Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,212)

Search Parameters:
Keywords = diabetic kidney disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

16 pages, 1769 KiB  
Review
SGLT2 Inhibitors and GLP-1 Receptor Agonists in Cardiovascular–Kidney–Metabolic Syndrome
by Aryan Gajjar, Arvind Kumar Raju, Amani Gajjar, Mythili Menon, Syed Asfand Yar Shah, Sourbha Dani and Andrew Weinberg
Biomedicines 2025, 13(8), 1924; https://doi.org/10.3390/biomedicines13081924 - 7 Aug 2025
Abstract
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose [...] Read more.
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) alleviate stress on multiple organs. SGLT2i has been demonstrated to benefit heart failure, hemodynamic regulation, and renal protection while GLP-1RA on the other hand has been shown to demonstrate a strong impact on glycemic management, weight loss, and atherosclerotic cardiovascular disease. This review will aim to understand and evaluate the mechanistic rationalization, clinical evidence, and the potential therapeutic treatment of SGLT2 inhibitors and GLP-1 receptor agonists to treat individuals who have CKM syndrome. This analysis also assesses whether combination therapy can be a synergistic approach that may benefit patients but is still underutilized because of the lack of clear guidelines, the associated costs, and disparities in accessibility. Therefore, in this review, we will be discussing the combination therapy’s additive and synergistic effects, current recommendations and clinical evidence, and mechanistic insights of these GLT2 inhibitors and GLP-1 receptor agonists in CKM syndrome patients. Overall, early and combination usage of GLP-1RA and SGLT2i may be essential to demonstrating a significant shift in modern cardiometabolic therapy toward patient-centered care. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

17 pages, 1058 KiB  
Review
The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review
by Valdemar Tybjerg Wegge, Mette Kjær Torbensen, Allan Linneberg and Julie Aaberg Lauridsen
Nutrients 2025, 17(15), 2559; https://doi.org/10.3390/nu17152559 - 5 Aug 2025
Abstract
Background/objectives: Chronic kidney disease (CKD) affects up to 15% of the global population and is driven by vascular and interstitial damage, and is most prevalent in persons with hypertension and diabetes. Vitamin K, a necessary cofactor for activation of vitamin K-dependent proteins [...] Read more.
Background/objectives: Chronic kidney disease (CKD) affects up to 15% of the global population and is driven by vascular and interstitial damage, and is most prevalent in persons with hypertension and diabetes. Vitamin K, a necessary cofactor for activation of vitamin K-dependent proteins may modulate these processes. It is well established that vitamin K deficiency is associated with CKD, but the therapeutic effects of supplementation on kidney function are still uncertain. We aimed to review the current evidence on the effect of vitamin K deficiency and supplementation on any marker of renal function and kidney disease, across general adult populations and CKD patient populations. Methods: A search was conducted in PubMed, targeting terms related to vitamin K status and CKD. Studies were included if they reported data on vitamin K status or supplementation in relation to kidney function outcomes. Results: A total of 16 studies were included. Nine interventional studies were included and confirmed that vitamin K supplementation improves biomarkers of vitamin K status but showed no consistent beneficial effects on renal function. Seven observational studies across populations found significant associations between vitamin K status and decline in kidney function; however, associations were often attenuated after adjustments. Conclusions: No clear effect of supplementation was observed on the reported kidney markers in patient populations. A clear association between low vitamin K status and impaired kidney function was confirmed. Studying heterogeneity makes the comparability and generalizability of the results difficult. Our review highlights the need for more cohort studies and clinical trials in general or patient populations. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

