Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = deuterium solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6317 KiB  
Article
Long-Range Allosteric Communication Modulated by Active Site Mn(II) Coordination Drives Catalysis in Xanthobacter autotrophicus Acetone Carboxylase
by Jenna R. Mattice, Krista A. Shisler, Jadyn R. Malone, Nic A. Murray, Monika Tokmina-Lukaszewska, Arnab K. Nath, Tamara Flusche, Florence Mus, Jennifer L. DuBois, John W. Peters and Brian Bothner
Int. J. Mol. Sci. 2025, 26(13), 5945; https://doi.org/10.3390/ijms26135945 - 20 Jun 2025
Viewed by 331
Abstract
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus [...] Read more.
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus AC (XaAC) with and without nucleotides reveal that the binding and phosphorylation of the two substrates occurs ~40 Å from the Mn(II) active sites where acetoacetate is formed. Based on the crystal structures, a significant conformational change was proposed to open and close a tunnel that facilitates the passage of reaction intermediates between the sites for nucleotide binding and phosphorylation of substrates and Mn(II) sites of acetoacetate formation. We have employed electron paramagnetic resonance (EPR), kinetic assays, and hydrogen/deuterium exchange mass spectrometry (HDX-MS) of poised ligand-bound states and site-specific amino acid variants to complete an in-depth analysis of Mn(II) coordination and allosteric communication throughout the catalytic cycle. In contrast with the established paradigms for carboxylation, our analyses of XaAC suggested a carboxylate shift that couples both local and long-range structural transitions. Shifts in the coordination mode of a single carboxylic acid residue (αE89) mediate both catalysis proximal to a Mn(II) center and communication with an ATP active site in a separate subunit of a 180 kDa α2β2γ2 complex at a distance of 40 Å. This work demonstrates the power of combining structural models from X-ray crystallography with solution-phase spectroscopy and biophysical techniques to elucidate functional aspects of a multi-subunit enzyme. Full article
(This article belongs to the Special Issue Emerging Topics in Macromolecular Crystallography)
Show Figures

Figure 1

19 pages, 1438 KiB  
Article
µ-Raman Spectroscopic Temperature Dependence Study of Biomimetic Lipid 1,2-Diphytanoyl-sn-glycero-3-phosphocholine
by Carmen Rizzuto, Antonello Nucera, Irene Barba Castagnaro, Riccardo C. Barberi and Marco Castriota
Biomimetics 2025, 10(5), 308; https://doi.org/10.3390/biomimetics10050308 - 11 May 2025
Viewed by 533
Abstract
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can [...] Read more.
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can interact with other biological molecules (i.e., proteins and vitamins) and express their own biological functions. Phospholipids, due to their amphiphilic structure, form biomimetic membranes which are useful for studying cellular interactions and drug delivery. Synthetic systems such as DPhPC-based liposomes replicate the key properties of biological membranes. Among the different models, phospholipid mimetic membrane models of lamellar vesicles have been greatly supported. In this work, a biomimetic system, a deuterium solution (50 mM) of the synthetic phospholipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhDC), is studied using μ-Raman spectroscopy in a wide temperature range from −181.15 °C up to 22.15 °C, including the following temperatures: −181.15 °C, −146.15 °C, −111.15 °C, −76.15 °C, −61.15 °C, −46.15 °C, −31.15 °C, −16.15 °C, −1.15 °C, 14.15 °C, and 22.15 °C. Based on the Raman evidence, phase transitions as a function of temperature are shown and grouped into five classes, where the corresponding Raman modes describe the stretching of the (C−N) bond in the choline head group (gauche) and the asymmetric stretching of the (O−P−O) bond. The acquisition temperature of each Raman spectrum characterizes the rocking mode of the methylene of the acyl chain. These findings enhance our understanding of the role of artificial biomimetic lipids in complex phospholipid membranes and provide valuable insights for optimizing their use in biosensing applications. Although the phase stability of DPhPC is known, the collected Raman data suggest subtle molecular rearrangements, possibly due to hydration and second-order transitions, which are relevant for membrane modeling and biosensing applications. Full article
Show Figures

