Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,349)

Search Parameters:
Keywords = derivation technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1472 KiB  
Review
Social Acceptability of Waste-to-Energy: Research Hotspots, Technologies, and Factors
by Casper Boongaling Agaton and Marween Joshua A. Santos
Clean Technol. 2025, 7(3), 63; https://doi.org/10.3390/cleantechnol7030063 (registering DOI) - 24 Jul 2025
Abstract
Waste-to-energy (WtE) are clean technologies that support a circular economy by providing solutions to managing non-recyclable waste while generating alternative energy sources. Despite the promising benefits, technology adoption is challenged by financing constraints, technical maturity, environmental impacts, supporting policies, and public acceptance. A [...] Read more.
Waste-to-energy (WtE) are clean technologies that support a circular economy by providing solutions to managing non-recyclable waste while generating alternative energy sources. Despite the promising benefits, technology adoption is challenged by financing constraints, technical maturity, environmental impacts, supporting policies, and public acceptance. A growing number of studies analyzed the acceptability of WtE and identified the factors affecting the adoption of WtE technologies. This study aims to analyze these research hotspots, technologies, and acceptability factors by combining bibliometric and systematic analyses. An initial search from the Web of Science and Scopus databases identified 817 unique documents, and the refinement resulted in 109 for data analysis. The results present a comprehensive overview of the state-of-the-art, providing researchers a basis for future research directions. Among the WtE technologies in the reviewed literature are incineration, anaerobic digestion, gasification, and pyrolysis, with limited studies about refuse-derived fuel and landfilling with gas recovery. The identified common factors include perceived risks, trust, attitudes, perceived benefits, “Not-In-My-BackYard” (NIMBY), awareness, and knowledge. Moreover, the findings present valuable insights for policymakers, practitioners, and WtE project planners to support WtE adoption while achieving sustainable, circular, and low-carbon economies. Full article
Show Figures

Figure 1

20 pages, 262 KiB  
Article
Comics as Heritage: Theorizing Digital Futures of Vernacular Expression
by Ilan Manouach and Anna Foka
Heritage 2025, 8(8), 295; https://doi.org/10.3390/heritage8080295 (registering DOI) - 24 Jul 2025
Abstract
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown [...] Read more.
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown as inadequate for born-digital works like comics, which derive meaning from technological infrastructure, dynamic platforms, and ongoing community interaction rather than static material forms. Drawing on heritage futures and digital materiality theories, the authors argue that digital comics exemplify "temporal authenticity," evolving through continual transformation and algorithmic curation. The paper details how platform recommendation systems and analytics directly shape which comics achieve cultural visibility and preservation, while community-driven initiatives—such as The Flashpoint Archive—demonstrate effective models for holistic, grassroots digital preservation beyond institutional reach. Ultimately, the study calls for new theoretical and practical approaches to heritage, recognizing digital comics as both cultural artifacts and dynamic, platform-specific vernacular expressions. Full article
(This article belongs to the Section Digital Heritage)
16 pages, 1206 KiB  
Article
Footprint of Domestic Processing on Safety and Functional Properties of Italian Black Garlic
by Davide Addazii, Chiara Cevoli, Flavia Casciano, Federico Ferioli, Tullia Gallina Toschi, Andrea Gianotti and Lorenzo Nissen
Foods 2025, 14(15), 2595; https://doi.org/10.3390/foods14152595 (registering DOI) - 24 Jul 2025
Abstract
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the [...] Read more.
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the present work is to characterize the functional properties of domestically produced black garlic. In fact, this study examines the domestic maturation of fresh garlic bulbs into black garlic of two Italian varieties, focusing on microbial growth, antimicrobial properties, prebiotic activity, volatile organic compounds, mechanical resistance, brown intensity, pH, and Aw. Results show that domestic processes are microbiologically and chemically safe and generate black garlic products with functional attributes such as prebiotic activity and the presence of health-related bioactive compounds, also developing superior technological performance. These findings enhance the understanding of black garlic culinary practices, leveraging gastronomic preparations for the development of healthier and safer food products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

12 pages, 6938 KiB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Figure 1

32 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

25 pages, 1299 KiB  
Article
Quantifying Automotive Lidar System Uncertainty in Adverse Weather: Mathematical Models and Validation
by Behrus Alavi, Thomas Illing, Felician Campean, Paul Spencer and Amr Abdullatif
Appl. Sci. 2025, 15(15), 8191; https://doi.org/10.3390/app15158191 - 23 Jul 2025
Abstract
Lidar technology is a key sensor for autonomous driving due to its precise environmental perception. However, adverse weather and atmospheric conditions involving fog, rain, snow, dust, and smog can impair lidar performance, leading to potential safety risks. This paper introduces a comprehensive methodology [...] Read more.
Lidar technology is a key sensor for autonomous driving due to its precise environmental perception. However, adverse weather and atmospheric conditions involving fog, rain, snow, dust, and smog can impair lidar performance, leading to potential safety risks. This paper introduces a comprehensive methodology to simulate lidar systems under such conditions and validate the results against real-world experiments. Existing empirical models for the extinction and backscattering of laser beams are analyzed, and new models are proposed for dust storms and smog, derived using Mie theory. These models are implemented in the CARLA simulator and evaluated using Robot Operating System 2 (ROS 2). The simulation methodology introduced allowed the authors to set up test experiments replicating real-world conditions, to validate the models against real-world data available in the literature, and to predict the performance of the lidar system in all weather conditions. This approach enables the development of virtual test scenarios for corner cases representing rare weather conditions to improve robustness and safety in autonomous systems. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

17 pages, 4280 KiB  
Article
Precise Control of Following Motion Under Perturbed Gap Flow Field
by Jin Luo, Xiaodong Ruan, Jing Wang, Rui Su and Liang Hu
Actuators 2025, 14(8), 364; https://doi.org/10.3390/act14080364 - 23 Jul 2025
Abstract
The control of following motion under mesoscale gap flow fields has important applications. The flexible characteristics of the plant, wideband time-varying disturbances caused by the flow field, and requirements of high precision and low overshoot make achieving submicron level accuracy a significant challenge [...] Read more.
The control of following motion under mesoscale gap flow fields has important applications. The flexible characteristics of the plant, wideband time-varying disturbances caused by the flow field, and requirements of high precision and low overshoot make achieving submicron level accuracy a significant challenge for traditional control methods. This study adopts the control concept of Disturbance Observer Control (DOBC) and uses H mixed-sensitivity shaping technology to design a Q-filter. Simultaneously, multiple control techniques, such as high-order reference trajectory planning, Proportional-Integral-Derivative (PID) control, low-pass filtering, notch filtering, lead lag correction, and disturbance rejection filtering, are applied to obtain a control system with a high open-loop gain, sufficient phase margin, and stable closed-loop system. Compared to traditional control methods, the new method can increase the open-loop gain by 15 times and the open-loop bandwidth by 8%. We even observed a 150-time increase of the open-loop gain at the peak frequency. Ultimately, the method achieves submicron level accuracy, making important advances in solving the control problem of semiconductor equipment. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

