Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (242)

Search Parameters:
Keywords = deposition law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7393 KiB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 329
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

13 pages, 1532 KiB  
Article
Research on the Settling and Critical Carrying Velocity of Coal Fine in CBM Wells
by Xiaohui Xu, Ming Chi, Xiangyan Meng, Jiping Deng, Jiang Liu, Guoqing Han and Siyu Lai
Processes 2025, 13(7), 2289; https://doi.org/10.3390/pr13072289 - 18 Jul 2025
Viewed by 257
Abstract
The continuous deposition of coal fine in the well can lead to complex problems, such as pump blockage and reduced capacity. The traditional critical velocity model applicable to rigid spherical particles, such as sand grains and glass beads, finds it difficult to accurately [...] Read more.
The continuous deposition of coal fine in the well can lead to complex problems, such as pump blockage and reduced capacity. The traditional critical velocity model applicable to rigid spherical particles, such as sand grains and glass beads, finds it difficult to accurately predict the migration behavior of coal fine in the wellbore. Therefore, this study aims to reveal the sedimentation law of coal fine particles, establish a critical velocity prediction model applicable to pulverized coal, and provide a theoretical basis for effectively preventing pump blockage and capacity decline problems. This paper analyzes the particle characteristics of coal fine in different mining areas and conducts experiments on the static settling of coal fine particles and the critical transport velocity. The experimental results showed that the larger the mesh size of coal fine, the lower the static settling velocity of coal fine particles. The critical velocity of coal fine increased with the particle size and concentration of the coal fine particles, as well as with the increase of the pipe column inclination. A new empirical formula for calculating the critical velocity of coal fine particles was derived by considering the effects of the coal fine concentration and pipe inclination. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 8561 KiB  
Article
Ice Ice Maybe: Stream Hydrology and Hydraulic Processes During a Mild Winter in a Semi-Alluvial Channel
by Christopher Giovino, Jaclyn M. H. Cockburn and Paul V. Villard
Water 2025, 17(13), 1878; https://doi.org/10.3390/w17131878 - 24 Jun 2025
Viewed by 777
Abstract
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events [...] Read more.
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events and subsequent bed shear stress variability. Through winter 2024, six cross-sections over a ~100 m reach were monitored near-weekly to measure hydraulic geometry and velocity profiles. These data characterized channel processes and estimated bed shear stress with law of the wall. In this channel, velocity increased more rapidly than width or depth with rising discharge and influenced bed shear stress distribution. Bed shear stress magnitudes were highest (means ranged ~2–6 N/m2) and most variable over gravel beds compared to the exposed bedrock (means ranged ~0.05–2 N/m2). Through a rain-on-snow (ROS) event in late January, bed shear stress estimates decreased dramatically over the rougher gravel bed, despite minimal changes in water depth and velocity. Pebble counts before, during, and after the event, showed that the proportion of finer-sized particles (i.e., <5 cm) increased while median grain size did not vary. These observations align with findings from both flume and field studies and suggest that milder winters reduce gravel-bed roughness through finer-sized sediment deposition, altering sediment transport dynamics and affecting gravel habitat suitability. Additionally, limited ice-cover leads to lower bed shear stresses and thus finer-sized materials are deposited, further impacting gravel habitat suitability. Results highlight the importance of winter hydrologic variability in shaping channel processes and inform potential stream responses under future climate scenarios. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 9033 KiB  
Article
Design and Evaluation of a Novel Efficient Air-Assisted Hollow-Cone Electrostatic Nozzle
by Li Zhang, Zhi Li, Huaxing Chu, Qiaolin Chen, Yang Li and Xinghua Liu
Agriculture 2025, 15(12), 1293; https://doi.org/10.3390/agriculture15121293 - 16 Jun 2025
Viewed by 501
Abstract
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, [...] Read more.
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, this study designs and evaluates a novel air-assisted hydraulic-atomization hollow-cone electrostatic nozzle. First, the air-assisted hollow-cone nozzle was designed. High-speed imaging was then employed to obtain morphological parameters of the liquid film (length: 2.14 mm; width: 1.96 mm; and spray angle: 49.25°). Based on these parameters, an electric field simulation model of the electrostatic nozzle was established to analyze the influence of electrode parameters on the charging performance and identify the optimal parameter combination. Finally, feasibility and efficiency evaluation experiments were conducted on the designed electrostatic nozzle. The experimental results demonstrate that cross-sectional dimensions of the electrode exhibit a positive correlation with the surface charge density of the pesticide liquid film. In addition, optimal charging performance is obtained when the electrode plane coincides with the tangent plane of the liquid film leading edge. Based on these charging laws, the optimal electrode parameters were determined as follows: 2.0 × 2.0 mm cross-section with an electrode-to-nozzle tip distance of 3.8 mm. With these parameters, the nozzle achieved a droplet charge-to-mass ratio of 4.9 mC/kg at a charging voltage of 3.0 kV. These charged droplets achieved deposition coverages of 12.19%, 5.72%, and 5.91% on abaxial leaf surfaces in the upper, middle, and lower soybean canopies, respectively, which is a significant improvement in deposition uniformity. This study designed a novel air-assisted hollow-cone electrostatic nozzle, elucidated the optimization principles for annular induction electrodes, and achieved improved spraying performance. The findings contribute to enhanced pesticide application efficiency in crops, providing valuable theoretical guidance and technical references for electrostatic nozzle design and application. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 654
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