Figure 1

15 pages, 5333 KiB  
Article
Ultrasonic Effect on the Growth of Crystals from Aqueous Electrolyte Solutions on Polymer Substrates: The Role of Isotopic Composition of Liquid
by Nikolai F. Bunkin, Polina N. Bolotskova, Sergey V. Gudkov, Valery V. Voronov, Vladimir I. Pustovoy, Valery N. Sorokovikov, Oleg T. Kamenev and Yulia V. Novakovskaya
Polymers 2024, 16(24), 3580; https://doi.org/10.3390/polym16243580 - 21 Dec 2024
Cited by 1 | Viewed by 791
Abstract
The peculiarities of the crystal formation from supersaturated aqueous solutions of CuSO4 on polymer substrates were studied using X-ray diffractometry. During the crystal formation, the test solutions were irradiated with one or two counter-propagating ultrasonic beams. Test solutions were prepared using natural [...] Read more.
The peculiarities of the crystal formation from supersaturated aqueous solutions of CuSO4 on polymer substrates were studied using X-ray diffractometry. During the crystal formation, the test solutions were irradiated with one or two counter-propagating ultrasonic beams. Test solutions were prepared using natural deionized water with a deuterium content of 157 ± 1 ppm. The other liquid used was deuterium-depleted water with a deuterium content of 3 ppm. It was shown that irradiation with one/two ultrasonic beams resulted in drastic changes in the structure of the crystal deposit formed on the polymer substrate in the case when natural deionized water was chosen for preparing the supersaturated solution of CuSO4. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

19 pages, 7948 KiB  
Article
New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy
by Anton V. Syroeshkin, Elena V. Uspenskaya, Olga V. Levitskaya, Ekaterina S. Kuzmina, Ilaha V. Kazimova, Hoang Thi Ngoc Quynh and Tatiana V. Pleteneva
Sci. Pharm. 2024, 92(4), 63; https://doi.org/10.3390/scipharm92040063 - 2 Dec 2024
Viewed by 2062
Abstract
The development of affordable and reliable methods for quantitative determination of stable atomic nuclei in aqueous solutions and adjuvant agents used in tumor chemotherapy is an important task in modern pharmaceutical chemistry. This work quantified the deuterium/prothium isotope ratio in aqueous solutions through [...] Read more.
The development of affordable and reliable methods for quantitative determination of stable atomic nuclei in aqueous solutions and adjuvant agents used in tumor chemotherapy is an important task in modern pharmaceutical chemistry. This work quantified the deuterium/prothium isotope ratio in aqueous solutions through an original two-dimensional diffuse laser scattering (2D-DLS) software and hardware system based on chemometric processing of discrete interference patterns (dynamic speckle patterns). For this purpose, 10 mathematical descriptors (di), similar to QSAR descriptors, were used. Correlation analysis of bivariate “log di—D/H” plots shows an individual set of multi-descriptors for a given sample with a given D/H ratio (ppm). A diagnostic sign (DS) of differentiation was established: the samples were considered homeomorphic if 6 out of 10 descriptors differed by less than 15% (n ≥ 180). The analytical range (r = 0.987) between the upper (D/H ≤ 2 ppm) and lower (D/H = 180 ppm) limits for the quantification of stable hydrogen nuclei in water and aqueous solutions were established. Using the Spirotox method, a «safe zone» for protozoan survival was determined between 50 and 130 ppm D/H. Here, we discuss the dispersive (DLS, LALLS) and optical properties (refractive index, optical rotation angle) of the solutions with different D/H ratios that define the diffuse laser radiation due to surface density inhomogeneities. The obtained findings may pave the way for the future use of a portable, in situ diffuse laser light scattering instrument to determine deuterium in water and aqueous adjuvants. Full article
Show Figures

