Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,484)

Search Parameters:
Keywords = design of electric drives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Viewed by 213
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 143
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 - 1 Aug 2025
Viewed by 145
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

20 pages, 2321 KiB  
Article
Electric Vehicle Energy Management Under Unknown Disturbances from Undefined Power Demand: Online Co-State Estimation via Reinforcement Learning
by C. Treesatayapun, A. J. Munoz-Vazquez, S. K. Korkua, B. Srikarun and C. Pochaiya
Energies 2025, 18(15), 4062; https://doi.org/10.3390/en18154062 - 31 Jul 2025
Viewed by 251
Abstract
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of [...] Read more.
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of the system model or a complete dataset across the full operating domain. In contrast to conventional reinforcement learning approaches, this method avoids the issue of high dimensionality and does not depend on extensive offline training. Robustness is demonstrated by treating uncertain and time-varying elements, including power consumption from air conditioning systems, variations in road slope, and passenger-related demands, as unknown disturbances. The desired state of charge is defined as a reference trajectory, and the control input is computed while ensuring compliance with all operational constraints. Validation results based on a combined driving profile confirm the effectiveness of the proposed controller in maintaining the battery charge, reducing fluctuations in fuel cell power output, and ensuring reliable performance under practical conditions. Comparative evaluations are conducted against two benchmark controllers: one designed to maintain a constant state of charge and another based on a soft actor–critic learning algorithm. Full article
(This article belongs to the Special Issue Forecasting and Optimization in Transport Energy Management Systems)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 270
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

18 pages, 16222 KiB  
Article
Enhanced Photoelectrochemical Performance of 2D Bi2O3/TiO2 Heterostructure Film by Bi2S3 Surface Modification and Broadband Photodetector Application
by Lai Liu and Huizhen Yao
Materials 2025, 18(15), 3528; https://doi.org/10.3390/ma18153528 - 28 Jul 2025
Viewed by 285
Abstract
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated [...] Read more.
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated and functioned as the photoelectrode of photoelectrochemical devices. The designed Bi2S3/Bi2O3/TiO2 photoelectrochemical photodetector possesses a broad light detection spectrum ranging from 400 to 900 nm and impressive self-powered characteristics. At 0 V bias, the device exhibits an on/off current ratio of approximately 1.3 × 106. It achieves a commendable detectivity of 5.7 × 1013 Jones as subjected to a 0.8 V bias potential, outperforming both bare TiO2 and Bi2O3/TiO2 photoelectrochemical devices. Moreover, the Bi2S3/Bi2O3/TiO2 photoelectrode film shows great promise in pollutant decomposition, achieving nearly 97.7% degradation efficiency within 60 min. The appropriate band energy alignment and the presence of an internal electric field at the interface of the Bi2S3/Bi2O3/TiO2 film serve as a potent driving force for the separation and transport of photogenerated carriers. These findings suggest that the Bi2S3/Bi2O3/TiO2 heterojunction film could be a viable candidate as a photoelectrode material for the development of high-performance photoelectrochemical optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

18 pages, 3583 KiB  
Article
Coordinated Slip Ratio and Yaw Moment Control for Formula Student Electric Racing Car
by Yuxing Bai, Weiyi Kong, Liguo Zang, Weixin Zhang, Chong Zhou and Song Cui
World Electr. Veh. J. 2025, 16(8), 421; https://doi.org/10.3390/wevj16080421 - 26 Jul 2025
Viewed by 197
Abstract
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and [...] Read more.
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and the need for adaptive control solutions, a multi-mode adaptive drive distribution strategy for four-wheel-drive Formula Student electric racing cars is proposed in this study to meet specialized operational demands. Based on the dynamic characteristics of standardized test scenarios (e.g., straight-line acceleration and figure-eight loop), two control modes are designed: slip-ratio-based anti-slip control for longitudinal dynamics and direct yaw moment control for lateral stability. A CarSim–Simulink co-simulation platform is established, with test scenarios conforming to competition standards, including variable road adhesion coefficients (μ is 0.3–0.9) and composite curves. Simulation results indicate that, compared to conventional PID control, the proposed strategy reduces the peak slip ratio to the optimal range of 18% during acceleration and enhances lateral stability in the figure-eight loop, maintaining the sideslip angle around −0.3°. These findings demonstrate the potential for significant improvements in both performance and safety, offering a scalable framework for future developments in racing vehicle control systems. Full article
Show Figures

