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial. Lancet 2017, 390, 2347–2359. [Google Scholar] [CrossRef] [PubMed]
- Leelarathna, L.; Evans, M.L.; Neupane, S.; Rayman, G.; Lumley, S.; Cranston, I.; Narendran, P.; Barnard-Kelly, K.; Sutton, C.J.; Elliott, R.A.; et al. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes. N. Engl. J. Med. 2022, 387, 1477–1487. [Google Scholar] [CrossRef]
- Haak, T.; Hanaire, H.; Ajjan, R.; Hermanns, N.; Riveline, J.P.; Rayman, G. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: A Multicenter, Open-Label Randomized Controlled Trial. Diabetes Ther. 2017, 8, 55–73. [Google Scholar] [CrossRef]
- Yaron, M.; Roitman, E.; Aharon-Hananel, G.; Landau, Z.; Ganz, T.; Yanuv, I.; Rozenberg, A.; Karp, M.; Ish-Shalom, M.; Singer, J.; et al. Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; Coraggio, L.; Pieralice, S.; Carlone, A.; Pozzilli, P.; Buzzetti, R. Effects of COVID-19 Lockdown on Glucose Control: Continuous Glucose Monitoring Data from People with Diabetes on Intensive Insulin Therapy. Diabetes Care 2020, 43, e86–e87. [Google Scholar] [CrossRef]
- Capaldo, B.; Annuzzi, G.; Creanza, A.; Giglio, C.; De Angelis, R.; Lupoli, R.; Masulli, M.; Riccardi, G.; Rivellese, A.A.; Bozzetto, L. Blood Glucose Control During Lockdown for COVID-19: CGM Metrics in Italian Adults With Type 1 Diabetes. Diabetes Care 2020, 43, e88–e89. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Signoriello, S.; Maio, A.; Chiodini, P.; Bellastella, G.; Scappaticcio, L.; Longo, M.; Giugliano, D.; Esposito, K. Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials. Diabetes Care 2020, 43, 1146–1156. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Buzzetti, R.; Irace, C.; Laviola, L.; Napoli, N.; Pitocco, D.; Esposito, K. LIVE CGM working group. An. updated algorithm for an effective choice of continuous glucose monitoring for people with insulin-treated diabetes. Endocrine 2023, 82, 215–225. [Google Scholar] [CrossRef]
- Adolfsson, P.; Hartvig, N.V.; Kaas, A.; Møller, J.B.; Hellman, J. Increased Time in Range and Fewer Missed Bolus Injections After Introduction of a Smart Connected Insulin Pen. Diabetes Technol. Ther. 2020, 22, 709–718. [Google Scholar] [CrossRef]
- Edwards, S.; He, X.; Wang, W.; Poon, J.L.; Meadows, E.; Price, D.; Johnson, J.; Wolpert, H.; Polonsky, W. Use of Connected Pen as a Diagnostic Tool to Evaluate Missed Bolus Dosing Behavior in People with Type 1 and Type 2 Diabetes. Diabetes Technol. Ther. 2022, 24, 61–66. [Google Scholar] [CrossRef]
- Jendle, J.; Ericsson, Å.; Gundgaard, J.; Møller, J.B.; Valentine, W.J.; Hunt, B. Smart Insulin Pens are Associated with Improved Clinical Outcomes at Lower Cost Versus Standard-of-Care Treatment of Type 1 Diabetes in Sweden: A Cost-Effectiveness Analysis. Diabetes Ther. 2021, 12, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Chien, A.; Thanasekaran, S.; Gaetano, A.; Im, G.; Wherry, K.; MacLeod, J.; Vigersky, R.A. Potential cost savings in the United States from a reduction in sensor-detected severe hypoglycemia among users of the InPen smart insulin pen system. J. Manag. Care Spec. Pharm. 2023, 29, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Bergenstal, R.M.; Klonoff, D.C.; Garg, S.K.; Bode, B.W.; Meredith, M.; Slover, R.H.; Ahmann, A.J.; Welsh, J.B.; Lee, S.W.; Kaufman, F.R. ASPIRE In-Home Study Group. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 2013, 369, 224–232. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Li, Z.; Buckingham, B.A.; Pinsker, J.E.; Cengiz, E.; Wadwa, R.P.; Ekhlaspour, L.; Church, M.M.; Weinzimer, S.A.; Jost, E.; et al. Predictive Low-Glucose Suspend Reduces Hypoglycemia in Adults, Adolescents, and Children with Type 1 Diabetes in an At-Home Randomized Crossover Study: Results of the PROLOG Trial. Diabetes Care 2018, 41, 2155–2161. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Garg, S.; Weinzimer, S.A.; Buckingham, B.A.; Bode, B.W.; Tamborlane, W.V.; Kaufman, F.R. Safety of a Hybrid Closed-Loop Insulin Delivery System in Patients with Type 1 Diabetes. JAMA 2016, 316, 1407–1408. [Google Scholar] [CrossRef]
- Tauschmann, M.; Thabit, H.; Bally, L.; Allen, J.M.; Hartnell, S.; Wilinska, M.E.; Ruan, Y.; Sibayan, J.; Kollman, C.; Cheng, P.; et al. APCam11 Consortium. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: A multicentre, 12-week randomised trial. Lancet 2018, 392, 1321–1329. [Google Scholar] [CrossRef]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef]
- Ware, J.; Allen, J.M.; Boughton, C.K.; Wilinska, M.E.; Hartnell, S.; Thankamony, A.; de Beaufort, C.; Schierloh, U.; Fröhlich-Reiterer, E.; Mader, J.K.; et al. Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes. N. Engl. J. Med. 2022, 386, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Weisman, A.; Bai, J.W.; Cardinez, M.; Kramer, C.K.; Perkins, B.A. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: A systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 2017, 5, 501–512. [Google Scholar] [CrossRef]
- Bekiari, E.; Kitsios, K.; Thabit, H.; Tauschmann, M.; Athanasiadou, E.; Karagiannis, T.; Haidich, A.B.; Hovorka, R.; Tsapas, A. Artificial pancreas treatment for outpatients with type 1 diabetes: Systematic review and meta-analysis. BMJ 2018, 361, k1310. [Google Scholar] [CrossRef]
- Sherr, J.L.; Heinemann, L.; Fleming, G.A.; Bergenstal, R.M.; Bruttomesso, D.; Hanaire, H.; Holl, R.W.; Petrie, J.R.; Peters, A.L.; Evans, M. Automated insulin delivery: Benefits, challenges, and recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetologia 2023, 66, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Bergenstal, R.M.; Johnson, M.; Powers, M.A.; Wynne, A.; Vlajnic, A.; Hollander, P.; Rendell, M. Adjust to target in type 2 diabetes: Comparison of a simple algorithm with carbohydrate counting for adjustment of mealtime insulin glulisine. Diabetes Care 2008, 31, 1305–1310. [Google Scholar] [CrossRef]
- Conroy, D.E.; Yang, C.H.; Maher, J.P. Behavior change techniques in top-ranked mobile apps for physical activity. Am. J. Prev. Med. 2014, 46, 649–652. [Google Scholar] [CrossRef]
- Goyal, S.; Nunn, C.A.; Rotondi, M.; Couperthwaite, A.B.; Reiser, S.; Simone, A.; Katzman, D.K.; Cafazzo, J.A.; Palmert, M.R. A Mobile App for the Self-Management of Type 1 Diabetes Among Adolescents: A Randomized Controlled Trial. JMIR Mhealth Uhealth 2017, 5, e82. [Google Scholar] [CrossRef] [PubMed]
- Crossen, S.; Romero, C.; Reggiardo, A.; Michel, J.; Glaser, N. Feasibility and Impact of Remote Glucose Monitoring Among Patients With Newly Diagnosed Type 1 Diabetes: Single-Center Pilot Study. JMIR Diabetes 2022, 7, e33639. [Google Scholar] [CrossRef]
- Grady, M.; Katz, L.B.; Cameron, H.; Levy, B.L. Diabetes App-Related Text Messages From Health Care Professionals in Conjunction With a New Wireless Glucose Meter With a Color Range Indicator Improves Glycemic Control in Patients With Type 1 and Type 2 Diabetes: Randomized Controlled Trial. JMIR Diabetes 2017, 2, e19. [Google Scholar] [CrossRef]
