Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = design-manufacturing interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2196 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 (registering DOI) - 1 Aug 2025
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

21 pages, 4865 KiB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 156
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 16222 KiB  
Article
Enhanced Photoelectrochemical Performance of 2D Bi2O3/TiO2 Heterostructure Film by Bi2S3 Surface Modification and Broadband Photodetector Application
by Lai Liu and Huizhen Yao
Materials 2025, 18(15), 3528; https://doi.org/10.3390/ma18153528 - 28 Jul 2025
Viewed by 255
Abstract
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated [...] Read more.
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated and functioned as the photoelectrode of photoelectrochemical devices. The designed Bi2S3/Bi2O3/TiO2 photoelectrochemical photodetector possesses a broad light detection spectrum ranging from 400 to 900 nm and impressive self-powered characteristics. At 0 V bias, the device exhibits an on/off current ratio of approximately 1.3 × 106. It achieves a commendable detectivity of 5.7 × 1013 Jones as subjected to a 0.8 V bias potential, outperforming both bare TiO2 and Bi2O3/TiO2 photoelectrochemical devices. Moreover, the Bi2S3/Bi2O3/TiO2 photoelectrode film shows great promise in pollutant decomposition, achieving nearly 97.7% degradation efficiency within 60 min. The appropriate band energy alignment and the presence of an internal electric field at the interface of the Bi2S3/Bi2O3/TiO2 film serve as a potent driving force for the separation and transport of photogenerated carriers. These findings suggest that the Bi2S3/Bi2O3/TiO2 heterojunction film could be a viable candidate as a photoelectrode material for the development of high-performance photoelectrochemical optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 418
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 525
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

37 pages, 1823 KiB  
Review
Mind, Machine, and Meaning: Cognitive Ergonomics and Adaptive Interfaces in the Age of Industry 5.0
by Andreea-Ruxandra Ioniță, Daniel-Constantin Anghel and Toufik Boudouh
Appl. Sci. 2025, 15(14), 7703; https://doi.org/10.3390/app15147703 - 9 Jul 2025
Viewed by 790
Abstract
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm [...] Read more.
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm of Industry 5.0. Through a comprehensive synthesis of the recent literature, we examine the cognitive, physiological, psychological, and organizational factors that shape operator performance, safety, and satisfaction. A particular emphasis is placed on ergonomic interface design, real-time physiological sensing (e.g., EEG, EMG, and eye-tracking), and the integration of collaborative robots, exoskeletons, and extended reality (XR) systems. We further analyze methodological frameworks such as RULA, OWAS, and Human Reliability Analysis (HRA), highlighting their digital extensions and applicability in industrial contexts. This review also discusses challenges related to cognitive overload, trust in automation, and the ethical implications of adaptive systems. Our findings suggest that an effective HMI must go beyond usability and embrace a human-centric philosophy that aligns technological innovation with sustainability, personalization, and resilience. This study provides a roadmap for researchers, designers, and practitioners seeking to enhance interaction quality in smart manufacturing through cognitive ergonomics and intelligent system integration. Full article
Show Figures

Figure 1

26 pages, 3079 KiB  
Article
Implementing CAD API Automated Processes in Engineering Design: A Case Study Approach
by Konstantinos Sofias, Zoe Kanetaki, Constantinos Stergiou, Antreas Kantaros, Sébastien Jacques and Theodore Ganetsos
Appl. Sci. 2025, 15(14), 7692; https://doi.org/10.3390/app15147692 - 9 Jul 2025
Viewed by 595
Abstract
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent [...] Read more.
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent tasks such as CAD file generation, drawing production, structured archiving, and cost estimation. The proposed framework was implemented and tested on three real-world case studies in a turbocharger reconditioning unit with varying degrees of automation. Findings indicate remarkable time savings of up to 90% in certain documentation tasks with improved consistency, traceability, and reduced manual intervention. Moreover, the system also facilitated automatic generation of metadata-rich Excel and Word documents, allowing centralized documentation and access to data. In comparison with commercial automation software, the solution is flexible, cost-effective, and responsive to project changes and thus suitable for small and medium enterprises. Though automation reduced workload and rendered the system more reliable, some limitations remain, especially in fully removing engineering judgment, especially in complex design scenarios. Overall, this study investigates how API-based automation can significantly increase productivity and data integrity in CAD-intensive environments and explores future integration opportunities using AI and other CAD software. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

