Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = developmental arrest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2036 KB  
Article
Identification and Stability Assessment of Reference Genes in Helicoverpa armigera Under Plant Secondary Substance and Insecticide Stresses
by Jie Zhao, Hao-Ran Kan, Xin-Xin Jin, Jiang-Yuan Zhang, Hong-Run Zhou, Xiao-Qiang Han and Jing Ye
Biology 2026, 15(2), 175; https://doi.org/10.3390/biology15020175 - 17 Jan 2026
Viewed by 52
Abstract
The cotton bollworm (Helicoverpa armigera, Lepidoptera: Noctuidae) is a globally distributed agricultural pest. When conducting expression analysis of its functional genes, appropriate reference genes should be selected to ensure the reliability of the results. In this study, five algorithms including Delta [...] Read more.
The cotton bollworm (Helicoverpa armigera, Lepidoptera: Noctuidae) is a globally distributed agricultural pest. When conducting expression analysis of its functional genes, appropriate reference genes should be selected to ensure the reliability of the results. In this study, five algorithms including Delta Ct, GeNorm, Normfinder, BestKeeper, and RefFinder were used to evaluate the expression stability of eleven candidate reference genes under different developmental stages, larval tissues, adult sexes, plant secondary substance stresses, and insecticide treatments in H. armigera. The candidate genes included Actin, Tubulin, EF-1α, RPS3, RPS15, RPL27, RPL32, 28S, GAPDH, SOD, and TRX. The reliability of the recommended reference gene combinations was validated using the growth arrest and DNA-damage-inducible gene 45 (GADD45). The results showed that normalizing relative expression of the target gene with the combination of the two most stable reference genes is recommended. Specifically, the combination of RPS3 + RPL27 is recommended for developmental stage comparisons; RPL32 + RPL27 for larval tissues; RPS3 + RPL27 for adult sex comparisons; GAPDH + RPL32 under tannic acid stress; RPL32 + RPS3 under quercetin stress; RPS15 + RPL32 under 2-tridecanone stress; RPS3 + RPL32 under ZQ-8 stress; RPL27 + TRX following chlorantraniliprole treatment; and RPL27 + RPL32 following indoxacarb treatment. Moreover, larvae exposed to three concentrations of plant secondary substances and to sublethal doses of insecticides exhibited significant upregulation of GADD45: after 4 h of exposure to 1% tannic acid, 0.1% and 1% quercetin, 1% 2-tridecanone, and 0.05% ZQ-8; after 15 h of chlorantraniliprole treatment; and after 24 h of indoxacarb treatment. Thus, GADD45 was overexpressed in response to various plant secondary substances and insecticide treatments, indicating its involvement in the detoxification and metabolism of H. armigera. This study proves to be helpful for selecting reference genes in H. armigera under plant secondary substance and insecticide stress and lays the foundation for further research utilizing GADD45 as a molecular target for pest control. Full article
14 pages, 656 KB  
Review
Cardio-Metabolic Risk in Adults Born Preterm: A Narrative Review
by Benjamim Ficial, Leonardo Gottin and Claudio Maffeis
J. Clin. Med. 2026, 15(1), 256; https://doi.org/10.3390/jcm15010256 - 29 Dec 2025
Viewed by 576
Abstract
Preterm birth has evolved from being an acute neonatal challenge to a lifelong health determinant, as advances in neonatal care have markedly improved the survival of very and extremely preterm infants. This narrative review synthesizes epidemiological and mechanistic evidence linking preterm birth with [...] Read more.
Preterm birth has evolved from being an acute neonatal challenge to a lifelong health determinant, as advances in neonatal care have markedly improved the survival of very and extremely preterm infants. This narrative review synthesizes epidemiological and mechanistic evidence linking preterm birth with heightened cardiometabolic risk across the life course. In adulthood, individuals born preterm demonstrate increased rates of heart failure, ischemic heart disease, stroke, atrial fibrillation, and diabetes. Beneath these overt clinical outcomes lies a distinct phenotype characterized by increased adiposity, insulin resistance, dyslipidemia, hypertension, and atypical growth trajectories, with rapid catch-up growth amplifying long-term risk. Mechanistic pathways highlight adipose tissue maldevelopment, predisposing to metabolic syndrome, alongside cardiac maldevelopment with reduced ventricular size, impaired diastolic function, and diminished exercise capacity. Furthermore, vascular growth arrest, impaired elastin synthesis, and nephron deficiency contribute to sustained elevations in blood pressure, establishing an early substrate for hypertension and cardiovascular remodeling. These alterations reflect the developmental origins of health and disease, whereby early-life disruption of growth and maturation exerts lasting effects on organ structure and function. Collectively, the evidence identifies adults born preterm as a growing yet under-recognized patient population with a unique clinical and biochemical profile and accelerated vulnerability to non-communicable diseases. Greater awareness among pediatric and adult physicians, structured transition of care, and targeted prevention strategies are urgently needed to mitigate early cardiometabolic morbidity and optimize long-term health outcomes in this high-risk group. Full article
(This article belongs to the Special Issue New Insights in Neonatal Intensive Care)
Show Figures

