Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = desalination system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 89
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 268
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 2497 KiB  
Article
Sustainable Solar Desalination: Experimental Predictive Control with Integrated LCA and Techno-Economic Evaluation
by Mishal Alsehli
Processes 2025, 13(8), 2364; https://doi.org/10.3390/pr13082364 - 25 Jul 2025
Viewed by 294
Abstract
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial [...] Read more.
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial sustainability, the study integrates this control logic with a full Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA). Field testing in a high-temperature, arid region demonstrated strong performance, achieving a Global Warming Potential (GWP) of 1.80 kg CO2-eq/m3 and a Levelized Cost of Water (LCOW) of $0.88/m3. Environmental impacts were quantified using OpenLCA and ecoinvent datasets, covering climate change, acidification, and eutrophication categories. The TEA confirmed economic feasibility, reporting a positive Net Present Value (NPV) and an Internal Rate of Return (IRR) exceeding 11.5% over a 20-year lifespan. Sensitivity analysis showed that forecast precision and TES design strongly influence both environmental and economic outcomes. The integration of intelligent control with simplified thermal storage offers a scalable, cost-effective solution for off-grid freshwater production in solar-rich regions. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Graphical abstract

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 336
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 722 KiB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Viewed by 305
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 316
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

14 pages, 1281 KiB  
Article
Membrane Separation for the Treatment of LiBr + LiCl Brines and Their Application
by Jonathan Ibarra-Bahena, Ulises Dehesa-Carrasco, Yuridiana Rocio Galindo-Luna, Iván Leonardo Medina-Caballero and Wilfrido Rivera
Membranes 2025, 15(8), 219; https://doi.org/10.3390/membranes15080219 - 23 Jul 2025
Viewed by 295
Abstract
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous [...] Read more.
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous saline solution. However, since sorption systems utilize high salt concentration solutions, conventional desalination techniques such as reverse osmosis are not suitable. In this regard, membrane devices can enhance heat and mass transfer processes in compact sizes. In the present paper, a membrane device with an air gap membrane distillation configuration was evaluated, operating with the H2O/LiBr + LiCl solution (with a mass ratio of 2:1, LiBr:LiCl), to assess the produced distilled water flux. Among the operating parameters analyzed (solution temperature, cooling water temperature, salt concentration, and membrane pore size), solution temperature had the highest impact on the distilled water flux, while the membrane pore size had the lowest impact. The maximum distilled water flux was 7.63 kg/h·m2 with a solution temperature of 95.3 °C, a cooling water temperature of 25.1 °C, a salt concentration of 44.99% w/w, and a membrane pore size of 0.45 μm. On the other hand, the minimum distilled water flux was 0.28 kg/h·m2 with a solution temperature of 80.3 °C, a cooling water temperature of 40.1 °C, a salt concentration of 50.05% w/w, and with a membrane pore size of 0.22 μm. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 469
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

19 pages, 1567 KiB  
Review
Design Efficiency: A Critical Perspective on Testing Methods for Solar-Driven Photothermal Evaporation and Photocatalysis
by Hady Hamza, Maria Vittoria Diamanti, Vanni Lughi, Sergio Rossi and Daniela Meroni
Nanomaterials 2025, 15(14), 1121; https://doi.org/10.3390/nano15141121 - 18 Jul 2025
Viewed by 377
Abstract
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified [...] Read more.
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified water. Despite advancements, challenges persist, particularly in addressing volatile contaminants and biofouling, which can compromise long-term performance. The integration of photocatalysts into solar-driven interfacial evaporators has been proposed as a solution, enabling pollutant degradation and microbial inactivation while enhancing water transport and self-cleaning properties. This review critically assesses testing methodologies for solar-driven interfacial evaporators incorporating both photothermal and photocatalytic functions. While previous studies have examined materials and system design, the added complexity of photocatalysis necessitates new testing approaches. First, solar still setups are analyzed, particularly concentrating on the selection of materials and geometry for the transparent cover and water-collecting surfaces. Then, performance evaluation tests are discussed, with focus on the types of tested pollutants and analytical techniques. Finally, key challenges are presented, providing insights for future advancements in sustainable water purification. Full article
(This article belongs to the Special Issue Degradation of Pollutants by Nanostructured Photocatalysts)
Show Figures

Graphical abstract

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Viewed by 447
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

43 pages, 5558 KiB  
Review
A Comprehensive Review of Permeate Gap Membrane Distillation: Modelling, Experiments, Applications
by Eliza Rupakheti, Ravi Koirala, Sara Vahaji, Shruti Nirantar and Abhijit Date
Sustainability 2025, 17(14), 6294; https://doi.org/10.3390/su17146294 - 9 Jul 2025
Viewed by 418
Abstract
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key [...] Read more.
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key challenges such as temperature and concentration polarization. Various optimisation strategies, including Response Surface Morphology (RSM), Differential Evolution techniques, and Computational Fluid Dynamics (CFD) modelling, are explored to enhance PGMD performance. The study further discusses the latest advancements in system design, highlighting optimal configurations and the integration of PGMD with renewable energy sources. Factors influencing PGMD performance, such as operational parameters (flow rates, temperature, and feed concentration) and physical parameters (gap width, membrane properties, and cooling plate conductivity), are systematically analysed. Additionally, the techno-economic feasibility of PGMD for large-scale freshwater production is evaluated, with a focus on cost reduction strategies, energy efficiency, and hybrid system innovations. Finally, this review outlines the current limitations and future research directions for PGMD, emphasising novel system modifications, improved heat recovery techniques, and potential industrial applications. By consolidating recent advancements and identifying key challenges, this paper aims to guide future research and facilitate the broader adoption of PGMD in sustainable desalination and water purification processes. Full article
Show Figures

Figure 1

23 pages, 8106 KiB  
Article
Study on the Flexible Scheduling Strategy of Water–Electricity–Hydrogen Systems in Oceanic Island Groups Enabled by Hydrogen-Powered Ships
by Qiang Wang, Binbin Long and An Zhang
Energies 2025, 18(14), 3627; https://doi.org/10.3390/en18143627 - 9 Jul 2025
Viewed by 334
Abstract
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), [...] Read more.
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), and battery system (BS) in consuming surplus renewable energy on resource islands are analyzed. The variable-efficiency operation characteristics of the SDU and PEMEL are established, and the effect of battery life loss is also taken into account. Second, a spatio-temporal model for the multi-rate hydrogen-powered ship is proposed to incorporate speed adjustment into the system optimization framework for flexible resource transfer among islands. Finally, with the goal of minimizing the total cost of the system, a flexible water–electricity–hydrogen hybrid resource transfer model is constructed, and a certain island group in the South China Sea is used as an example for simulation and analysis. The results show that the proposed scheduling strategy can effectively reduce energy loss, promote renewable energy absorption, and improve the flexibility of resource transfer. Full article
(This article belongs to the Special Issue Hybrid-Renewable Energy Systems in Microgrids)
Show Figures

Figure 1

36 pages, 5746 KiB  
Systematic Review
Decentralized Renewable-Energy Desalination: Emerging Trends and Global Research Frontiers—A Comprehensive Bibliometric Review
by Roger Pimienta Barros, Arturo Fajardo and Jaime Lara-Borrero
Water 2025, 17(14), 2054; https://doi.org/10.3390/w17142054 - 9 Jul 2025
Viewed by 707
Abstract
Decentralized desalination systems driven by renewable energy sources have surfaced as a feasible way to alleviate water scarcity in arid and rural areas. This bibliometric study aims to clarify the research trends, conceptual frameworks, and cooperative dynamics in the scientific literature on decentralized [...] Read more.
Decentralized desalination systems driven by renewable energy sources have surfaced as a feasible way to alleviate water scarcity in arid and rural areas. This bibliometric study aims to clarify the research trends, conceptual frameworks, and cooperative dynamics in the scientific literature on decentralized renewable-powered desalination techniques. Using a thorough search approach, 1354 papers were found. Duplicates, thematically unrelated works, and entries with poor information were removed using the PRISMA 2020 framework. A selected 832 relevant papers from a filtered dataset were chosen for in-depth analysis. Quantitative measures were obtained by means of Bibliometrix; network visualisation was obtained by means of VOSviewer (version 1.6.19) and covered co-authorship, keyword co-occurrence, and citation structures. Over the previous 20 years, the data show a steady rise in academic production, especially in the fields of environmental science, renewable energy engineering, and water treatment technologies. Author keyword co-occurrence mapping revealed strong theme clusters centred on solar stills, thermoelectric modules, reverse osmosis, and off-grid systems. Emphasizing current research paths and emerging subject borders, this paper clarifies the intellectual and social structure of the field. The outcomes are expected to help policy creation, cooperative projects, and strategic planning meant to hasten innovation in sustainable and decentralized water desalination. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Graphical abstract

28 pages, 3292 KiB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Viewed by 766
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

25 pages, 3103 KiB  
Article
Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
by Mohammadreza Najaftomaraei, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi and Hoseyn Sayyaadi
Water 2025, 17(13), 1981; https://doi.org/10.3390/w17131981 - 1 Jul 2025
Viewed by 439
Abstract
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized [...] Read more.
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized costs of electricity (LCOE) and water (LCOW) while reducing grid dependence. The city studied is Zahedan, Iran, which has high potential in renewable energy. A multi-objective optimization approach using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a popular evolutionary algorithm, is employed to determine the optimal number of PV panels and wind turbines. The results show that the hybrid system outperforms single-source configurations, supplying 34.79 MWh of electricity and 34.19 m3 of desalinated water, while achieving the lowest LCOE (2.73 cent/kWh−1) and LCOW (35.33 cent/m−3). The hybrid scenario covers 65.49% of the electricity demand and 58.54% of the water demand, significantly reducing reliance on the grid compared to the PV and WT scenarios. Additionally, it ensures greater energy stability by leveraging the complementary nature of PV and WT. These findings highlight the techno-economic feasibility of hybrid renewable-powered desalination as a cost-effective and sustainable solution. Future research should focus on integrating energy storage to further enhance efficiency and minimize grid dependency. Full article
Show Figures

Figure 1

Back to TopTop