- Hou, C.; Xu, Q.; Diao, S.; Hewitt, J.; Li, J.; Carter, B. Mobile phone applications and self-management of diabetes: A systematic review with meta-analysis, meta-regression of 21 randomized trials and GRADE. Diabetes Obes. Metab. 2018, 20, 2009–2013. [Google Scholar] [CrossRef]
- Lim, S.L.; Ong, K.W.; Johal, J.; Han, C.Y.; Yap, Q.V.; Chan, Y.H.; Chooi, Y.C.; Zhang, Z.P.; Chandra, C.C.; Thiagarajah, A.G.; et al. Effect of a Smartphone App on Weight Change and Metabolic Outcomes in Asian Adults with Type 2 Diabetes: A Randomized Clinical Trial. JAMA Netw Open 2021, 4, e2112417. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Cha, S.A.; Yun, J.S.; Lim, S.Y.; Lee, J.H.; Ahn, Y.B.; Yoon, K.H.; Hyun, M.K.; Ko, S.H. Efficacy of Personalized Diabetes Self-care Using an Electronic Medical Record-Integrated Mobile App in Patients with Type 2 Diabetes: 6-Month Randomized Controlled Trial. J. Med. Internet Res. 2022, 24, e37430. [Google Scholar] [CrossRef]
- Eberle, C.; Loehnert, M.; Stichling, S. Effectivness of specific mobile health applications (mHealth-apps) in gestational diabtetes mellitus: A systematic review. BMC Pregnancy Childbirth 2021, 21, 808. [Google Scholar] [CrossRef]
- Hou, C.; Carter, B.; Hewitt, J.; Francisa, T.; Mayor, S. Do Mobile Phone Applications Improve Glycemic Control (HbA1c) in the Self-management of Diabetes? A Systematic Review, Meta-analysis, and GRADE of 14 Randomized Trials. Diabetes Care 2016, 39, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.J.; Bakry, M.M.; Hatah, E.; Mohd Tahir, N.A.; Mustafa, N. Effects of mobile apps intervention on medication adherence and type 2 diabetes mellitus control: A systematic review and meta-analysis. J. Telemed. Telecare 2023, 1357633X231174933. [Google Scholar] [CrossRef]
- Fleming, G.A.; Petrie, J.R.; Bergenstal, R.M.; Holl, R.W.; Peters, A.L.; Heinemann, L. Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care 2020, 43, 250–260. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, L.; Liu, X.; Huang, J.; Xu, W.; Chen, W. Web-based telemedicine for management of type 2 diabetes through glucose uploads: A randomized controlled trial. Int. J. Clin. Exp. Pathol. 2014, 7, 8848–8854. [Google Scholar]
- Moattari, M.; Hashemi, M.; Dabbaghmanesh, M.H. The impact of electronic education on metabolic control indicators in patients with diabetes who need insulin: A randomised clinical control trial. J. Clin. Nurs. 2013, 22, 32–38. [Google Scholar] [CrossRef]
- Pacaud, D.; Kelley, H.; Downey, A.M.; Chiasson, M. Successful Delivery of Diabetes Self-Care Education and Follow-Up through eHealth Media. Can. J. Diab. 2012, 36, 257–262. [Google Scholar] [CrossRef]
- Cai, J.; Xu, H.; Jiang, S.; Sung, J.; Sawhney, R.; Broadley, S.; Sun, J. Effectiveness of telemonitoring intervention on glycaemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2023, 201, 110727. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, A.; Cercone, S.; Chiriatti, A.; Muscas, F.; Gensini, G. A Randomized Trial on Home Telemonitoring for the Management of Metabolic and Cardiovascular Risk in Patients with Type 2 Diabetes. Diabetes Technol. Ther. 2015, 17, 563–570. [Google Scholar] [CrossRef]
- Franc, S.; Hanaire, H.; Benhamou, P.Y.; Schaepelynck, P.; Catargi, B.; Farret, A.; Fontaine, P.; Guerci, B.; Reznik, Y.; Jeandidier, N.; et al. DIABEO System Combining a Mobile App Software with and Without Telemonitoring Versus Standard Care: A Randomized Controlled Trial in Diabetes Patients Poorly Controlled with a Basal-Bolus Insulin Regimen. Diabetes Technol. Ther. 2020, 22, 904–911. [Google Scholar] [CrossRef]