Figure 1

17 pages, 6317 KB  
Article
Sexual Dimorphism on a Conserved Scaffold: Insights from the Floral Ontogeny of Eurychorda (Restionaceae: Poales)
by Constantin I. Fomichev, Barbara G. Briggs and Dmitry D. Sokoloff
Plants 2026, 15(1), 97; https://doi.org/10.3390/plants15010097 - 28 Dec 2025
Viewed by 348
Abstract
Angiosperms include many taxa with dimorphic unisexual reproductive structures. These are well studied in some grasses, with maize as a key model, but other wind-pollinated lineages in Poales remain less explored. Within Poales, the family Restionaceae has the highest known proportion of dioecious [...] Read more.
Angiosperms include many taxa with dimorphic unisexual reproductive structures. These are well studied in some grasses, with maize as a key model, but other wind-pollinated lineages in Poales remain less explored. Within Poales, the family Restionaceae has the highest known proportion of dioecious species. In its Australian subfamily Leptocarpoideae, the sexually dimorphic Leptocarpus denmarkicus has raised questions about the basic flowering unit and the developmental basis of dimorphism. Here, we analyze inflorescence architecture and floral development in Eurychorda complanata, the sister lineage to the remainder of Leptocarpoideae. Using comparative morphology, light microscopy and scanning electron microscopy, we reconstruct synflorescence topology, floral organography, and ontogeny in both sexes and compare them with those in L. denmarkicus. In Eurychorda, both sexes produce polytelic paniculate synflorescences with distinct inhibition zones and many-flowered simple spikelets as the basic flowering unit. Male and female spikelets bear up to 50 and up to 15 fertile flowers, respectively. Male flowers have two stamens and a dimerous pistillode, whereas female flowers possess two long filamentous staminodes and a dimerous gynoecium. Ontogenetic series show that flowers of both sexes initiate both androecial and gynoecial structures, and that functional unisexuality is achieved through late arrest of the organs of one sex. Defining spikelets as racemose axes with lateral sessile flowers clarifies homologies of reproductive structures and supports reinterpretation of the dimorphic female unit in L. denmarkicus as a derived compound spike generated through shifts in branching rank and the timing of lateral initiation. The compound female spike of L. denmarkicus has a striking overall similarity to the simple female spikelet in Eurychorda, illustrating fascinating parallelism in the evolution of reproductive organs within Restionaceae and Poales more broadly. At the male side, Eurychorda achieves anther exsertion via filament elongation, whereas in L. denmarkicus filaments are very short and anthers remain within the perianth, but male spikelets sit on long, flexible peduncles that invert the spikelet and promote trembling, thereby ventilating the perianth chamber and aiding pollen escape. These two solutions—filament elongation versus spikelet-peduncle flexibility—represent alternative strategies of pollen release in wind-pollinated flowers. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