35 pages, 8971 KiB  
Review
Emerging Insights into the Durability of 3D-Printed Concrete: Recent Advances in Mix Design Parameters and Testing
by James Bradshaw, Wen Si, Mehran Khan and Ciaran McNally
Designs 2025, 9(4), 85; https://doi.org/10.3390/designs9040085 - 7 Jul 2025
Viewed by 712
Abstract
Although 3D-printed concrete (3DPC) offers advantages such as faster construction, reduced labour costs, and minimized material waste, concerns remain about its long-term durability. This review examines these challenges by assessing how the unique layer-by-layer manufacturing process of 3DPC influences key material properties and [...] Read more.
Although 3D-printed concrete (3DPC) offers advantages such as faster construction, reduced labour costs, and minimized material waste, concerns remain about its long-term durability. This review examines these challenges by assessing how the unique layer-by-layer manufacturing process of 3DPC influences key material properties and overall durability. The formation of interfacial porosity and anisotropic microstructures can compromise structural integrity over time, increasing susceptibility to environmental degradation. Increased porosity at layer interfaces and the presence of shrinkage-induced cracking, including both plastic and autogenous shrinkage, contribute to reduced durability. Studies on freeze–thaw performance indicate that 3DPC can achieve durability comparable to cast concrete when proper mix designs and air-entraining agents are used. Chemical resistance, particularly under sulfuric acid exposure, remains a challenge, but improvements have been observed with the inclusion of supplementary cementitious materials such as silica fume. In addition, tests for chloride ingress and carbonation reveal that permeability and resistance are highly sensitive to printing parameters, material composition, and curing conditions. Carbonation resistance, in particular, appears to be lower in 3DPC than in traditional concrete. This review highlights the need for further research and emphasizes that optimizing mix designs and printing processes is critical to improving the long-term performance of 3D-printed concrete structures. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

12 pages, 13780 KiB  
Article
Additive Manufacturing of Composite Structures with Transverse Thermoelectricity
by Weixiao Gao, Shuai Yu, Buntong Tan and Fei Ren
J. Compos. Sci. 2025, 9(7), 344; https://doi.org/10.3390/jcs9070344 - 2 Jul 2025
Viewed by 334
Abstract
This study investigates the application of additive manufacturing (AM) in fabricating transverse thermoelectric (TTE) composites, demonstrating the feasibility of this methodology for TTE material synthesis. Zinc oxide (ZnO), a wide-bandgap semiconductor with moderate thermoelectric performance, and copper (Cu), a highly conductive metal, were [...] Read more.
This study investigates the application of additive manufacturing (AM) in fabricating transverse thermoelectric (TTE) composites, demonstrating the feasibility of this methodology for TTE material synthesis. Zinc oxide (ZnO), a wide-bandgap semiconductor with moderate thermoelectric performance, and copper (Cu), a highly conductive metal, were selected as base materials. These were formulated into stable paste-like feedstocks for direct ink writing (DIW). A custom dual-nozzle 3D printer was developed to precisely deposit these materials in pre-designed architectures. The resulting structures exhibited measurable transverse Seebeck effects. Unlike prior TE research primarily focused on longitudinal configurations, this work demonstrates a novel AM-enabled strategy that integrates directional compositional anisotropy, embedded metal–semiconductor interfaces, and scalable multi-material printing to realize TTE behavior. The approach offers a cost-effective and programmable pathway toward next-generation energy harvesting and thermal management systems. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Composites)
Show Figures

Figure 1

25 pages, 33747 KiB  
Article
System Design and Experimental Study of a Four-Roll Bending Machine
by Dongxu Guo, Qun Sun, Ying Zhao, Shangsheng Jiang and Yigang Jing
Appl. Sci. 2025, 15(13), 7383; https://doi.org/10.3390/app15137383 - 30 Jun 2025
Viewed by 277
Abstract
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, [...] Read more.
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, forming stability, and machining accuracy. The mechanical system underwent static simulation optimization using SolidWorks Simulation, ensuring maximum stress in the guiding mechanism was controlled below 7.118×103 N/m². ABAQUS-based roll-bending dynamic simulations validated the geometric adaptability and process feasibility of the proposed mechanical configuration. A master-slave dual-core control architecture was implemented in the control system, enabling synchronized error ≤ 0.05 mm, dynamic response time ≤ 10 ms, and positioning accuracy of ±0.01 mm through collaborative control of the master controller and servo drives. Experimental validation demonstrated that the machine achieves bending errors within 1%, with an average forming error of 0.798% across various radii profiles. The arc integrity significantly outperforms conventional equipment, while residual straight edge length was reduced by 86.67%. By adopting fully servo-electric cylinder actuation and integrating a C#-developed human–machine interface with real-time feedback control, this research effectively enhances roll-bending precision, minimizes residual straight edges, and exhibits broad industrial applicability. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 5651 KiB  
Article
Design and Experimental Setup of an Innovative Tribometer Aiming to Evaluate Small Quantities of Lubricants
by Lenine Marques de Castro Silva, Adilson José de Oliveira, Aylla Maria Alencar Rocha, José Josemar de Oliveira Junior and Salete Martins Alves
Lubricants 2025, 13(7), 292; https://doi.org/10.3390/lubricants13070292 - 29 Jun 2025
Viewed by 404
Abstract
The proposed tribometer design evaluates lubricants’ lubricating and wear protection properties at the interface of a loaded set of gears. However, this tribometer configuration and testing procedure described in standard ISO 14645-1 does not limit the tribological studies of gear test rigs. This [...] Read more.
The proposed tribometer design evaluates lubricants’ lubricating and wear protection properties at the interface of a loaded set of gears. However, this tribometer configuration and testing procedure described in standard ISO 14645-1 does not limit the tribological studies of gear test rigs. This study aimed to design and manufacture a mechanical transmission test rig capable of investigating the tribological condition of a lubricated enclosed gears transmission. The methodology consisted of (i) a definition of the test rig’s requirements; (ii) downsizing the main subassemblies present in the ISO 14635-1 test rig; (iii) designing innovative subassemblies; (iv) an instrumentation and data acquisition system, and (v) setup testing. The proposed system is suitable for evaluating small quantities of lubricants, allowing the analysis of special lubricants such as nanolubricants and ionic liquids in development for gearbox applications. Also, the dynamic loading avoids interruption in the test, providing results closer to working conditions. The experimental test evaluated the lubrication ability of two different base oils simultaneously under various loading conditions. Also, monitoring vibration signals helped identify the appearance of damage on the gear surface. Full article
Show Figures

Figure 1

24 pages, 4912 KiB  
Article
Integrated Fleet Management of Mobile Robots for Enhancing Industrial Efficiency: A Case Study on Interoperability in Multi-Brand Environments Within the Automotive Sector
by David Lopes, Tiago Pereira, André Gonçalves, Francisco Cunha, Fernando Lopes, João Antunes, Victor Santos, Fernanda Coutinho, Jorge Barreiros, João Durães, Patrícia Santos, Fernando Simões, Pedro Ferreira, Elisabete Dinora Caldas de Freitas, João Pedro F. Trovão, João P. Ferreira and Nuno Miguel Fonseca Ferreira
Appl. Sci. 2025, 15(13), 7235; https://doi.org/10.3390/app15137235 - 27 Jun 2025
Viewed by 468
Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this [...] Read more.
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 5486 KiB  
Article
The Development of Teleoperated Driving to Cooperate with the Autonomous Driving Experience
by Nuksit Noomwongs, Krit T.Siriwattana, Sunhapos Chantranuwathana and Gridsada Phanomchoeng
Automation 2025, 6(3), 26; https://doi.org/10.3390/automation6030026 - 25 Jun 2025
Viewed by 664
Abstract
Autonomous vehicles are increasingly being adopted, with manufacturers competing to enhance automation capabilities. While full automation eliminates human input, lower levels still require driver intervention under specific conditions. This study presents the design and development of a prototype vehicle featuring both low- and [...] Read more.
Autonomous vehicles are increasingly being adopted, with manufacturers competing to enhance automation capabilities. While full automation eliminates human input, lower levels still require driver intervention under specific conditions. This study presents the design and development of a prototype vehicle featuring both low- and high-level control systems, integrated with a 5G-based teleoperation interface that enables seamless switching between autonomous and remote-control modes. The system includes a malfunction surveillance unit that monitors communication latency and obstacle conditions, triggering a hardware-based emergency braking mechanism when safety thresholds are exceeded. Field experiments conducted over four test phases around Chulalongkorn University demonstrated stable performance under both driving modes. Mean lateral deviations ranged from 0.19 m to 0.33 m, with maximum deviations up to 0.88 m. Average end-to-end latency was 109.7 ms, with worst-case spikes of 316.6 ms. The emergency fallback system successfully identified all predefined fault conditions and responded with timely braking. Latency-aware stopping analysis showed an increase in braking distance from 1.42 m to 2.37 m at 3 m/s. In scenarios with extreme latency (>500 ms), the system required operator steering input or fallback to autonomous mode to avoid obstacles. These results confirm the platform’s effectiveness in real-world teleoperation over public 5G networks and its potential scalability for broader deployment. Full article
(This article belongs to the Section Smart Transportation and Autonomous Vehicles)
Show Figures

Figure 1

26 pages, 6142 KiB  
Article
Development of Structural Model of Fiber Metal Laminate Subjected to Low-Velocity Impact and Validation by Tests
by Burhan Cetinkaya, Erdem Yilmaz, İbrahim Özkol, İlhan Şen and Tamer Saracyakupoglu
J. Compos. Sci. 2025, 9(7), 322; https://doi.org/10.3390/jcs9070322 - 23 Jun 2025
Viewed by 536
Abstract
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because [...] Read more.
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because of its high impact resistance and excellent fatigue and damage tolerance properties, GLARE is used in different aircraft parts, such as the wing, fuselage, empennage skins, and cargo floors. In this study, a survey was carried out and a low-velocity impact model for GLARE materials was developed using the ABAQUS (2014) version V6.14 software and compared with the results of low-velocity impact tests performed according to the American Society for Testing and Materials (ASTM) D7136 standard. This article introduces a novel integrated approach that combines detailed numerical modeling with experimental validation of GLARE 4A FMLs under low-velocity impact. Leveraging ABAQUS, a robust FEM featuring explicit analysis, cohesive resin interfaces, and custom VUMAT subroutines was developed to accurately simulate energy absorption, dent depth, and delamination. The precise model’s predictions align well with test results performed according to ASTM D7136 standards, exhibiting less than a 0.1% deviation in the displacement (dent depth)–time response, along with deviations of 4.3% in impact energy–time and 5.2% in velocity–time trends at 5.5 ms. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

18 pages, 683 KiB  
Review
Next-Generation Biomaterials for Load-Bearing Tissue Interfaces: Sensor-Integrated Scaffolds and Mechanoadaptive Constructs for Skeletal Regeneration
by Rahul Kumar, Kyle Sporn, Pranay Prabhakar, Phani Paladugu, Akshay Khanna, Alex Ngo, Chirag Gowda, Ethan Waisberg, Ram Jagadeesan, Nasif Zaman and Alireza Tavakkoli
J. Funct. Biomater. 2025, 16(7), 232; https://doi.org/10.3390/jfb16070232 - 23 Jun 2025
Viewed by 901
Abstract
Advancements in load-bearing tissue repair increasingly demand biomaterials that not only support structural integrity but also interact dynamically with the physiological environment. This review examines the latest progress in smart biomaterials designed for skeletal reconstruction, with emphasis on mechanoresponsive scaffolds, bioactive composites, and [...] Read more.
Advancements in load-bearing tissue repair increasingly demand biomaterials that not only support structural integrity but also interact dynamically with the physiological environment. This review examines the latest progress in smart biomaterials designed for skeletal reconstruction, with emphasis on mechanoresponsive scaffolds, bioactive composites, and integrated microsensors for real-time monitoring. We explore material formulations that enhance osseointegration, resist micromotion-induced loosening, and modulate inflammatory responses at the bone–implant interface. Additionally, we assess novel fabrication methods—such as additive manufacturing and gradient-based material deposition—for tailoring stiffness, porosity, and degradation profiles to match host biomechanics. Special attention is given to sensor-augmented platforms capable of detecting mechanical strain, biofilm formation, and early-stage implant failure. Together, these technologies promise a new class of bioresponsive, diagnostic-capable constructs that extend beyond static support to become active agents in regenerative healing and post-operative monitoring. This multidisciplinary review integrates insights from materials science, mechanobiology, and device engineering to inform the future of implantable systems in skeletal tissue repair. Full article
Show Figures

Figure 1

Back to TopTop