Graphical abstract

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Viewed by 327
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 4344 KiB  
Article
Modeling of a C-Frame Reluctance-Enhanced Shaded-Pole Induction Motor—Study of Shaded-Coil Design
by Selma Čorović and Damijan Miljavec
Actuators 2025, 14(8), 368; https://doi.org/10.3390/act14080368 - 24 Jul 2025
Viewed by 248
Abstract
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in [...] Read more.
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in the applications where the variable speed and high starting torque are not of utmost importance, in spite of the fact that they are characterized by inferior efficiency, power factor and starting torque compared to their single-phase counterparts. They are equipped with auxiliary massive copper coils at the stator side, which makes them self-starting, and strongly influence the motor characteristics. This study deals with the numerical modeling and analysis of a shaded-pole induction motor with a C-shaped stator frame. The analysis was performed using 2D finite element-based transient magnetic numerical modeling. The primary objective was to investigate the influence of the number and size of the auxiliary shaded coils on the output torque speed characteristic. We explored the possibility of reducing the amount of material used while preserving the crucial/nominal properties of the motor. Our results have important implications in manufacturing simplification, which may be important for the eco-design of small motors and actuators, including their recycling and/or reuse process. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Viewed by 315
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 396
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

19 pages, 3620 KiB  
Article
Computerised Method of Multiparameter Optimisation of Predictive Control Algorithms for Asynchronous Electric Drives
by Grygorii Diachenko, Serhii Semenov, Katarzyna Marczak, Gernot Schullerus and Ivan Laktionov
Appl. Sci. 2025, 15(14), 8014; https://doi.org/10.3390/app15148014 - 18 Jul 2025
Viewed by 225
Abstract
This article addresses the problem of increasing the energy efficiency of electromechanical systems driven by asynchronous electric drives. In this context, one of the promising areas is the application of a predictive control strategy that allows for reducing energy losses in dynamic modes [...] Read more.
This article addresses the problem of increasing the energy efficiency of electromechanical systems driven by asynchronous electric drives. In this context, one of the promising areas is the application of a predictive control strategy that allows for reducing energy losses in dynamic modes of electric drives. This paper proposes a computerised method for the multiparameter optimisation of predictive control algorithms for asynchronous electric drives. A computer model was designed in MATLAB and Simulink R2024a based on the gradient-based model predictive control strategy. A series of simulation experiments were carried out by varying the sampling step, number of iterations, prediction horizon, loss function parameters, and maximum linear search step to identify their impact on the control quality indicators. A taxonomic approach was used for multi-criteria optimisation. The study results show that the optimal setting of the algorithmic parameters improves the accuracy of task processing, reduces energy consumption, and reduces computation time. The results obtained can be used to design and operate energy-efficient control systems for asynchronous electric drives in industrial and transport applications. Prospects for further research will focus on hybrid intelligent architectures to enhance adaptability and integration into automated systems. Full article
(This article belongs to the Special Issue Power Electronics and Motor Control)
Show Figures

Figure 1

27 pages, 481 KiB  
Article
Advancing Sustainable Urban Mobility in Oman: Unveiling the Predictors of Electric Vehicle Adoption Intentions
by Wafa Said Al-Maamari, Emad Farouk Saleh and Suliman Zakaria Suliman Abdalla
World Electr. Veh. J. 2025, 16(7), 402; https://doi.org/10.3390/wevj16070402 - 17 Jul 2025
Viewed by 331
Abstract
The global shift toward sustainable transportation has gained increasing interest, promoting the use of electric vehicles (EVs) as an environmentally friendly alternative to conventional vehicles as a result of a complex interaction between economic incentives, social dynamics, and environmental imperatives. This study is [...] Read more.
The global shift toward sustainable transportation has gained increasing interest, promoting the use of electric vehicles (EVs) as an environmentally friendly alternative to conventional vehicles as a result of a complex interaction between economic incentives, social dynamics, and environmental imperatives. This study is based on the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) to understand the key factors influencing consumers’ intentions in the Sultanate of Oman toward adopting electric vehicles. It is based on a mixed methodology combining quantitative data from a questionnaire of 448 participants, analyzed using ordinal logistic regression, with qualitative thematic analysis of in-depth interviews with 18 EV owners. Its results reveal that performance expectations, trust in EV technology, and social influence are the strongest predictors of EV adoption intentions in Oman. These findings suggest that some issues related to charging infrastructure, access to maintenance services, and cost-benefit ratio are key considerations that influence consumers’ intention to accept and use EVs. Conversely, recreational motivation is not a statistically significant factor, which suggests that consumers focus on practical and economic motivations when deciding to adopt EVs rather than on their enjoyment of driving the vehicle. The findings of this study provide valuable insights for decision-makers and practitioners to understand public perceptions of electric vehicles, enabling them to design effective strategies to promote the adoption of these vehicles in the emerging sustainable transportation market of the future. Full article
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 370
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

Back to TopTop