14 pages, 3042 KiB  
Article
Application of LiDAR Differentiation and a Modified Savage–Hutter Model to Analyze Co-Seismic Landslides: A Case Study of the 2024 Noto Earthquake, Japan
by Christopher Gomez and Danang Sri Hadmoko
Geosciences 2025, 15(5), 180; https://doi.org/10.3390/geosciences15050180 - 15 May 2025
Viewed by 715
Abstract
This study investigates co-seismic landslides triggered by the 1 January 2024 Mw 7.6 Noto Peninsula earthquake in Japan using LiDAR differentiation and a modified Savage–Hutter model. By analyzing pre- and post-earthquake high-resolution topographic data from 13 landslides in a geologically homogeneous area of [...] Read more.
This study investigates co-seismic landslides triggered by the 1 January 2024 Mw 7.6 Noto Peninsula earthquake in Japan using LiDAR differentiation and a modified Savage–Hutter model. By analyzing pre- and post-earthquake high-resolution topographic data from 13 landslides in a geologically homogeneous area of the peninsula, we characterized distinct landslide morphologies and dynamic behaviours. Our approach combined static morphological analysis from LiDAR data with simulations of granular flow mechanics to evaluate landslide mobility. Results revealed two distinct landslide types: those with clear erosion-deposition zonation and complex landslides with discontinuous topographic changes. Landslide dimensions followed power-law relationships (H = 7.51L0.50, R2 = 0.765), while simulations demonstrated that internal deformation capability (represented by the μ parameter) significantly influenced runout distances for landslides terminating on low-angle surfaces but had minimal impact on slope-confined movements. These findings highlight the importance of integrating both static topographic parameters and dynamic flow mechanics when assessing co-seismic landslide hazards, particularly for predicting potential runout distances on gentle slopes where human settlements are often located. Our methodology provides a framework for improved landslide susceptibility assessment and disaster risk reduction in seismically active regions. Full article
Show Figures