Figure 1

8 pages, 1250 KiB  
Communication
Deep Eutectic Solvents as Candidates for Lithium Isotope Enrichment
by Jesse E. Smith, Kori D. McDonald, Dale A. Hitchcock and Brenda L. Garcia-Diaz
Separations 2024, 11(11), 314; https://doi.org/10.3390/separations11110314 - 1 Nov 2024
Viewed by 1575
Abstract
Nuclear fusion is a phenomenon that is well known within the nuclear physics community as a viable option for alternative energy as many natural gases and fossil fuels are phased out of commercial use. Deuterium and tritium fusion reactions are currently the leading [...] Read more.
Nuclear fusion is a phenomenon that is well known within the nuclear physics community as a viable option for alternative energy as many natural gases and fossil fuels are phased out of commercial use. Deuterium and tritium fusion reactions are currently the leading candidates for nuclear fusion, with a major limiting factor being a means to produce tritium on an industrial scale. Lithium-6 is a well-known isotope that can produce tritium and helium following a fission reaction with a neutron. Unfortunately, the lithium-6 enrichment methods are limited to the COLEX process, which leaves behind an alarming amount of mercury waste as a potential environmental contaminant. Deep eutectic solvents are believed to be a potential alternative to lithium isotope separations due to the ease of generation, in addition to the minimum environmental waste generated when these solvents are employed. Previous studies have suggested that deep eutectic solvents are capable of separating lithium isotopes by utilizing a 2-thenoyltrifluoroacetone and trioctylphosphine oxide system that can biphasically react with a buffered solution containing lithium chloride. This system displays a separation factor of 1.068, which when compared to the 1.054 separation within the COLEX process, makes it a potential candidate for lithium-6/7 separation. Within this study, we investigate this system in comparison to two newly synthesized deep eutectic solvents and find that within these acetylacetone-based systems, little isotopic separation is observed. We investigate these systems both experimentally and computationally, showing the different lithium cation affinities, in addition to proposing how the electron-donating or -withdrawing nature can influence these systems. Full article
Show Figures

Figure 1

16 pages, 6031 KiB  
Article
Corrosion of Chromium Coating Fabricated on Zircaloy-4 Substrate
by Florentina Golgovici, Diana Diniași, Paul Pavel Dincă, Bogdan Butoi and Ioana Demetrescu
Materials 2024, 17(18), 4445; https://doi.org/10.3390/ma17184445 - 10 Sep 2024
Viewed by 1102
Abstract
In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, [...] Read more.
In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, the performance of cladding is expected to be improved. This work assesses the corrosion performance of a Zircalloy-4 alloy coated with a thin chromium coating by MS (magnetron sputtering), tested under a CANDU (CANada Deuterium Uranium) reactor primary circuit simulated condition (LiOH solution, 10 MPa, 310 °C, pH = 10.5). The anticorrosive performance is evaluated by a gravimetric analysis, a metallographic analysis, X-ray diffraction, electronic microscopy, and electrochemical methods. A four times less gain mass was noticed compared to uncoated Zircaloy-4, indicating a smaller corrosion rate. The SEM micrographs illustrate that the coatings are still adherent, and they are keeping the initial morphological characteristics during the autoclaving process. A SEM cross-section analysis shows values of the thickness of the coatings between 0.8 and 1.46 µm. By XRD, the presence of Cr2O3 oxide is identified. Electrochemical testing confirms good stability and good corrosion performance of Cr coating over time under autoclave conditions. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

12 pages, 8432 KiB  
Article
Assessment of Metal Foil Pump Configurations for EU-DEMO
by Xueli Luo, Yannick Kathage, Tim Teichmann, Stefan Hanke, Thomas Giegerich and Christian Day
Energies 2024, 17(16), 3889; https://doi.org/10.3390/en17163889 - 7 Aug 2024
Viewed by 1251
Abstract
It is a challenging but key task to reduce the tritium inventory in EU-DEMO to levels that are acceptable for a nuclear regulator. As solution to this issue, a smart fuel cycle architecture is proposed based on the concept of Direct Internal Recycling [...] Read more.
It is a challenging but key task to reduce the tritium inventory in EU-DEMO to levels that are acceptable for a nuclear regulator. As solution to this issue, a smart fuel cycle architecture is proposed based on the concept of Direct Internal Recycling (DIR), in which the Metal Foil Pump (MFP) will play an important role to separate the unburnt hydrogen isotopes coming from the divertor by exploiting the superpermeation phenomenon. In this study, we will present the assessment of the performance of the lower port of EU-DEMO after the integration of the MFP. For the first time, a thorough comparison of three different MFP (parallel long tubes, sandwich and halo) designs is performed regarding conductance for helium molecules, the pumping speed and the separation factor for deuterium molecules under different physical and geometric parameters. All simulations were carried out in supercomputer Marconi-Fusion with our in-house Test Particle Monte Carlo (TPMC) simulation code ProVac3D because the code had been parallelized with high efficiency. These results are essential for the development of a suitable MFP design in the vacuum-pumping train of EU-DEMO. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

11 pages, 1528 KiB  
Article
Theoretical Study of the D-T Fuel Burning Rate in Z-Pinch Facilities with Magneto-Inertial Confinement
by Olzhas Bayakhmetov and Assylkhan Azamatov
Energies 2024, 17(13), 3069; https://doi.org/10.3390/en17133069 - 21 Jun 2024
Cited by 1 | Viewed by 1200
Abstract
This paper focuses on the theoretical study of the burning rate of D-T fuel in Z-pinch devices with magneto-inertial confinement. The investigated nuclear fusion process involved fast laser ignition of a mixed D-T fuel contained in a capsule at a temperature of 10 [...] Read more.
This paper focuses on the theoretical study of the burning rate of D-T fuel in Z-pinch devices with magneto-inertial confinement. The investigated nuclear fusion process involved fast laser ignition of a mixed D-T fuel contained in a capsule at a temperature of 10 keV, influenced by a strong electromagnetic field. The D-T, D-D, D-3He, 3He-3He, and T-T fusion reactions were employed in the calculations. Based on modern experimental fit data of nuclear fusion reaction rates, the particle and energy balance equations, along with their numerical solutions, were considered, utilizing the ion densities of charged particles such as protons, deuterium, tritium, 3He, and 4He ions. The plasma was in a hot, ultra-dense state, under the quasi-neutrality condition, with initial deuterium and tritium densities of 5×1023 cm−3 and an electron density of 10×1023 cm−3. The ion and electron temperatures were considered equal in this paper. The time dependencies of the ion densities, plasma temperature, energy yield from charged ions and neutrons, fusion power density, and bremsstrahlung radiation loss were investigated. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

9 pages, 411 KiB  
Article
Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy
by Anna Liski, Tomi Vuoriheimo, Jesper Byggmästar, Kenichiro Mizohata, Kalle Heinola, Tommy Ahlgren, Ko-Kai Tseng, Ting-En Shen, Che-Wei Tsai, Jien-Wei Yeh, Kai Nordlund, Flyura Djurabekova and Filip Tuomisto
Materials 2024, 17(11), 2574; https://doi.org/10.3390/ma17112574 - 27 May 2024
Cited by 4 | Viewed by 1429
Abstract
The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied [...] Read more.
The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied by determining the activation energy for the solubility and the solution enthalpy of H in the WMoTaNbV alloy. The activation energy was studied by heating samples in a H atmosphere at temperatures ranging from 20 °C to 400 °C and comparing the amounts of absorbed H. The solution activation energy EA of H was determined to be EA=0.22±0.02 eV (21.2 ± 1.9 kJ/mol). The performed density functional theory calculations revealed that the neighbouring host atoms strongly influenced the solution enthalpy, leading to a range of theoretical values from −0.40 eV to 0.29 eV (−38.6 kJ/mol to 28.0 kJ/mol). Full article
(This article belongs to the Special Issue Future Trends in High-Entropy Alloys (2nd Edition))
Show Figures