- Wild, S.H.; Hanley, J.; Lewis, S.C.; McKnight, J.A.; McCloughan, L.B.; Padfield, P.L.; Parker, R.A.; Paterson, M.; Pinnock, H.; Sheikh, A.; et al. Supported Telemonitoring and Glycemic Control in People with Type 2 Diabetes: The Telescot Diabetes Pragmatic Multicenter Randomized Controlled Trial. PLoS Med. 2016, 13, e1002098. [Google Scholar]
- Andrès, E.; Talha, S.; Hajjam, M.; Hajjam, J.; Ervé, S.; Hajjam, A. Experimentation of 2.0 telemedicine in elderly patients with chronic heart failure: A study prospective in 175 patients. Eur. J. Intern. Med. 2018, 51, e11–e12. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, F.R.; Halvorson, M.; Carpenter, S. Association between diabetes control and visits to a multidisciplinary pediatric diabetes clinic. Pediatrics 1999, 103, 948–951. [Google Scholar] [CrossRef]
- Kassar, K.; Roe, C.; Desimone, M. Use of Telemedicine for Management of Diabetes in Correctional Facilities. Telemed. J. E Health 2017, 23, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Tonyushkina, K.N.; Cobb, V.; Moskovitz, A.; Allen, H.F. Televisits to Partially Substitute for Clinic Visits Are Feasible and Well Accepted by Tech-Savvy Patients With T1DM and Their Families: A Prospective Pilot Study. J. Diabetes Sci. Technol. 2018, 12, 1084–1085. [Google Scholar] [CrossRef]
- Greenfield, M.; Stuber, D.; Stegman-Barber, D.; Kemmis, K.; Matthews, B.; Feuerstein-Simon, C.B.; Saha, P.; Wells, B.; McArthur, T.; Morley, C.P.; et al. Diabetes Education and Support Tele-Visit Needs Differ in Duration, Content, and Satisfaction in Older Versus Younger Adults. Telemed. Rep. 2022, 3, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Pintaudi, B.; Garavaglia, G.; Disoteo, O.E.; Meneghini, E.; Epis, O.M.; Colombo, F.; Bertuzzi, F. First televisits provided by the public health system for patients affected by diabetes mellitus in COVID-19 pandemic. Diabetes Res. Clin. Pract. 2021, 173, 108697. [Google Scholar] [CrossRef]
- Scott, S.N.; Fontana, F.Y.; Helleputte, S.; Pickles, J.; Laimer, M.; Zueger, T.; Stettler, C. Use and Perception of Telemedicine in People with Type 1 Diabetes During the COVID-19 Pandemic: A 1-Year Follow-Up. Diabetes Technol Ther. 2022, 24, 276–280. [Google Scholar] [CrossRef]
- Iglay, K.; Hannachi, H.; Joseph Howie, P.; Xu, J.; Li, X.; Engel, S.S.; Moore, L.M.; Rajpathak, S. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr. Med. Res. Opin. 2016, 2, 1243–1252. [Google Scholar] [CrossRef]
- Su, D.; Zhou, J.; Kelley, M.S.; Michaud, T.L.; Siahpush, M.; Kim, J.; Wilson, F.; Stimpson, J.P.; Pagán, J.A. Does telemedicine improve treatment outcomes for diabetes? A meta-analysis of results from 55 randomized controlled trials. Diabetes Res. Clin. Pract. 2016, 116, 136–148. [Google Scholar] [CrossRef]
- Cheng, P.C.; Kao, C.H. Telemedicine assists in the management of proatherogenic dyslipidemia and postprandial glucose variability in patients with type 2 diabetes mellitus: A cross-sectional study. Endocr. Connect. 2021, 10, 789–795. [Google Scholar] [CrossRef]
- Yatabe, J.; Yatabe, M.S.; Okada, R.; Ichihara, A. Efficacy of Telemedicine in Hypertension Care Through Home Blood Pressure Monitoring and Videoconferencing: Randomized Controlled Trial. JMIR Cardio. 2021, 5, e27347. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, C.; O'Cathain, A.; Thomas, C.; Edwards, L.; Gaunt, D.; Dixon, P.; Hollinghurst, S.; Nicholl, J.; Large, S.; Yardley, L.; et al. Telehealth for patients at high risk of cardiovascular disease: Pragmatic randomised controlled trial. BMJ 2016, 353, i2647. [Google Scholar] [CrossRef] [PubMed]