37 pages, 928 KB  
Review
The Xenopus Oocyte System: Molecular Dynamics of Maturation, Fertilization, and Post-Ovulatory Fate
by Ken-Ichi Sato
Biomolecules 2026, 16(1), 22; https://doi.org/10.3390/biom16010022 - 23 Dec 2025
Viewed by 535
Abstract
The Xenopus oocyte has long served as a versatile and powerful model for dissecting the molecular underpinnings of reproductive and developmental processes. Its large size, manipulability, and well-characterized cell cycle states have enabled generations of researchers to illuminate key aspects of oocyte maturation, [...] Read more.
The Xenopus oocyte has long served as a versatile and powerful model for dissecting the molecular underpinnings of reproductive and developmental processes. Its large size, manipulability, and well-characterized cell cycle states have enabled generations of researchers to illuminate key aspects of oocyte maturation, fertilization, and early embryogenesis. This review provides an integrated overview of the cellular and molecular events that define the Xenopus oocyte’s transition from meiotic arrest to embryonic activation—or alternatively, to programmed demise if fertilization fails. We begin by exploring the architectural and biochemical landscape of the oocyte, including polarity, cytoskeletal organization, and nuclear dynamics. The regulatory networks governing meiotic resumption are then examined, with a focus on MPF (Cdk1/Cyclin B), MAPK cascades, and translational control via CPEB-mediated cytoplasmic polyadenylation. Fertilization is highlighted as a calcium-dependent trigger for oocyte activation. During fertilization in vertebrates, sperm-delivered phospholipase C zeta (PLCζ) is a key activator of Ca2+ signaling in mammals. In contrast, amphibian species such as Xenopus lack a PLCZ1 ortholog and instead appear to rely on alternative protease-mediated signaling mechanisms, including the uroplakin III–Src tyrosine kinase pathway and matrix metalloproteinase (MMP)-2 activity, to achieve egg activation. The review also addresses the molecular fate of unfertilized eggs, comparing apoptotic and necrotic mechanisms and their relevance to reproductive health. Finally, we discuss recent innovations in Xenopus-based technologies such as mRNA microinjection, genome editing, and in vitro ovulation systems, which are opening new avenues in developmental biology and translational medicine. By integrating classic findings with emerging frontiers, this review underscores the continued value of the Xenopus model in elucidating the fundamental processes of life’s origin. We conclude with perspectives on unresolved questions and future directions in oocyte and early embryonic research. Full article
(This article belongs to the Special Issue Gametogenesis and Gamete Interaction, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 2838 KB  
Article
Analysis of Cytosine Base Editors in Bovine Zygotes: Efficiency and Editing Window Characterization Through Targeting the MYO7A Gene
by Junghyun Ryu, Rebecca Tippner-Hedges, Martha Neuringer and Jon D. Hennebold
Curr. Issues Mol. Biol. 2025, 47(12), 1033; https://doi.org/10.3390/cimb47121033 - 11 Dec 2025
Viewed by 286
Abstract
Cytosine base editors (CBEs) enable precise C-to-T (G-to-A) conversions in genomic DNA, offering significant potential for specific gene editing. This study compared the prototypical Base Editor 3 (BE3) and a modified variant, BE3-Y130F, which utilizes an hA3A deaminase with the Y130F mutation, focusing [...] Read more.
Cytosine base editors (CBEs) enable precise C-to-T (G-to-A) conversions in genomic DNA, offering significant potential for specific gene editing. This study compared the prototypical Base Editor 3 (BE3) and a modified variant, BE3-Y130F, which utilizes an hA3A deaminase with the Y130F mutation, focusing on their editing efficiency and editing window characteristics using bovine zygotes. Following in vitro fertilization (IVF), sgRNA and Cas9 mRNA were injected as a targeting efficiency control, which resulted in 100% editing with no wild-type sequence. Then, either BE3 or BE3-Y130F mRNA, synthesized via in vitro transcription, and an sgRNA targeting exon 4 of the MYO7A gene was injected into zygotes. Genomic DNA was extracted from both blastocysts and developmentally arrested embryos, and Sanger sequencing was performed to evaluate C-to-T conversion efficiency and editing window. Both BE3 and BE3-Y130F achieved 100% C-to-T conversion efficiency at the primary target cytosine. BE3 displayed a defined editing window, primarily affecting cytosines at positions 7 and 8, indicating a predictable profile. In contrast, BE3-Y130F maintained high efficiency but had a less clearly defined editing window, resulting in incomplete editing and a remaining cytosine on the target sequence. Full article
(This article belongs to the Special Issue Complex Molecular Mechanism of Monogenic Diseases: 3rd Edition)
Show Figures

Figure 1

11 pages, 1049 KB  
Article
Functional Characterization of Nuclear Receptor MuFTZ-F1 in the Bean Flower Thrips, Megalurothrips usitatus
by Zexin Zhong, Jianxing Li, Jian Chen, Chunxiao Yang, Chaoqun Zhang, Riyuan Tang, Wen Xie, Youjun Zhang and Huipeng Pan
Agronomy 2025, 15(11), 2593; https://doi.org/10.3390/agronomy15112593 - 11 Nov 2025
Viewed by 468
Abstract
The development of novel control strategies for the major cowpea pest Megalurothrips usitatus requires a deeper understanding of its critical molecular regulators. The nuclear receptor Fushi-tarazu factor 1 (FTZ-F1) is a conserved master regulator of insect development and reproduction, yet its [...] Read more.
The development of novel control strategies for the major cowpea pest Megalurothrips usitatus requires a deeper understanding of its critical molecular regulators. The nuclear receptor Fushi-tarazu factor 1 (FTZ-F1) is a conserved master regulator of insect development and reproduction, yet its function in M. usitatus remains uncharacterized. In this study, we investigated the expression and functional role of MuFTZ-F1 in this pest. RT-qPCR analysis revealed ubiquitous MuFTZ-F1 expression across all developmental stages and in major adult tissues. RNA interference (RNAi)-mediated knockdown of MuFTZ-F1 in the 2nd instar nymphs caused severe developmental defects, including impaired eclosion and significantly increased mortality. Mechanistically, silencing led to a significant reduction in the molting hormone ecdysone, accounting for the observed molting arrest. Furthermore, MuFTZ-F1 knockdown significantly decreased dopamine titers in both nymphs and female adults, suggesting its involvement in regulating this key biogenic amine beyond developmental processes. Our results provide the first functional evidence that MuFTZ-F1 is indispensable for nymphal development and survival in M. usitatus, mediated through the regulation of ecdysone. The profound lethal effect of MuFTZ-F1 silencing underscores its promise as a target for RNAi-based pest management strategies against this economically important pest. Full article
(This article belongs to the Special Issue Genetically Modified (GM) Crops and Pests Management)
Show Figures

Figure 1

16 pages, 1909 KB  
Article
Transcriptomics-Based Toxicological Study of Nickel on Caenorhabditis elegans
by Yutao He, Yunfei Long, Jingwen Wang, Qinfen Li, Beibei Liu, Dandan Li and Shunqing Xu
Toxics 2025, 13(11), 930; https://doi.org/10.3390/toxics13110930 - 30 Oct 2025
Viewed by 655
Abstract
Nickel (Ni), a heavy metal with extensive industrial applications, poses significant ecological impacts and health risks due to its persistence and bioaccumulation. Although toxicological data in mammals and plants are well established, its effects on invertebrate models remain insufficiently explored, especially at environmentally [...] Read more.
Nickel (Ni), a heavy metal with extensive industrial applications, poses significant ecological impacts and health risks due to its persistence and bioaccumulation. Although toxicological data in mammals and plants are well established, its effects on invertebrate models remain insufficiently explored, especially at environmentally relevant concentrations. This study systematically evaluated the toxicity of Ni2+ on Caenorhabditis elegans, integrating phenotypic assays with transcriptomic profiling to assess impacts on growth, reproduction, neuromuscular function, lifespan, and aging. Ni exposure induced dose-dependent developmental delays. After exposure to 80 μg/L Ni2+ for 72 h, the proportion of L1-stage nematodes increased 3.8-fold compared to the control group. Similarly, exposure to 80 µg/L Ni2+ reduced the reproductive capacity of nematodes to 88.5% of that in the control group. Transcriptomic analysis identified 2235 differentially expressed genes (DEGs) after 8 μg/L of Ni2+ exposure, while the worms exposed to 0.8 μg/L of Ni2+ exhibited a total of 249 DEGs. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses highlighted collagen metabolism defects, fatty acid-related metabolism, amino acid-related biosynthesis disruption, and lysosomal dysfunction, correlating with cuticle integrity loss, energy metabolism abnormality, and feeding behavior change, and indirectly lead to delayed growth development and lipofuscin accumulation. The latter is usually regarded as a reliable indicator of aging, suggesting that exposure to Ni poses a risk of accelerating aging in nematodes. This study provides critical insights into the ecological risks of Ni pollution. Full article
Show Figures

Figure 1

14 pages, 335 KB  
Article
Clinical and Molecular Characterizations of Mitochondrial Disorders: A Tertiary-Care Center Experience
by Mohammed Almuqbil, Najla Binsabbar, Shahad Alsaif, Sulaiman Almasoud, Talah Albasry, Duaa Baarmah, Waleed Altwaijri and Ahmed Alrumayyan
Children 2025, 12(8), 1102; https://doi.org/10.3390/children12081102 - 21 Aug 2025
Viewed by 1354
Abstract
Background: Given the limited research on mitochondrial diseases in our area, specifically regarding their genetic variability and diverse clinical manifestations, and considering the significant number of consanguineous marriages in our region, we aimed to investigate the clinical and molecular characteristics of patients with [...] Read more.
Background: Given the limited research on mitochondrial diseases in our area, specifically regarding their genetic variability and diverse clinical manifestations, and considering the significant number of consanguineous marriages in our region, we aimed to investigate the clinical and molecular characteristics of patients with mitochondrial disorders in Saudi Arabia. Methods: This retrospective cross-sectional cohort study involved a chart review of patients diagnosed with mitochondrial disorders at the Ministry of National Guard Health Affairs tertiary health care centers in Saudi Arabia between 2013 and 2022. Results: The study population comprised 116 patients with a mean age of 10 years (±7 SD). Among the study cohort, 34.5% (n = 40) had died. The primary cause of death was cardiopulmonary arrest (55.0%, n = 22). The most prevalent condition was developmental delay (67.9%). Around 56.9% were diagnosed using Whole Exome Sequencing (WES), 10.3% by Whole Genome Sequencing due to negative WES, 23.3% through a single-gene approach, 7.8% were analyzed through a mitochondrial panel, and 1.7% via a gene panel. The distributions of current age and age at diagnosis were significantly different between the nuclear and mitochondrial gene types. Notably, the diagnostic delay time (time taken from symptom onset to genetic diagnosis) averaged 1.5 years for nDNA variants compared to an average of 10 years for mDNA variants. Conclusions: This study shows that gene type affects clinical characteristics, highlighting the importance of genetic studies in disease manifestation. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

18 pages, 3940 KB  
Article
CTCF Represses CIB2 to Balance Proliferation and Differentiation of Goat Myogenic Satellite Cells via Integrin α7β1–PI3K/AKT Axis
by Changliang Gong, Huihui Song, Zhuohang Hao, Zhengyi Zhang, Nanjian Luo and Xiaochuan Chen
Cells 2025, 14(15), 1199; https://doi.org/10.3390/cells14151199 - 5 Aug 2025
Viewed by 1236
Abstract
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. [...] Read more.
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. Although the role of CIB2 in skeletal muscle growth is poorly characterized, we observed pronounced developmental upregulation of IB2 in postnatal goat muscle. CIB2 expression increased >20-fold by postnatal day 90 (P90) compared to P1, sustaining elevation through P180 (p < 0.05). Functional investigations indicated that siRNA-mediated knockdown of CIB2 could inhibit myoblast proliferation by inducing S-phase arrest (p < 0.05) and downregulating the expression of CDK4/Cyclin D/E. Simultaneously, CIB2 interference treatment was found to decrease the proliferative activity of goat myogenic satellite cells, yet it significantly promoted differentiation by upregulating the expression of MyoD/MyoG/MyHC (p < 0.01). Mechanistically, CTCF was identified as a transcriptional repressor binding to an intragenic region of the CIB2 gene locus (ChIP enrichment: 2.3-fold, p < 0.05). Knockdown of CTCF induced upregulation of CIB2 (p < 0.05). RNA-seq analysis established CIB2 as a calcium signaling hub: its interference activated IL-17/TNF and complement cascades, while overexpression suppressed focal adhesion/ECM–receptor interactions and enriched neuroendocrine pathways. Collectively, this study identifies the CTCF-CIB2–integrin α7β1–PI3K/AKT axis as a novel molecular mechanism that regulates the balance of myogenic fate in goats. These findings offer promising targets for genomic selection and precision breeding strategies aimed at enhancing muscle productivity in ruminants. Full article
Show Figures

Figure 1

12 pages, 3098 KB  
Article
Microbial Lipopolysaccharide Regulates Host Development Through Insulin/IGF-1 Signaling
by Lijuan Teng and Jingyan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7399; https://doi.org/10.3390/ijms26157399 - 31 Jul 2025
Viewed by 968
Abstract
Lipopolysaccharide (LPS), the defining outer membrane component of Gram-negative bacteria, is a potent immunostimulant recognized by Toll-like receptor 4 (TLR4). While extensively studied for its roles in immune activation and barrier disruption, the potential function of LPS as a developmental cue remains largely [...] Read more.
Lipopolysaccharide (LPS), the defining outer membrane component of Gram-negative bacteria, is a potent immunostimulant recognized by Toll-like receptor 4 (TLR4). While extensively studied for its roles in immune activation and barrier disruption, the potential function of LPS as a developmental cue remains largely unexplored. By leveraging Caenorhabditis elegans and its genetic and gnotobiotic advantages, we screened a panel of Escherichia coli LPS biosynthesis mutants. This screen revealed that the loss of outer core glycosylation in the ∆rfaG mutant causes significant developmental delay independent of bacterial metabolism. Animals exhibited developmental delay that was rescued by exogenous LPS or amino acid supplementation, implicating that LPS triggers nutrient-sensing signaling. Mechanistically, this developmental arrest was mediated by the host FOXO transcription factor DAF-16, which is the key effector of insulin/IGF-1 signaling (IIS). Our findings uncover an unprecedented role for microbial LPS as a critical regulator of host development, mediated through conserved host IIS pathways, fundamentally expanding our understanding of host–microbe crosstalk. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives: 2nd Edition)
Show Figures

Figure 1

23 pages, 2571 KB  
Communication
Duchenne Muscular Dystrophy Patient iPSCs—Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation
by Urs Kindler, Lampros Mavrommatis, Franziska Käppler, Dalya Gebrehiwet Hiluf, Stefanie Heilmann-Heimbach, Katrin Marcus, Thomas Günther Pomorski, Matthias Vorgerd, Beate Brand-Saberi and Holm Zaehres
Cells 2025, 14(13), 1033; https://doi.org/10.3390/cells14131033 - 7 Jul 2025
Cited by 3 | Viewed by 2419
Abstract
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle [...] Read more.
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle stem cells that play an important role in adult muscle maintenance and regeneration. The absence or mutation of dystrophin in DMD is hypothesized to impair SC asymmetric division, leading to cell cycle arrest. Methods: To overcome the limited availability of biopsies from DMD patients, we used our 3D skeletal muscle organoid (SMO) system, which delivers a stable population of myogenic progenitors (MPs) in dormant, activated, and committed stages, to perform SMO cultures using three DMD patient-derived iPSC lines. Results: The results of scRNA-seq analysis of three DMD SMO cultures versus two healthy, non-isogenic, SMO cultures indicate reduced MP populations with constant activation and differentiation, trending toward embryonic and immature myotubes. Mapping our data onto the human myogenic reference atlas, together with primary SC scRNA-seq data, indicated a more immature developmental stage of DMD organoid-derived MPs. DMD fibro-adipogenic progenitors (FAPs) appear to be activated in SMOs. Conclusions: Our organoid system provides a promising model for studying muscular dystrophies in vitro, especially in the case of early developmental onset, and a methodology for overcoming the bottleneck of limited patient material for skeletal muscle disease modeling. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

31 pages, 705 KB  
Review
Molecular Guardians of Oocyte Maturation: A Systematic Review on TUBB8, KIF11, and CKAP5 in IVF Outcomes
by Charalampos Voros, Ioakeim Sapantzoglou, Diamantis Athanasiou, Antonia Varthaliti, Despoina Mavrogianni, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Ioannis Papapanagiotou, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Dimitris Mazis Kourakos, Sofia Ivanidou, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(13), 6390; https://doi.org/10.3390/ijms26136390 - 2 Jul 2025
Viewed by 2553
Abstract
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and [...] Read more.
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and cytoskeletal dynamics. Mutations in these genes can lead to significant meiotic defects, fertilization failure, and embryo arrest. The links between genotype and phenotype, along with the underlying biological mechanisms, remain inadequately characterized despite the increasing number of identified variations. This systematic review was conducted in accordance with PRISMA 2020 guidelines. Relevant papers were retrieved from the PubMed and Embase databases using combinations of the keywords “TUBB8,” “KIF11,” “CKAP5,” “oocyte maturation arrest,” “embryonic arrest,” and “IVF failure.” Studies were included if they contained clinical, genomic, and functional data on TUBB8, KIF11, or CKAP5 mutations in women undergoing IVF. Molecular data, including gene variant classifications, inheritance models, in vitro tests (such as microtubule network analysis in HeLa cells), and assisted reproductive technology (ART) outcomes, were obtained. Eighteen trials including 35 women with primary infertility were included. Over fifty different variants were identified, the majority of which can be attributed to TUBB8 mutations. TUBB8 disrupted α/β-tubulin heterodimer assembly due to homozygous missense mutations, hence hindering meiotic spindle formation and leading to early embryo fragmentation or the creation of many pronuclei and cleavage failure. KIF11 mutations resulted in spindle disorganization and chromosomal misalignment via disrupting tubulin acetylation and microtubule transport. Mutations in CKAP5 impaired bipolar spindle assembly and microtubule stabilization. In vitro validation studies showed cytoskeletal disturbances, protein instability, and dominant negative effects in transfected animals. Donor egg IVF was the sole effective treatment; however, no viable pregnancies were documented in patients with pathogenic mutations of TUBB8 or KIF11. TUBB8, KIF11, and CKAP5 are essential for safeguarding oocyte meiotic competence and early embryonic development at the molecular level. Genetic differences in these genes disrupt microtubule dynamics and spindle assembly, resulting in various aspects of oocyte maturation and fertilization. Functional validation underscores the necessity of routine genetic screening for women experiencing unresolved IVF failure, as it substantiates their causal role in infertility. Future therapeutic avenues in ART may be enhanced by tailored counseling and innovative rescue methodologies like as gene therapy. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

23 pages, 1565 KB  
Article
Proteomic Analysis and Expression of Selected Genes During the Early Somatic Embryogenesis of Jatropha curcas L.
by Anamarel Edzná Medina-Hernández, Ileana Vera-Reyes, Emmanuel Ríos-Castro, Juan José Torres-Ruiz, Teresa Ponce-Noyola, Gabriela Trejo-Tapia, Adriana Garay-Arroyo, Josefina Barrera-Cortés and Ana C. Ramos-Valdivia
Int. J. Mol. Sci. 2025, 26(13), 6384; https://doi.org/10.3390/ijms26136384 - 2 Jul 2025
Viewed by 2019
Abstract
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. [...] Read more.
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. Somatic embryogenesis (SE) offers a strategy to establish a regeneration system to overcome these challenges and enable genetic improvement. In this work, proteomic and gene expression analyses were utilized to identify key factors involved in SE induction in a non-toxic variety of J. curcas. Two-dimensional electrophoresis (2-DE) in combination with mass spectrometry was used to compare the proteomes of pre-globular and globular somatic embryos. RT-qPCR was used for gene expression analysis of the BBM, AGL15, SERK, IAA26 and eIF3f genes. The globular stage showed enrichment in the pathways related to carbohydrate and energy metabolism, protein folding, and stress response. In addition, the gene expression analysis of selected genes revealed a significantly elevated expression of BBM, AGL15, and IAA26 in globular embryos compared to pre-globular embryos. In contrast, SERK expression was low, and eIF3f expression remained unchanged between stages. These expression patterns may contribute to developmental arrest at the globular stage. These findings provide new insights into the molecular mechanisms regulating early SE in J. curcas and offer potential strategies for improving its propagation and industrial applications. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 3rd Edition)
Show Figures