Figure 1

21 pages, 5827 KiB  
Article
Nafion: A Flexible Template for Selective Structuring
by Nikolai F. Bunkin, Polina N. Bolotskova, Sergey V. Gudkov, Minh T. Khuong, Valeriy A. Kozlov, Svetlana L. Timchenko, Valeriy V. Voronov and Yulia V. Novakovskaya
Polymers 2024, 16(6), 744; https://doi.org/10.3390/polym16060744 - 8 Mar 2024
Cited by 3 | Viewed by 1448
Abstract
The peculiarities of crystal growth on a Nafion polymeric substrate from supersaturated aqueous solutions of initial substances were studied. The solutions were prepared based on deionized natural water and deuterium-depleted water. As was found earlier, in natural water (deuterium content 157 ± 1 [...] Read more.
The peculiarities of crystal growth on a Nafion polymeric substrate from supersaturated aqueous solutions of initial substances were studied. The solutions were prepared based on deionized natural water and deuterium-depleted water. As was found earlier, in natural water (deuterium content 157 ± 1 ppm) polymer fibers are capable of unwinding towards the bulk of the liquid, while in deuterium-depleted water (deuterium content ≤ 3 ppm) there is no such effect. Since the distance between the unwound fibers falls in a nanometer range (which is close to the size of the unit cell of the crystal lattice), and these fibers are directed normally to the polymeric substrate, the unwinding can affect crystal growth on the polymer substrate. As was obtained in experiments with X-ray diffractometry, the unwound polymer fibers predetermine syngony of crystals, for which the unit cell is either a rectangular parallelepiped (monoclinic system) or an oblique parallelepiped (triclinic system). A quantitative theoretical model that describes the local interaction of the polymer substrate with the crystalline complexes is presented. Within this model, the polymer substrate can be considered as a flexible matrix for growing crystals. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers II)
Show Figures

Figure 1

19 pages, 5416 KiB  
Article
The Potential of Isotopic Tracers for Precise and Environmentally Clean Stream Discharge Measurements
by Antoine Picard, Florent Barbecot, Gérard Bardoux, Pierre Agrinier, Marina Gillon, José A. Corcho Alvarado, Vincent Schneider, Jean-François Hélie and Frédérick de Oliveira
Hydrology 2024, 11(1), 1; https://doi.org/10.3390/hydrology11010001 - 23 Dec 2023
Viewed by 2805
Abstract
Accurate discharge measurement is mandatory for any hydrological study. While the “velocity” measurement method is adapted to laminar flows, the “dilution” method is more appropriate for turbulent streams. As most low-gradient streams worldwide are neither laminar nor turbulent, a methodological gap appears. In [...] Read more.
Accurate discharge measurement is mandatory for any hydrological study. While the “velocity” measurement method is adapted to laminar flows, the “dilution” method is more appropriate for turbulent streams. As most low-gradient streams worldwide are neither laminar nor turbulent, a methodological gap appears. In this study, we demonstrate that the application of the “dilution” method to a low-gradient small stream gives very satisfactory results in addition to revealing surface/subsurface processes. A variety of chemical and isotopic tracers were injected into the stream (anions, fluorescent dyes, and chloride and hydrogen isotopes). We report the first use of 37Cl for stream discharge measurement and show that 37Cl and 2H can be reliably used as quantitative tracers. Discharge uncertainty calculations show that deuterium is the most accurate tracer method used. We also compare the differences in the tailing part of the restitution curves of tracers and investigate the role of transient surface and hyporheic zones in solute transport in light of a simple transport modelling approach. We conclude that isotopic tracers can be used as “environmentally friendly” tracers for discrete stream discharge measurements and that the application of multi-tracers tests in rivers opens the path to a better understanding of surface–subsurface interaction processes. Full article
(This article belongs to the Special Issue Advances in River Monitoring)
Show Figures

Figure 1

18 pages, 6476 KiB  
Article
Mechanical Behaviour of the Rotating Target SORGENTINA-RF
by Marco Lamberti, Ranieri Marinari, Andrea Mancini, Gianni Gadani, Antonino Pietropaolo and The SRF Collaboration
Appl. Sci. 2023, 13(15), 8967; https://doi.org/10.3390/app13158967 - 4 Aug 2023
Viewed by 1491
Abstract
The SORGENTINA-RF project aims at developing a 14 MeV neutron source based on a deuterium/tritium ion accelerator and a rotating target where fusion reactions take place. Among the different research fields, the most interesting and promising is medical radioisotope production. In this framework, [...] Read more.
The SORGENTINA-RF project aims at developing a 14 MeV neutron source based on a deuterium/tritium ion accelerator and a rotating target where fusion reactions take place. Among the different research fields, the most interesting and promising is medical radioisotope production. In this framework, intense research work on the design of the rotating target has been carried out. More in detail, to define the optimal design configuration, a sensitivity analysis on the mechanical performance of the rotating target considering the influence of some relevant parameters, such as material type, thickness, and presence of internal stiffeners, was carried out. Among the materials analyzed, aluminium alloy represents the best compromise to efficiently address all the critical requirements in the design phase. One of the most demanding project requirements that the conceptual design must fulfill is the ability of the target to dissipate a thermal power of 250 kW without precluding its mechanical properties and resistance. To investigate the performance of the rotating target, some thermo-mechanical analyses were undertaken with finite element method under some thermal transients and mechanical loads able to simulate the working conditions of the system. The numerical results emphasise the target’s ability to withstand operating conditions. The main outcomes of the present study have been implemented as engineering solutions in the project design. Full article
Show Figures

Figure 1

37 pages, 21436 KiB  
Review
Nafion: New and Old Insights into Structure and Function
by Barry W. Ninham, Matthew J. Battye, Polina N. Bolotskova, Rostislav Yu. Gerasimov, Valery A. Kozlov and Nikolai F. Bunkin
Polymers 2023, 15(9), 2214; https://doi.org/10.3390/polym15092214 - 7 May 2023
Cited by 19 | Viewed by 6757
Abstract
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as [...] Read more.
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended “brush” type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate. Full article
(This article belongs to the Special Issue Advance in Functional Biological Polymer Membranes)
Show Figures

Figure 1

12 pages, 2185 KiB  
Article
Auto Sizing of CANDU Nuclear Reactor Fuel Channel Flaws from UT Scans
by Issam Hammad, Matthew Poloni, Andrew Isherwood and Ryan Simpson
Sensors 2023, 23(8), 3907; https://doi.org/10.3390/s23083907 - 12 Apr 2023
Cited by 1 | Viewed by 2588
Abstract
The inspection of nuclear power plants is an essential process that occurs during plant outages. During this process, various systems are inspected, including the reactor’s fuel channels to ensure that they are safe and reliable for the plant’s operation. The inspection of Canada [...] Read more.
The inspection of nuclear power plants is an essential process that occurs during plant outages. During this process, various systems are inspected, including the reactor’s fuel channels to ensure that they are safe and reliable for the plant’s operation. The inspection of Canada Deuterium Uranium (CANDU®) reactor pressure tubes, which are the core component of the fuel channels and house the reactor fuel bundles, is performed using Ultrasonic Testing (UT). Based on the current process that is followed by Canadian nuclear operators, the UT scans are manually examined by analysts to locate, measure, and characterize pressure tube flaws. This paper proposes solutions for the auto-detection and sizing of pressure tube flaws using two deterministic algorithms, the first uses segmented linear regression, while the second uses the average time of flight (ToF) within ±σ of µ. When compared against a manual analysis stream, the linear regression algorithm and the average ToF achieved an average depth difference of 0.0180 mm and 0.0206 mm, respectively. These results are very close to the depth difference of 0.0156 mm when comparing two manual streams. Therefore, the proposed algorithms can be adopted in production, which can lead to significant cost savings in terms of time and labor. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 7114 KiB  
Review
Tautomerism of β-Diketones and β-Thioxoketones
by Poul Erik Hansen
Encyclopedia 2023, 3(1), 182-201; https://doi.org/10.3390/encyclopedia3010013 - 30 Jan 2023
Cited by 6 | Viewed by 5688
Abstract
The present overview concentrates on recent developments of tautomerism of β-diketones and β-thioxoketones, both in solution and in the solid state. In particular, the latter has been a matter of debate and unresolved problems. Measurements of 13C, 17O, and 2H [...] Read more.
The present overview concentrates on recent developments of tautomerism of β-diketones and β-thioxoketones, both in solution and in the solid state. In particular, the latter has been a matter of debate and unresolved problems. Measurements of 13C, 17O, and 2H chemical shifts have been used. Deuterium isotope effects on chemical shifts are proposed as a tool in the study of this problem. Photoconversion of β-diketones and β-thioxoketones are discussed in detail, and the incorporation of β-diketones into molecules with fluorescent properties is assessed. Finally, docking studies of β-diketones are scrutinized with an emphasis on correct tautomeric structures and knowledge about barriers to interconversion of tautomers. Full article
Show Figures

Figure 1

Back to TopTop