Figure 1

19 pages, 10069 KiB  
Article
Quasi-Static Compressive Behavior and Energy Absorption Performance of Polyether Imide Auxetic Structures Made by Fused Deposition Modeling
by Jing Xu, Liubimau Aliaksandr, Hanna Narkevich, Sijia Hao, Yubin Chen, Yuguang He, Junpeng Tian, Shenglong Dai and Cheng Yang
J. Manuf. Mater. Process. 2025, 9(5), 155; https://doi.org/10.3390/jmmp9050155 - 9 May 2025
Viewed by 730
Abstract
Auxetic structures have garnered considerable interest for being lightweight and exhibiting superior properties such as an excellent energy absorption capability. In this paper, re-entrant and missing rib square grid auxetic structures were additively manufactured via the fused deposition modeling technique using two types [...] Read more.
Auxetic structures have garnered considerable interest for being lightweight and exhibiting superior properties such as an excellent energy absorption capability. In this paper, re-entrant and missing rib square grid auxetic structures were additively manufactured via the fused deposition modeling technique using two types of polyether imide materials: ULTEM 9085 and ULTEM 1010. In-plane quasi-static compressive tests were carried out on the proposed structures at different relative densities to investigate the Poisson’s ratio, equivalent modulus, deformation behavior, and energy absorption performance. Finite element simulations of the compression process were conducted, which confirmed the deformation behavior observed in the experiments. It was found that the Poisson’s ratio and normalized equivalent Young’s modulus of ULTEM 9085 and ULTEM 1010 with the same geometries were very close, while the energy absorption of the ductile ULTEM 9085 was significantly higher than that of the brittle ULTEM 1010 structures. Furthermore, a linear correlation exists between the relative density and specific energy absorption of missing rib square grid structures within the investigated relative density range, whereas the relationship for re-entrant structures follows a power law. This study provides a better understanding of how material properties influence the deformation behavior and energy absorption characteristics of auxetic structures. Full article
Show Figures

Figure 1

18 pages, 1976 KiB  
Review
Progress in Wax Deposition Characteristics and Prediction Methods for High Pour Point and Viscous Crude Oil Water System
by Jiangbo Wen, Yuzhang Jia, Yongrui Lu, Haijun Luo, Zhenwei Huang, Chuanlin You, Zizhe He and Xu Xiao
Processes 2025, 13(4), 1115; https://doi.org/10.3390/pr13041115 - 8 Apr 2025
Viewed by 848
Abstract
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil [...] Read more.
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil and gas pipeline transportation due to its high pour point and high viscosity characteristics. Wax deposition, particularly significant under low temperature and high viscosity conditions, can lead to reduced pipeline flow rates, decreased transportation efficiency, and even potential safety hazards. Therefore, in-depth research on the wax deposition characteristics and mechanisms in high-viscosity systems holds significant theoretical and engineering application value. Current research primarily focuses on the influencing factors of wax deposition, deposition mechanisms, and the establishment of prediction models. Studies have shown that external factors such as temperature, shear intensity, operating time, and water content have significant effects on the wax deposition process. Specifically, increased temperature differences accelerate the deposition of wax molecules, while the presence of the aqueous phase inhibits wax crystallization and deposition. Furthermore, the formation mechanisms of wax deposition mainly include molecular diffusion, shear stripping, and aging effects. Researchers have explored the dynamic changes and influencing laws of wax deposition by establishing mathematical models combined with experimental data. In summary, although some progress has been made in studying the wax deposition characteristics in high-viscosity systems, research on wax deposition characteristics in mixtures, especially under the combined action of pour point depressants and flow improvers, is still inadequate. Future research should strengthen the systematic exploration of wax deposition mechanisms, quantify the effects of different external factors, and develop wax deposition prediction models suitable for practical engineering to ensure the safe and stable operation of deepwater oil and gas pipelines. Through in depth theoretical and experimental research, robust technical support can be provided for the efficient development of deepwater oil and gas resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3668 KiB  
Article
Droplet Deposition Behavior on the Surface of Flexible Pepper Leaves
by Xiaoya Dong, Liang Dong, Zhouming Gao, Kaiyuan Wang, Xiaolong Wang, Song Wang, Baijing Qiu and Xin Wang
Agronomy 2025, 15(3), 708; https://doi.org/10.3390/agronomy15030708 - 14 Mar 2025
Cited by 1 | Viewed by 529
Abstract
In spray application contexts, plant leaves are bent and twisted upon droplet impact, which has a significant impact on the droplet’s impact behavior and its deposition effect on the leaves. This study examines the impact behavior of droplets on flexible pepper leaves and [...] Read more.
In spray application contexts, plant leaves are bent and twisted upon droplet impact, which has a significant impact on the droplet’s impact behavior and its deposition effect on the leaves. This study examines the impact behavior of droplets on flexible pepper leaves and develops a mathematical model for droplet spreading and rebound, integrating the effects of leaf bending and torsion via energy conservation and cantilever beam theory. The energy required for leaf bending and twisting due to droplet impact was estimated in accordance with Hooke’s law. The droplets attained their maximum spreading diameter 4 ms post-impact on flexible pepper leaves, with droplet retraction occurring significantly faster on flexible leaves than on rigid ones, resulting in a return to steady state in half the duration required by rigid leaves. This study aims to establish a scientific foundation for optimizing pesticide application strategies and selecting parameters for spraying equipment in pepper production. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