14 pages, 2736 KiB  
Case Report
Renal Malacoplakia Following Obstetric Intervention: A Rare Cause of Acute Kidney Injury in a Young Woman
by Letícia Miyuki Ito, Juliana Miki Oguma, André Kiyoshi Miyahara, Marco Aurélio Sales da Veiga, Leandro Favaro, David Wesley de Godoy, Bárbara Antunes Bruno da Silva, Luiz Antônio Moura, Marcelino de Souza Durão and Érika Bevilaqua Rangel
Clin. Pract. 2025, 15(8), 143; https://doi.org/10.3390/clinpract15080143 - 3 Aug 2025
Viewed by 119
Abstract
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor [...] Read more.
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor induction for preeclampsia at 23 weeks. She developed urinary sepsis post-procedure. Imaging revealed bilateral nephromegaly, while laboratory tests showed acute kidney injury (KDIGO stage III), anemia, and thrombocytopenia. Blood and urine cultures grew Escherichia coli. Renal biopsy confirmed malacoplakia, demonstrating PAS-positive Michaelis–Gutmann bodies and Von Hansemann cells. The patient responded to prolonged antibiotic therapy and supportive care. Discussion and Conclusion: This case highlights the importance of considering renal malacoplakia in patients with atypical urinary tract infections and nephromegaly, particularly in obstetric settings. Histopathological confirmation is essential, and timely treatment with intracellularly active antibiotics can lead to favorable outcomes. Early diagnosis is critical to prevent irreversible renal damage. Full article
Show Figures

Figure 1

22 pages, 2376 KiB  
Review
Hypertension in People Exposed to Environmental Cadmium: Roles for 20-Hydroxyeicosatetraenoic Acid in the Kidney
by Soisungwan Satarug
J. Xenobiot. 2025, 15(4), 122; https://doi.org/10.3390/jox15040122 - 1 Aug 2025
Viewed by 301
Abstract
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to [...] Read more.
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to prevent CKD and to reduce its progression to kidney failure is thus of great public health significance. Hypertension is known to be both a cause and a consequence of kidney damage and an eminently modifiable risk factor. An increased risk of hypertension, especially among women, has been linked to chronic exposure to the ubiquitous food contaminant cadmium (Cd). The mechanism is unclear but is likely to involve its action on the proximal tubular cells (PTCs) of the kidney, where Cd accumulates. Here, it leads to chronic tubular injury and a sustained drop in the estimated glomerular filtration rate (eGFR), a common sequela of ischemic acute tubular necrosis and acute and chronic tubulointerstitial inflammation, all of which hinder glomerular filtration. The present review discusses exposure levels of Cd that have been associated with an increased risk of hypertension, albuminuria, and eGFR ≤ 60 mL/min/1.73 m2 (low eGFR) in environmentally exposed people. It highlights the potential role of 20-hydroxyeicosatetraenoic acid (20-HETE), the second messenger produced in the kidneys, as the contributing factor to gender-differentiated effects of Cd-induced hypertension. Use of GFR loss and albumin excretion in toxicological risk calculation, and derivation of Cd exposure limits, instead of β2-microglobulin (β2M) excretion at a rate of 300 µg/g creatinine, are recommended. Full article
Show Figures

Graphical abstract

17 pages, 4219 KiB  
Article
Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis
by Clara Barrios, Marta Riera, Eva Rodríguez, Eva Márquez, Jimena del Risco, Melissa Pilco, Jorge Huesca, Ariadna González, Claudia Martyn, Jordi Pujol, Anna Buxeda and Marta Crespo
Int. J. Mol. Sci. 2025, 26(15), 7421; https://doi.org/10.3390/ijms26157421 - 1 Aug 2025
Viewed by 173
Abstract
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing [...] Read more.
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing diabetic from non-diabetic forms remain poorly defined. To identify differentially expressed genes (DEGs) and enriched biological pathways between CKD_T2D and CKD_nonT2D cohorts, including autoimmune (CKD_nonT2D_AI) and hypertensive (CKD_nonT2D_HT) subtypes, through integrative transcriptomic analysis. Publicly available gene expression datasets from human glomerular and tubulointerstitial kidney tissues were curated and analyzed from GEO and ArrayExpress. Differential expression analysis and Gene Set Enrichment Analysis (GSEA) were conducted to assess cohort-specific molecular signatures. A considerable overlap in DEGs was observed between CKD_T2D and CKD_nonT2D, with CKD_T2D exhibiting more extensive gene expression changes. Hypertensive-CKD shared greater transcriptomic similarity with CKD_T2D than autoimmune-CKD. Key DEGs involved in fibrosis, inflammation, and complement activation—including Tgfb1, Timp1, Cxcl6, and C1qa/B—were differentially regulated in diabetic samples, where GSEA revealed immune pathway enrichment in glomeruli and metabolic pathway enrichment in tubulointerstitium. The transcriptomic landscape of CKD_T2D reveals stronger immune and metabolic dysregulation compared to non-diabetic CKD. These findings suggest divergent pathological mechanisms and support the need for tailored therapeutic approaches. Full article
Show Figures