- Lieber, B.A.; Taylor, B.; Appelboom, G.; Prasad, K.; Bruce, S.; Yang, A.; Bruce, E.; Christophe, B.; Connolly, E.S., Jr. Meta-analysis of telemonitoring to improve HbA1c levels: Promise for stroke survivors. J. Clin. Neurosci. 2015, 22, 807–811. [Google Scholar] [CrossRef]
- Rasmussen, B.S.; Froekjaer, J.; Bjerregaard, M.R.; Lauritsen, J.; Hangaard, J.; Henriksen, C.W.; Halekoh, U.; Yderstraede, K.B. A Randomized Controlled Trial Comparing Telemedical and Standard Outpatient Monitoring of Diabetic Foot Ulcers. Diabetes Care 2015, 38, 1723–1729. [Google Scholar] [CrossRef]
- Smith-Strøm, H.; Igland, J.; Østbye, T.; Tell, G.S.; Hausken, M.F.; Graue, M.; Skeie, S.; Cooper, J.G.; Iversen, M.M. The Effect of Telemedicine Follow-up Care on Diabetes-Related Foot Ulcers: A Cluster-Randomized Controlled Noninferiority Trial. Diabetes Care 2018, 41, 96–103. [Google Scholar] [CrossRef]
- Iversen, M.M.; Igland, J.; Smith-Strøm, H.; Østbye, T.; Tell, G.S.; Skeie, S.; Cooper, J.G.; Peyrot, M.; Graue, M. Effect of a telemedicine intervention for diabetes-related foot ulcers on health, well-being and quality of life: Secondary outcomes from a cluster randomized controlled trial (DiaFOTo). BMC Endocr. Disord. 2020, 20, 157. [Google Scholar] [CrossRef] [PubMed]
- Wilbright, W.A.; Birke, J.A.; Patout, C.A.; Varnado, M.; Horswell, R. The use of telemedicine in the management of diabetes-related foot ulceration: A pilot study. Adv. Skin Wound Care 2004, 17, 232–238. [Google Scholar] [CrossRef]
- Kim, H.M.; Lowery, J.C.; Hamill, J.B.; Wilkins, E.G. Patient attitudes toward a Web-based system for monitoring chronic wounds. Telemed. J. E Health 2004, 10 (Suppl. S2), S-26–34. [Google Scholar] [CrossRef]
- Bowling, F.L.; King, L.; Fadavi, H.; Paterson, J.A.; Preece, K.; Daniel, R.W.; Matthews, D.J.; Boulton, A.J. An assessment of the accuracy and usability of a novel optical wound measurement system. Diabet. Med. 2009, 26, 93–96. [Google Scholar] [CrossRef]
- Ladyzynski, P.; Foltynski, P.; Molik, M.; Tarwacka, J.; Migalska-Musial, K.; Mlynarczuk, M.; Wojcicki, J.M.; Krzymien, J.; Karnafel, W. Area of the diabetic ulcers estimated applying a foot scanner-based home telecare system and three reference methods. Diabetes Technol. Ther. 2011, 13, 1101–1107. [Google Scholar] [CrossRef]
- Bowling, F.L.; King, L.; Paterson, J.A.; Hu, J.; Lipsky, B.A.; Matthews, D.R.; Boulton, A.J. Remote assessment of diabetic foot ulcers using a novel wound imaging system. Wound Repair. Regen. 2011, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandari, S.M.; Harris, N.D.; Sutton, M.; Lockett, C.; Eaton, S.; Gadour, M.; Tesfaye, S.; Ward, J.D. Digital imaging: An accurate and easy method of measuring foot ulcers. Diabet. Med. 1999, 16, 339–342. [Google Scholar] [CrossRef]
- Hazenberg, C.E.; van Netten, J.J.; van Baal, S.G.; Bus, S.A. Assessment of signs of foot infection in diabetes patients using photographic foot imaging and infrared thermography. Diabetes Technol. Ther. 2014, 16, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Holtz-Neiderer, K.; Wendel, C.; Mohler, M.J.; Kimbriel, H.R.; Lavery, L.A. Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients. Am. J. Med. 2007, 120, 1042–1046. [Google Scholar] [CrossRef]
- Lavery, L.A.; Higgins, K.R.; Lanctot, D.R.; Constantinides, G.P.; Zamorano, R.G.; Armstrong, D.G.; Athanasiou, K.A.; Agrawal, C.M. Home monitoring of foot skin temperatures to prevent ulceration. Diabetes Care 2004, 27, 2642–2647. [Google Scholar] [CrossRef] [PubMed]
- Lavery, L.A.; Higgins, K.R.; Lanctot, D.R.; Constantinides, G.P.; Zamorano, R.G.; Athanasiou, K.A.; Armstrong, D.G.; Agrawal, C.M. Preventing diabetic foot ulcer recurrence in high-risk patients: Use of temperature monitoring as a self-assessment tool. Diabetes Care 2007, 30, 14–20. [Google Scholar] [CrossRef]
- Skafjeld, A.; Iversen, M.M.; Holme, I.; Ribu, L.; Hvaal, K.; Kilhovd, B.K. A pilot study testing the feasibility of skin temperature monitoring to reduce recurrent foot ulcers in patients with diabetes--a randomized controlled trial. BMC Endocr. Disord. 2015, 15, 55. [Google Scholar] [CrossRef]
- Stess, R.M.; Sisney, P.C.; Moss, K.M.; Graf, P.M.; Louie, K.S.; Gooding, G.A.; Grunfeld, C. Use of liquid crystal thermography in the evaluation of the diabetic foot. Diabetes Care 1986, 9, 267–272. [Google Scholar] [CrossRef]
- Benbow, S.J.; Chan, A.W.; Bowsher, D.R.; Williams, G.; Macfarlane, I.A. The prediction of diabetic neuropathic plantar foot ulceration by liquid-crystal contact thermography. Diabetes Care 1994, 17, 835–839. [Google Scholar] [CrossRef]
- Roback, K.; Johansson, M.; Starkhammar, A. Feasibility of a thermographic method for early detection of foot disorders in diabetes. Diabetes Technol. Ther. 2009, 11, 663–667. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Gordon, I.L.; Reyzelman, A.M.; Cazzell, S.M.; Fitzgerald, R.H.; Rothenberg, G.M.; Bloom, J.D.; Petersen, B.J.; Linders, D.R.; Nouvong, A.; et al. Feasibility and Efficacy of a Smart Mat Technology to Predict Development of Diabetic Plantar Ulcers. Diabetes Care 2017, 40, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandari, S.M.; Harris, N.D.; Tesfaye, S.; Ward, J.D. Early identification of diabetic foot ulcers that may require intervention using the micro lightguide spectrophotometer. Diabetes Care 1999, 22, 1292–1295. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, E.S.; Neidrauer, M.; Zubkov, L.; Weingarten, M.S.; Pourrezaei, K. Noninvasive assessment of diabetic foot ulcers with diffuse photon density wave methodology: Pilot human study. J. Biomed. Opt. 2009, 14, 064032. [Google Scholar] [CrossRef]
- Neidrauer, M.; Zubkov, L.; Weingarten, M.S.; Pourrezaei, K.; Papazoglou, E.S. Near infrared wound monitor helps clinical assessment of diabetic foot ulcers. J. Diabetes Sci. Technol. 2010, 4, 792–798. [Google Scholar] [CrossRef]
- Weingarten, M.S.; Neidrauer, M.; Mateo, A.; Mao, X.; McDaniel, J.E.; Jenkins, L.; Bouraee, S.; Zubkov, L.; Pourrezaei, K.; Papazoglou, E.S. Prediction of wound healing in human diabetic foot ulcers by diffuse near-infrared spectroscopy: A pilot study. Wound Repair. Regen. 2010, 18, 180–185. [Google Scholar] [CrossRef]
- Weingarten, M.S.; Samuels, J.A.; Neidrauer, M.; Mao, X.; Diaz, D.; McGuire, J.; McDaniel, J.; Jenkins, L.; Zubkov, L.; Papazoglou, E.S. Diffuse near-infrared spectroscopy prediction of healing in diabetic foot ulcers: A human study and cost analysis. Wound Repair. Regen. 2012, 20, 911–917. [Google Scholar] [CrossRef]
- Nouvong, A.; Hoogwerf, B.; Mohler, E.; Davis, B.; Tajaddini, A.; Medenilla, E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care 2009, 32, 2056–2061. [Google Scholar] [CrossRef]