22 pages, 13503 KiB  
Article
Indication of REEs, Fe, and Mn Composition Typomorphism of Calcite in Metallogenic Fracture Zones with Respect to Local Tectonic Stress Fields: A Case Study of the Qingshan Lead–Zinc Deposit in Northwest Guizhou, China
by Xiaotong Zhao, Runsheng Han, Yan Zhang, Mingzhi Wang and Lei Wang
Minerals 2025, 15(3), 292; https://doi.org/10.3390/min15030292 - 13 Mar 2025
Viewed by 514
Abstract
The Qingshan lead–zinc deposit is one of the typical deposits in the Weining–Shuicheng metallogenic belt in the northwest Guizhou mining area. This deposit is strictly controlled by tectonics, making it highly distinctive. This study used the REE, Fe, and Mn typological characteristics of [...] Read more.
The Qingshan lead–zinc deposit is one of the typical deposits in the Weining–Shuicheng metallogenic belt in the northwest Guizhou mining area. This deposit is strictly controlled by tectonics, making it highly distinctive. This study used the REE, Fe, and Mn typological characteristics of calcite in the NE mineralization fault zone of the Qingshan lead–zinc deposit in Guizhou to trace the source of ore-forming materials and the local structural stress field characteristics of the fault. Through comprehensively applying structural analysis and LA-ICP-MS technology, the mechanical properties of the fault were analyzed and the REE characteristics of calcite, as well as the variation laws of Fe and Mn, were studied. The results of this study reveal that NE-trending mineralization faults controlled the production of gently inclined ore bodies; the distribution patterns of REEs in the three types of calcite are all “negative Eu-weak negative Ce-right skewed”, with the REE content in calcite near the ore body being significantly increased; furthermore, the variation pattern of Fe and Mn elemental contents in calcite indicate the local stress field characteristics of the ore-forming fault zone. The local opening space of NE-trending compressional and torsional ore-forming faults (where the dip angle slows down) is favorable for the nucleation of mineralized veins. With this study, we therefore improve knowledge regarding the relationships between tectonic stress fields and mineral exploration, serving as a potential source for the prediction of sites that are suitable for the exploitation of tectonic stress fields for mineral exploration, and show that mineral prediction is conducive to achieving the sustainable development of mines. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 2769 KiB  
Article
Two-Phase Swirling Flow and Gas Hydrate Particle Deposition Behavior in Bending Pipelines
by Yongchao Rao, Long Zheng, Shuli Wang, Wenjing Wu, Zijia Gong, Shidong Zhou and Chuang Wen
Processes 2025, 13(3), 725; https://doi.org/10.3390/pr13030725 - 3 Mar 2025
Viewed by 950
Abstract
The present study employs numerical simulation to analyze the behavior of gas hydrate particles in bending pipelines, focusing on the influence of swirl flow on particle deposition under varying bending angles, pipe-to-diameter ratios, Reynolds numbers, and twist rates. Results indicate that larger bending [...] Read more.
The present study employs numerical simulation to analyze the behavior of gas hydrate particles in bending pipelines, focusing on the influence of swirl flow on particle deposition under varying bending angles, pipe-to-diameter ratios, Reynolds numbers, and twist rates. Results indicate that larger bending angles, smaller twist rates, and higher Reynolds numbers produce stronger swirl flows at pipe entry and sustain higher swirl numbers along the pipeline. Conversely, larger pipe-to-diameter ratios result in greater swirl number variations, slower attenuation, and weaker outflow. Moreover, the phenomenon of hydrate particle deposition is more serious in the straight pipe section. Particle retention at the pipe outlet is 1.5 times higher than in the bending section. The bent pipe is more conducive to the flow of particles. For instance, with a bend rate increasing from 1 to 4, the swirl number decreases by 57.49%. Additionally, the deposition rate of particles is reduced at higher Reynolds numbers, with rates falling below 1% at a Reynolds number of 20,000. These findings highlight the need to optimize swirl flow parameters to reduce hydrate deposition, preventing blockages and improving pipeline safety in industrial applications. Full article
Show Figures