Figure 1

19 pages, 1720 KB  
Review
Sperm-Derived Dysfunction of Human Embryos: Molecular Mechanisms and Clinical Resolution
by Jan Tesarik and Raquel Mendoza Tesarik
Int. J. Mol. Sci. 2025, 26(13), 6217; https://doi.org/10.3390/ijms26136217 - 27 Jun 2025
Cited by 2 | Viewed by 2925
Abstract
In addition to the male genome, the fertilizing spermatozoon delivers to the oocyte several factors whose deficiency can cause embryo dysfunction. Sperm oocyte-activating factor, identified as phoshoplipase C zeta (PLCζ), drives oocyte exit from meiotic arrest through a signaling pathway initiated by periodic [...] Read more.
In addition to the male genome, the fertilizing spermatozoon delivers to the oocyte several factors whose deficiency can cause embryo dysfunction. Sperm oocyte-activating factor, identified as phoshoplipase C zeta (PLCζ), drives oocyte exit from meiotic arrest through a signaling pathway initiated by periodic rises of free cytosolic Ca2+ concentration (calcium oscillations). Sperm centrioles, together with oocyte proteins, form centrosomes that are responsible for aster formation, pronuclear migration, and DNA polarization before nuclear syngamy and subsequent mitotic divisions. Sperm DNA fragmentation can be at the origin of aneuploidies, while epigenetic issues, mainly abnormal methylation of DNA-associated histones, cause asynchronies of zygotic gene activation among embryonic cells. Sperm long and short non-coding RNAs are important epigenetic regulators affecting critical developmental processes. Dysfunction of sperm PLCζ, centrioles, DNA, and RNA mostly converge to aneuploidy, developmental arrest, implantation failure, miscarriage, abortion, or offspring disease. With the exception of DNA fragmentation, the other sperm issues are more difficult to diagnose. Specific tests, including heterologous human intracytoplasmic sperm injection (ICSI) into animal oocytes, genetic testing for mutations in PLCZ1 (the gene coding for PLCζ in humans) and associated genes, and next-generation sequencing of sperm transcriptome, are currently available. Oral antioxidant treatment and in vitro selection of healthy spermatozoa can be used in cases of sperm DNA fragmentation, while ICSI with assisted oocyte activation is useful to overcome oocyte-activation defects. No clinically confirmed therapy is yet available for sperm RNA issues. Full article
(This article belongs to the Special Issue Embryonic Development and Differentiation: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 5485 KB  
Review
Unilateral Renal Agenesis: Prenatal Diagnosis and Postnatal Issues
by Waldo Sepulveda, Amy E. Wong, Gabriele Tonni, Gianpaolo Grisolia and Angela C. Ranzini
Diagnostics 2025, 15(13), 1572; https://doi.org/10.3390/diagnostics15131572 - 20 Jun 2025
Cited by 1 | Viewed by 5259
Abstract
Unilateral renal agenesis (URA) is a urinary tract congenital anomaly characterized by a congenital absence or early developmental arrest of only one kidney. In the presence of a normal contralateral kidney, URA is typically considered a condition of minimal clinical significance as the [...] Read more.
Unilateral renal agenesis (URA) is a urinary tract congenital anomaly characterized by a congenital absence or early developmental arrest of only one kidney. In the presence of a normal contralateral kidney, URA is typically considered a condition of minimal clinical significance as the solitary kidney often undergoes hypertrophy and can sufficiently perform the needed renal function after birth. However, postnatal studies suggest that URA has a significant association with other urinary and extra-urinary anomalies and may have implications for long-term health. This descriptive review focuses on the perinatal aspects of URA, emphasizing the main ultrasound findings to establish the prenatal diagnosis and to guide perinatal management. The pediatric implications of this diagnosis, particularly the high prevalence of long-term complications including hypertension, proteinuria, and a decreased glomerular filtration rate, are also briefly reviewed. URA is consistently associated with other ipsilateral urogenital anomalies. In females, there is a significant association with uterine anomalies that has significant implications for subsequent reproductive function. In males, the prevalence of both urinary and genital anomalies is also increased, which may also have implications for future fertility. Prenatal ultrasound offers the possibility of early diagnosis and parental counseling, which may result in timely intervention to reduce contralateral renal damage, prevent severe urogenital manifestations and co-morbidities, and improve fertility and the quality of life. Full article
(This article belongs to the Special Issue Advances in Ultrasound Diagnosis in Maternal Fetal Medicine Practice)
Show Figures

Figure 1

Back to TopTop