31 pages, 4621 KiB  
Perspective
Current Flow in Nerves and Mitochondria: An Electro-Osmotic Approach
by Robert S. Eisenberg
Biomolecules 2025, 15(8), 1063; https://doi.org/10.3390/biom15081063 - 22 Jul 2025
Abstract
The electrodynamics of current provide much of our technology, from telegraphs to the wired infrastructure powering the circuits of our electronic technology. Current flow is analyzed by its own rules that involve the Maxwell Ampere law and magnetism. Electrostatics does not involve magnetism, [...] Read more.
The electrodynamics of current provide much of our technology, from telegraphs to the wired infrastructure powering the circuits of our electronic technology. Current flow is analyzed by its own rules that involve the Maxwell Ampere law and magnetism. Electrostatics does not involve magnetism, and so current flow and electrodynamics cannot be derived from electrostatics. Practical considerations also prevent current flow from being analyzed one charge at a time. There are too many charges, and far too many interactions to allow computation. Current flow is essential in biology. Currents are carried by electrons in mitochondria in an electron transport chain. Currents are carried by ions in nerve and muscle cells. Currents everywhere follow the rules of current flow: Kirchhoff’s current law and its generalizations. The importance of electron and proton flows in generating ATP was discovered long ago but they were not analyzed as electrical currents. The flow of protons and transport of electrons form circuits that must be analyzed by Kirchhoff’s law. A chemiosmotic theory that ignores the laws of current flow is incorrect physics. Circuit analysis is easily applied to short systems like mitochondria that have just one internal electrical potential in the form of the Hodgkin Huxley Katz (HHK) equation. The HHK equation combined with classical descriptions of chemical reactions forms a computable model of cytochrome c oxidase, part of the electron transport chain. The proton motive force is included as just one of the components of the total electrochemical potential. Circuit analysis includes its role just as it includes the role of any other ionic current. Current laws are now needed to analyze the flow of electrons and protons, as they generate ATP in mitochondria and chloroplasts. Chemiosmotic theory must be replaced by an electro-osmotic theory of ATP production that conforms to the Maxwell Ampere equation of electrodynamics while including proton movement and the proton motive force. Full article
(This article belongs to the Special Issue Advances in Cellular Biophysics: Transport and Mechanics)
Show Figures

Figure 1

24 pages, 2663 KiB  
Review
An Updated Perspective on the Aromatic Metabolic Pathways of Plant-Derived Homocyclic Aromatic Compounds in Aspergillus niger
by Ronnie J. M. Lubbers
Microorganisms 2025, 13(8), 1718; https://doi.org/10.3390/microorganisms13081718 - 22 Jul 2025
Abstract
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest [...] Read more.
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest renewable source of aromatic compounds, though its degradation remains challenging. Lignin can be chemically degraded through oxidation, acid hydrolysis or solvolysis. As an alternative, microorganisms, including fungi, could offer a sustainable alternative for breaking down lignin. The aromatic compounds released from lignin, by either microbial, chemical or enzymatic degradation, can be used by microorganisms to produce valuable compounds. Fungi possess unique enzymes capable of converting aromatic compounds derived from lignin or other sources into chemical building blocks that can be used in several industries. However, their aromatic metabolic pathways are poorly studied compared to bacterial systems. In the past, only a handful of genes and enzymes involved in the aromatic metabolic pathways had been identified. Recent advances in genomics, proteomics, and metabolic engineering are helping to reveal these metabolic pathways and identify the involved genes. This review highlights recent progress in understanding fungal aromatic metabolism, focusing on how Aspergillus niger converts plant-derived aromatic compounds into potentially useful products and the versatility of aromatic metabolism within the Aspergillus genus. Addressing the current knowledge gaps in terms of fungal pathways could unlock their potential for use in sustainable technologies, promoting eco-friendly production of chemical building blocks from renewable resources or bioremediation. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

20 pages, 1630 KiB  
Review
Fractional Flow Reserve from Coronary CT: Evidence, Applications, and Future Directions
by Arta Kasaeian, Mohadese Ahmadzade, Taylor Hoffman, Mohammad Ghasemi-Rad and Anoop Padoor Ayyappan
J. Cardiovasc. Dev. Dis. 2025, 12(8), 279; https://doi.org/10.3390/jcdd12080279 - 22 Jul 2025
Abstract
Coronary computed tomography angiography (CCTA) has emerged as the leading noninvasive imaging modality for the assessment of coronary artery disease (CAD), offering high-resolution visualization of the coronary anatomy and plaque characterization. The development of fractional flow reserve derived from CCTA (FFR-CT) has further [...] Read more.
Coronary computed tomography angiography (CCTA) has emerged as the leading noninvasive imaging modality for the assessment of coronary artery disease (CAD), offering high-resolution visualization of the coronary anatomy and plaque characterization. The development of fractional flow reserve derived from CCTA (FFR-CT) has further transformed the diagnostic landscape by enabling the simultaneous evaluation of both anatomical stenosis and lesion-specific ischemia. FFR-CT has demonstrated diagnostic accuracy comparable to invasive FFR. The combined use of CCTA and FFR-CT is now pivotal in a broad range of clinical scenarios, including the evaluation of stable and acute chest pain, assessment of high-risk and complex plaque features, and preoperative planning. As evidence continues to mount, CCTA and FFR-CT are positioned to become the primary gatekeepers to the cardiac catheterization laboratory, potentially reducing the number of unnecessary invasive procedures. This review highlights the growing clinical utility of FFR-CT, its integration with advanced plaque imaging, and the future potential of these technologies in redefining the management of CAD, while also acknowledging current limitations, including image quality requirements, cost, and access. Full article
Show Figures

Figure 1

11 pages, 2547 KiB  
Article
Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging
by Ruka Kobashi, Daichi Anabuki, Hibiki Yano, Yuto Mukaihara, Akira Nishiyama, Kenji Wada, Akiko Nishimura and Ichiro Ishimaru
Sensors 2025, 25(15), 4537; https://doi.org/10.3390/s25154537 - 22 Jul 2025
Abstract
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an [...] Read more.
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an external light source, our passive approach harnesses the body’s own emission, thereby enabling safe, long-term monitoring. In this study, we successfully demonstrated the simultaneous, non-invasive measurements of blood glucose and lactate levels of the human body using this method. The measurements, conducted over approximately 80 min, provided emittance data derived from mid-infrared passive spectroscopy that showed a temporal correlation with values obtained using conventional blood collection sensors. Furthermore, to evaluate localized metabolic changes, we performed k-means clustering analysis of the spectral data obtained from the upper arm. This enabled visualization of time-dependent lactate responses with spatial resolution. These results demonstrate the feasibility of multi-component monitoring without physical contact or biological sampling. The proposed technique holds promise for translation to medical diagnostics, continuous health monitoring, and sports medicine, in addition to facilitating the development of next-generation healthcare technologies. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025)
Show Figures

Figure 1

22 pages, 916 KiB  
Article
A Model Based on Variable Weight Theory and Interval Grey Clustering to Evaluate the Competency of BIM Construction Engineers
by Shaonan Sun, Yiming Zuo, Chunlu Liu, Xiaoxiao Yao, Ailing Wang and Zhihui Wang
Buildings 2025, 15(14), 2574; https://doi.org/10.3390/buildings15142574 - 21 Jul 2025
Viewed by 84
Abstract
Building information modeling (BIM) has emerged as a fundamental component of Industry 4.0 recently. BIM construction engineers (BCEs) play a pivotal role in implementing BIM, and their personal competency is crucial to the successful application and promotion of BIM technology. Existing research on [...] Read more.
Building information modeling (BIM) has emerged as a fundamental component of Industry 4.0 recently. BIM construction engineers (BCEs) play a pivotal role in implementing BIM, and their personal competency is crucial to the successful application and promotion of BIM technology. Existing research on evaluating BIM capabilities has mainly focused on the enterprise or project level, neglecting individual-level analysis. Therefore, this study aims to establish an individual-level competency evaluation model for BCEs. Firstly, the competency of BCEs was divided into five levels by referring to relevant standards and domestic and foreign research. Secondly, through the analysis of literature data and website data, the competency evaluation indicator system for BCEs was constructed, which includes four primary indicators and 27 secondary indicators. Thirdly, variable weight theory was used to optimize the weights determined by general methods and calculate the comprehensive weights of each indicator. Then the competency levels of BCEs were determined by the interval grey clustering method. To demonstrate the application of the proposed method, a case study from a Chinese enterprise was conducted. The main results derived from this case study are as follows: domain competencies have the greatest weight among the primary indicators; the C9-BIM model is the secondary indicator with the highest weight (ωj = 0.0804); and the competency level of the BCE is “Level 3”. These results are consistent with the actual situation of the enterprise. The proposed model in this study provides a comprehensive tool for evaluating BCEs’ competencies from an individual perspective, and offers guideline for BCEs to enhance their competencies in pursuing sustainable professional development. Full article
Show Figures

Figure 1

Back to TopTop