Figure 1

12 pages, 2317 KiB  
Article
Residual Stress Model in Laser Direct Deposition Based on Energy Equation
by Manping Cheng, Xi Zou, Muhong Gong, Tengfei Chang, Qi Cao and Houlai Ju
Coatings 2025, 15(2), 217; https://doi.org/10.3390/coatings15020217 - 12 Feb 2025
Viewed by 914
Abstract
In this paper, 316 L stainless steel deposited samples were fabricated by direct layer deposition (DED) using both continuous-wave (CW) and pulsed-wave (PW) laser modes. Effects of laser modes on residual stress of deposited samples were investigated. On this basis, a mathematical model [...] Read more.
In this paper, 316 L stainless steel deposited samples were fabricated by direct layer deposition (DED) using both continuous-wave (CW) and pulsed-wave (PW) laser modes. Effects of laser modes on residual stress of deposited samples were investigated. On this basis, a mathematical model of thermal stress evolution during DED was established for the first time based on the energy equation. The variation law of thermal stress on the top of the substrate under multi-material and multi-process conditions was qualitatively predicted and the corresponding residual stress reduction mechanism has been studied using this model. Meanwhile, in situ thermal strain evolution is used to prove the correctness of the mathematical model. This model lays the foundation for predicting the thermal stress evolution and the magnitude of the residual stress of deposited samples under multi-material and process conditions during DED. Full article
Show Figures

Figure 1

15 pages, 2999 KiB  
Article
Optimization of Laser Repair Process for Agricultural Machinery Parts Based on Genetic Algorithm
by Qing Yi and Fei Feng
Materials 2025, 18(4), 775; https://doi.org/10.3390/ma18040775 - 10 Feb 2025
Viewed by 769
Abstract
Laser-directed energy deposition technology (LDED), a method for repairing worn agricultural machinery parts, is valued for its flexibility, efficiency, and economy. To improve the comprehensive quality of the parts repair layer and reduce the processing energy consumption and time, it is necessary to [...] Read more.
Laser-directed energy deposition technology (LDED), a method for repairing worn agricultural machinery parts, is valued for its flexibility, efficiency, and economy. To improve the comprehensive quality of the parts repair layer and reduce the processing energy consumption and time, it is necessary to explore the influence law of process parameters and multi-objective optimization experiments. We used L9 (33) orthogonal experiments to evaluate the effects of laser power, scanning speed, and powder feed rate on repair quality. Variance analysis assessed factor level impacts and a multi-objective optimization model was constructed and optimized using a genetic algorithm (GA). Then, a preferred algorithm is proposed to optimize and obtain the optimal process level. The results show that the cladding efficiency increases at first and then decreases with the increase in laser power, decreases with the increase in scanning speed, and increases with the increase in powder feed rate. The dilution rate decreases at first and then increases with the increase in laser power, increases with the increase in scanning speed, and decreases with the increase in powder feed rate. In addition, it is also affected by the interaction between scanning speed and powder feed rate. Taking the maximum cladding efficiency and the minimum dilution rate as the optimization objectives, the verification test was carried out with the process parameters of laser power 1684.7370 W, scanning speed 3.0175 mm s−1, and powder feed rate 1.5901 r min−1. The error rates of cladding efficiency and dilution rate were 3.98% and 4.89%, respectively, which confirmed the method’s effectiveness. The research results can provide a reference for the repair of worn parts of agricultural machinery, which is not only cost-effective but saves time, as well. The free formability of the LDED process also allows it to add special functions to simple damaged castings and forging parts during the repair process to improve their performance. Full article
Show Figures