Figure 1

12 pages, 269 KiB  
Article
Exploring the Interplay Between Glycated Albumin, AGEs, and Inflammation in Old Patients with CKD
by Simone Vettoretti, Lara Caldiroli, Paolo Molinari, Amanda Villa, Massimiliano M. Corsi Romanelli, Elena Vianello, Elena Dozio and Simonetta Genovesi
Metabolites 2025, 15(8), 515; https://doi.org/10.3390/metabo15080515 - 1 Aug 2025
Viewed by 183
Abstract
Introduction: Chronic kidney disease (CKD) increases cardiovascular risk through mechanisms such as oxidative stress and the accumulation of advanced glycation end products (AGEs). Glycated albumin (GA) is associated with cardiovascular risk in CKD patients, but its relationship with AGEs and systemic inflammation remains [...] Read more.
Introduction: Chronic kidney disease (CKD) increases cardiovascular risk through mechanisms such as oxidative stress and the accumulation of advanced glycation end products (AGEs). Glycated albumin (GA) is associated with cardiovascular risk in CKD patients, but its relationship with AGEs and systemic inflammation remains unclear. This study investigated these associations in old patients with severe CKD, with and without diabetes. Methods: We conducted a cross-sectional analysis in 122 patients aged ≥ 65 years with CKD stages G3a–G5, including 67 diabetics and 55 non-diabetics. Patients with confounding comorbidities were excluded. We measured GA, AGEs, various AGEs receptors (RAGE) isoforms, and inflammatory cytokines (CRP, IL-6, TNFα, and MCP-1) using standardized assays. Statistical analyses included group comparisons, correlation coefficients, and multivariate regression. Results: Of 122 patients (mean age 77.7 ± 11.3 years), diabetics had higher GA percentages than non-diabetics (22.0 ± 7.1% vs. 17.5 ± 5.4%, p = 0.0001), while AGEs (2931 ± 763 vs. 3156 ± 809 AU; p = 0.118) and inflammatory markers (CRP 0.240[0.380] vs. 0.200[0.280] mg/dL; p = 0.142; IL-6 3.4[4.0] vs. 3.0[3.8] pg/mL; p = 0.238) were similar between groups. Overall, GA was inversely correlated with estimated glomerular filtration rate (eGFR) (ρ = −0.189, p = 0.037) and positively with glycated hemoglobin (HbA1c) (ρ = 0.525, p < 0.0001), but showed no significant correlation with AGEs, RAGE isoforms, or inflammatory cytokines. In multivariate analysis, only HbA1c remained independently associated with GA (β = 0.222, p = 0.005). Conclusions: In old patients with severe CKD, GA appears to be a more useful marker of glycemic control than glycation stress, the latter of which is the result of multiple factors, including impaired kidney function and systemic inflammation. Full article
16 pages, 661 KiB  
Article
Comparative Evaluation of ARB Monotherapy and SGLT2/ACE Inhibitor Combination Therapy in the Renal Function of Diabetes Mellitus Patients: A Retrospective, Longitudinal Cohort Study
by Andrew W. Ngai, Aqsa Baig, Muhammad Zia, Karen Arca-Contreras, Nadeem Ul Haque, Veronica Livetsky, Marcelina Rokicki and Shiryn D. Sukhram
Int. J. Mol. Sci. 2025, 26(15), 7412; https://doi.org/10.3390/ijms26157412 - 1 Aug 2025
Viewed by 341
Abstract
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for [...] Read more.
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for their renal and cardiovascular benefits. However, comparative real-world data on their long-term renal effectiveness remain limited. We conducted a retrospective, longitudinal study over a 2-year period to compare the impact of ARB monotherapy versus SGLT2i and angiotensin-converting enzyme inhibitor (ACEi) combination therapy on the progression of chronic kidney disease (CKD) in patients with DM. A total of 126 patients were included and grouped based on treatment regimen. Renal biomarkers were analyzed using t-tests and ANOVA (p < 0.01). Albuminuria was qualitatively classified via urinalysis as negative, level 1 (+1), level 2 (+2), or level 3 (+3). The ARB group demonstrated higher estimated glomerular filtration rate (eGFR) and lower serum creatinine (sCr) levels than the combination therapy group, with glycated hemoglobin (HbA1c), potassium (K+), and blood pressure remaining within normal limits in both cohorts. Albuminuria remained stable over time, with 60.8% of ARB users and 73.1% of combination therapy users exhibiting persistently or on-average negative results. Despite the expected additive benefits of SGLT2i/ACEi therapy, ARB monotherapy was associated with slightly more favorable renal function markers and a lower incidence of severe albuminuria. These findings suggest a need for further controlled studies to clarify the comparative long-term renal effects of these treatment regimens. Full article
Show Figures

Figure 1

12 pages, 705 KiB  
Article
Impact of Acute Kidney Injury on Mortality Outcomes in Patients Hospitalized for COPD Exacerbation: A National Inpatient Sample Analysis
by Zeina Morcos, Rachel Daniel, Mazen Hassan, Hamza Qandil, Chloe Lahoud, Chapman Wei and Suzanne El Sayegh
J. Clin. Med. 2025, 14(15), 5393; https://doi.org/10.3390/jcm14155393 - 31 Jul 2025
Viewed by 199
Abstract
Background/Objectives: Acute kidney injury (AKI) worsens outcomes in COPD exacerbation (COPDe), yet limited data compare the demographics and mortality risk factors of COPDe admissions with and without AKI. Understanding this association may enhance risk stratification and management strategies. The aim of this study [...] Read more.
Background/Objectives: Acute kidney injury (AKI) worsens outcomes in COPD exacerbation (COPDe), yet limited data compare the demographics and mortality risk factors of COPDe admissions with and without AKI. Understanding this association may enhance risk stratification and management strategies. The aim of this study was to identify demographic differences and mortality risk factors in COPDe admissions with and without AKI. Methods: We conducted a retrospective cohort study using the National Inpatient Sample (NIS) from 1 January 2016 to 1 January 2021. Patients aged ≥ 35 years with a history of smoking and a diagnosis of COPDe were included. Patients with CKD stage 5, end-stage kidney disease (ESKD), heart failure decompensation, urinary tract infections, myocardial infarction, alpha-1 antitrypsin deficiency, or active COVID-19 infection were excluded. Baseline demographics were analyzed using descriptive statistics. Multivariate logistic regression analysis was used to measure the odds ratio (OR) of mortality. Statistical analyses were conducted using IBM SPSS Statistics V.30, with statistical significance at p < 0.05. Results: Among 405,845 hospitalized COPDe patients, 13.6% had AKI. These patients were older, had longer hospital stays, and included fewer females and White patients. AKI was associated with significantly higher mortality (OR: 2.417), more frequent acute respiratory failure (OR: 4.559), intubation (OR: 10.262), and vasopressor use (OR: 2.736). CVA, pneumonia, and pulmonary hypertension were significant mortality predictors. Hypertension, CAD, and diabetes were associated with lower mortality. Conclusions: AKI in COPDe admissions is associated with worse outcomes. Protective effects from certain comorbidities may relate to renoprotective medications. Study limitations include coding errors and retrospective design. Full article
Show Figures

Figure 1

25 pages, 4837 KiB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Viewed by 219
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

5 pages, 153 KiB  
Editorial
IJMS Special Issue—Molecular Mechanisms of Diabetic Kidney Disease 2.0
by Ligia Petrica
Int. J. Mol. Sci. 2025, 26(15), 7315; https://doi.org/10.3390/ijms26157315 - 29 Jul 2025
Viewed by 189
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic renal involvement in both type 1 and type 2 diabetes mellitus (DM) and may be ascribed to a high percentage of patients referred to renal replacement therapies worldwide [...] Full article
(This article belongs to the Special Issue Molecular Mechanism of Diabetic Kidney Disease (2nd Edition))
41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 454
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

24 pages, 606 KiB  
Review
Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine
by Hande Aypek, Ozan Aygormez and Yasar Caliskan
Genes 2025, 16(8), 884; https://doi.org/10.3390/genes16080884 - 26 Jul 2025
Viewed by 386
Abstract
Background: Pancreas and pancreas–kidney transplantation are well-established therapeutic options for patients with type 1 diabetes mellitus (T1DM) and end-stage kidney disease (ESKD), offering the potential to restore endogenous insulin production and kidney function. It improves metabolic control, quality of life, and long-term survival. [...] Read more.
Background: Pancreas and pancreas–kidney transplantation are well-established therapeutic options for patients with type 1 diabetes mellitus (T1DM) and end-stage kidney disease (ESKD), offering the potential to restore endogenous insulin production and kidney function. It improves metabolic control, quality of life, and long-term survival. While surgical techniques and immunosuppressive strategies have advanced considerably, graft rejection and limited long-term graft survival remain significant clinical challenges. Method: To better understand these risks, the genetic and immunological factors that influence transplant outcomes are examined. Beyond traditional human leukocyte antigen (HLA) matching, non-HLA genetic variants such as gene deletions and single-nucleotide polymorphisms (SNPs) have emerged as contributors to alloimmune activation and graft failure. Result: Polymorphisms in cytokine genes, minor histocompatibility antigens, and immune-regulatory pathways have been implicated in transplant outcomes. However, the integration of such genomic data into clinical practice remains limited due to underexplored gene targets, variability in study results, and the lack of large, diverse, and well-characterized patient cohorts. Initiatives like the International Genetics & Translational Research in Transplantation Network (iGeneTRAiN) are addressing these limitations by aggregating genome-wide data from thousands of transplant donors and recipients across multiple centers. These large-scale collaborative efforts aim to identify clinically actionable genetic markers and support the development of personalized immunosuppressive strategies. Conclusions: Overall, genetic testing and genomics hold great promise in advancing precision medicine in pancreas and pancreas–kidney transplantation. Full article
(This article belongs to the Special Issue Genetics in Transplantation)
Show Figures

Figure 1

15 pages, 768 KiB  
Article
Dysmagnesemia in the ICU: A Comparative Analysis of Ionized and Total Magnesium Levels and Their Clinical Associations
by Jawahar H. Al Noumani, Juhaina Salim Al-Maqbali, Mohammed Al Maktoumi, Qasim Sultan AL-Maamari, Abdul Hakeem Al-Hashim, Mujahid Al-Busaidi, Henrik Falhammar and Abdullah M. Al Alawi
Metabolites 2025, 15(8), 498; https://doi.org/10.3390/metabo15080498 - 24 Jul 2025
Viewed by 316
Abstract
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic [...] Read more.
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic and therapeutic challenges. However, the relationship between dysmagnesemia and health outcomes in the ICU remains inadequately defined. Aim/Objective: This study aimed to assess the prevalence of dysmagnesemia and evaluate the correlation between total (tMg) and ionized magnesium (iMg) levels in a cohort of ICU and high dependency unit (HDU) patients. It also sought to evaluate patient characteristics and relevant health outcomes by comparing both concentrations of iMg and tMg. Methods: This prospective study was conducted among adult patients admitted to the ICU and the high dependency unit (HDU). Results: Among the 134 included patients, the median age was 63.5 years (IQR: 52.0–77.0). The majority, 91.0%, required mechanical ventilation. Additionally, 50.0% were diagnosed with diabetes, 28.4% had chronic kidney disease, and proton pump inhibitors (PPIs) were administered to 67.2% of the patients. The prevalence of hypomagnesemia, as measured by iMg, was 6.7%, while hypermagnesemia was at 39.6%. When measured by tMg, hypomagnesemia and hypermagnesemia were observed at rates of 14.9% and 22.4%, respectively. The iMg measurements showed an association between the incidence of atrial fibrillation and hypomagnesemia (p = 0.015), whereas tMg measurements linked hypomagnesemia with longer hospital stays. Notably, only a few patients identified with iMg-measured hypomagnesemia received magnesium replacement during their ICU stay. Conclusions: Dysmagnesemia is prevalent among critically ill patients, with discordance between iMg and tMg measurements. iMg appears more sensitive in detecting arrhythmia risk, while tMg correlates with length of stay. These findings support the need for larger studies and suggest considering iMg in magnesium monitoring and replacement strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

Back to TopTop