- Khaodhiar, L.; Dinh, T.; Schomacker, K.T.; Panasyuk, S.V.; Freeman, J.E.; Lew, R.; Vo, T.; Panasyuk, A.A.; Lima, C.; Giurini, J.M.; et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care 2007, 30, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Jaser, S.S.; White, L.E. Coping and resilience in adolescents with type 1 diabetes. Child Care Health Dev. 2011, 37, 335–342. [Google Scholar] [CrossRef]
- Iturralde, E.; Adams, R.N.; Barley, R.C.; Bensen, R.; Christofferson, M.; Hanes, S.J.; Maahs, D.M.; Milla, C.; Naranjo, D.; Shah, A.C.; et al. Implementation of Depression Screening and Global Health Assessment in Pediatric Subspecialty Clinics. J. Adolesc. Health 2017, 61, 591–598. [Google Scholar] [CrossRef]
- Maisto, M.; Diana, B.; Di Tella, S.; Matamala-Gomez, M.; Montana, J.I.; Rossetto, F.; Mavrodiev, P.A.; Cavalera, C.; Blasi, V.; Mantovani, F.; et al. Digital Interventions for Psychological Comorbidities in Chronic Diseases-A Systematic Review. J. Pers. Med. 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
TELEHEALTH | |
---|---|
TELEMEDICINE IN DIABETES MANAGEMENT | Televisit Televisit is a healthcare act in which the doctor interacts remotely with the patient, with the prescription of drugs or treatments during the televisit. The visit must take place in real or deferred time. A healthcare professional who is close to the patient can assist the doctor. |
Teleconsultation Teleconsultation represents a remote consultancy activity between doctors that allows a doctor to ask the advice of one or more doctors on the indication of diagnosis and/or choice of therapy without the physical presence of the patient, on the basis of medical information related to patient care. | |
Tele-education Tele-education refers to any educational or learning process in which the learner is geographically apart from the instructor and/or the educational resources. Tele-education can be synchronized and not-synchronized and is commonly associated with in-person lessons or professional training procedures. | |
Telemonitoring Telemonitoring corresponds to the transmission and/or the sharing of clinical data to a healthcare provider through electronic and web-based systems. Telemonitoring can include both non-reactive data collection and delayed and/or continuous analytic and decision-making functions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maida, E.; Caruso, P.; Bonavita, S.; Abbadessa, G.; Miele, G.; Longo, M.; Scappaticcio, L.; Ruocco, E.; Trojsi, F.; Esposito, K.; et al. Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications. J. Clin. Med. 2025, 14, 4240. https://doi.org/10.3390/jcm14124240
Maida E, Caruso P, Bonavita S, Abbadessa G, Miele G, Longo M, Scappaticcio L, Ruocco E, Trojsi F, Esposito K, et al. Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications. Journal of Clinical Medicine. 2025; 14(12):4240. https://doi.org/10.3390/jcm14124240
Chicago/Turabian StyleMaida, Elisabetta, Paola Caruso, Simona Bonavita, Gianmarco Abbadessa, Giuseppina Miele, Miriam Longo, Lorenzo Scappaticcio, Eleonora Ruocco, Francesca Trojsi, Katherine Esposito, and et al. 2025. "Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications" Journal of Clinical Medicine 14, no. 12: 4240. https://doi.org/10.3390/jcm14124240
APA StyleMaida, E., Caruso, P., Bonavita, S., Abbadessa, G., Miele, G., Longo, M., Scappaticcio, L., Ruocco, E., Trojsi, F., Esposito, K., Lavorgna, L., & Maiorino, M. I. (2025). Digital Health in Diabetes Care: A Narrative Review from Monitoring to the Management of Systemic and Neurologic Complications. Journal of Clinical Medicine, 14(12), 4240. https://doi.org/10.3390/jcm14124240