Figure 1

17 pages, 1931 KiB  
Article
Lithium Tracer Diffusion in LixCoO2 and LixNi1/3Mn1/3Co1/3O2 (x = 1, 0.9, 0.65)-Sintered Bulk Cathode Materials for Lithium-Ion Batteries
by Erwin Hüger, Daniel Uxa and Harald Schmidt
Batteries 2025, 11(2), 40; https://doi.org/10.3390/batteries11020040 - 21 Jan 2025
Viewed by 1224
Abstract
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases [...] Read more.
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases during electrochemical delithiation. Such an increased Li diffusivity will be advantageous for performance if it is present already in the initial state after synthesis. In order to understand the influence of a varying initial Li content on Li diffusion, we performed Li tracer diffusion experiments on LixCoO2 (LCO) and LixNi1/3Mn1/3Co1/3O2 (NMC, x = 1, 0.9, 0.65) cathode materials. The measurements were performed on polycrystalline sintered bulk materials, free of additives and binders, in order to study the intrinsic properties. The variation of Li content was achieved using reactive solid-state synthesis using pressed Li2CO3, NiO, Co3O4 and/or MnO2 powders and high temperature sintering at 800 °C. XRD analyses showed that the resultant bulk samples exhibit the layered LCO or NMC phases with a low amount of cation intermixing. Moreover, the presence of additional NiO and Co3O4 phases was detected in NMC with a pronounced nominal Li deficiency of x = 0.65. As a tracer source, a 6Li tracer layer with the same chemical composition was deposited using ion beam sputtering. Secondary ion mass spectrometry in depth profile mode was used for isotopic analysis. The diffusivities followed the Arrhenius law with an activation enthalpy of about 0.8 eV and were nearly identical within error for all samples investigated in the temperature range up to 500 °C. For a diffusion mechanism based on structural Li vacancies, the results indicated that varying the Li content does not result in a change in the vacancy concentration. Consequently, the design and use of a cathode initially made of a Li-deficient material will not improve the kinetics of battery performance. The possible reasons for this unexpected result are discussed. Full article
Show Figures

Figure 1

21 pages, 6841 KiB  
Article
Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System
by Liming Yu, Yifei Zhang, Rujuan Zhao, Yi Wang and Qingmin Yu
Processes 2025, 13(1), 269; https://doi.org/10.3390/pr13010269 - 18 Jan 2025
Viewed by 924
Abstract
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this [...] Read more.
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this study, a three-dimensional finite element model with atmospheric plasma-spraying thermal barrier coatings (APS-TBCs) deposited on air-cooled, nickel-based, single-crystal blades was established to investigate residual stress character under centrifugal load, considering the effect of temperature, crystal orientation deviation angle, oxide layer thickness, and the number of cycles. The results show that when the centrifugal load is increased from 300 MPa to 700 MPa, the absolute value of the residual stress at the crest of the interface between Top Coat (TC) and Thermally Grown Oxide (TGO) increases by only 8.5%, whereas in the region of compressive to tensile stress conversion, residual stress decreases by 100.9%. As the crystal orientation deviation angle increases, the absolute value of the residual compressive stress increases and the absolute value of the residual tensile stress decreases, but the performance is more special in the valley region, where the absolute value of the residual stress increases with the increase in the deviation angle. Special attention is required, as the increase in temperature leads to a rise in the absolute value of residual stress. For example, at the trough of the TC–TGO interface, when the temperature increases from 910 °C to 1100 °C, the residual stress increases by 9.8%. The effect of the number of cycles on residual stress is relatively weak. For instance, at the wave crest of the TC–TGO interface, the residual stress differs by only 0.6 MPa between one cycle and three cycles. The effect of oxide layer thickness on residual stress in the TBCs after a single cycle is nonlinear. When the oxide layer thickness is 0, 4, and 7 μm, the residual stress undergoes a transition between tensile and compressive directions at different locations. The exploration of these results has yielded some valuable laws that can provide a reference for the study of the damage mechanism of TBCs, as well as a guide for the optimization of nickel-based turbine blades in the manufacturing and use processes. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop