Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = dental occlusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 401 KiB  
Article
The Correlation Between Cracked Teeth and National Insurance Coverage of Dental Implants in South Korea: A Retrospective Cohort Analysis
by Se Hoon Kahm, YoungHa Shim and SungEun Yang
J. Clin. Med. 2025, 14(15), 5507; https://doi.org/10.3390/jcm14155507 - 5 Aug 2025
Abstract
Background/Objectives: The expansion of National Health Insurance (NHI) coverage for dental implants in South Korea has substantially increased implant placements among older adults. While implants offer functional and esthetic benefits, their lack of periodontal ligaments alters occlusal force distribution, potentially increasing biomechanical [...] Read more.
Background/Objectives: The expansion of National Health Insurance (NHI) coverage for dental implants in South Korea has substantially increased implant placements among older adults. While implants offer functional and esthetic benefits, their lack of periodontal ligaments alters occlusal force distribution, potentially increasing biomechanical stress on adjacent or opposing teeth. This study aimed to investigate the association between the increased number of dental implants and the incidence of cracked teeth following the introduction of implant insurance. Methods: A retrospective analysis was conducted using the Clinical Data Warehouse of Seoul St. Mary’s Dental Hospital. Patients who underwent molar crown restorations between 2014 and 2022 were included. The incidence and clinical features of cracked teeth were compared before (2014–2015) and after (2016–2022) the introduction of implant insurance. Statistical analyses assessed differences in symptom presentation, pulp status, and treatment outcomes. Results: Among 5044 molars restored with crowns, 1692 were diagnosed with cracks. The incidence of cracked teeth significantly increased after NHI coverage for implants (25.5% vs. 32.6%, p < 0.001). Cases after insurance implementation showed fewer signs and symptoms at initial presentation (67.4% vs. 50.0%, p < 0.001), reduced irreversible pulpitis (37.2% vs. 25.8%, p < 0.001), and increased preservation of pulp vitality (46.9% vs. 57.8%, p < 0.001). These shifts may reflect changes in occlusal adjustment practices and earlier clinical intervention. Conclusions: The findings suggest a temporal link between increased implant placement and the rising incidence of cracked teeth. Implant-induced occlusal changes may contribute to this trend. Careful occlusal evaluation and follow-up are essential after implant placement, and further prospective studies are warranted to confirm causality and refine prevention strategies. Full article
(This article belongs to the Special Issue Research Progress in Osseointegrated Oral Implants)
Show Figures

Figure 1

27 pages, 1627 KiB  
Article
Evaluation of the Possible Correlation Between Dental Occlusion and Craniomandibular Disorders by Means of Teethan® Electromyography: Clinical-Observational Study on 20 Patients
by Vito Crincoli, Alessio Danilo Inchingolo, Grazia Marinelli, Rosalba Lagioia, Paola Bassi, Claudia Ciocia, Francesca Calò, Roberta Deodato, Giulia Marsella, Francesco Inchingolo, Andrea Palermo, Mario Dioguardi, Angela Pia Cazzolla, Maria Severa Di Comite, Maria Grazia Piancino, Angelo Michele Inchingolo and Gianna Dipalma
J. Clin. Med. 2025, 14(15), 5508; https://doi.org/10.3390/jcm14155508 - 5 Aug 2025
Abstract
Background: Temporomandibular disorders are a generic term referred to clinical conditions involving the jaw muscles and temporomandibular joint with multifactorial pattern and genetic background. The aim of this observational study was to investigate the correlation between craniomandibular disorders and the presence of occlusal [...] Read more.
Background: Temporomandibular disorders are a generic term referred to clinical conditions involving the jaw muscles and temporomandibular joint with multifactorial pattern and genetic background. The aim of this observational study was to investigate the correlation between craniomandibular disorders and the presence of occlusal alterations. A clinical evaluation of the occlusal and articular status of the patients was carried out, integrating the latter with the electromyographic recording the activity of the masseter and temporalis muscles. Methods: A clinical observational study on 20 adults assessed temporomandibular disorders using DC/TMD criteria, anamnesis, clinical exams, occlusal and electromyographic analyses. Occlusion was evaluated morphologically and functionally. Electromyography tested static/dynamic muscle activity. Data were statistically analyzed using t-tests and Pearson correlation (p < 0.05). Results: Electromyographic analysis revealed significant differences between subjects with and without visual correction, suggesting that visual input influences masticatory muscle activity. Correlations emerged between occlusal asymmetries and neuromuscular parameters. These findings highlight clinical implications for mandibular function, muscle symmetry, and the potential for therapeutic rebalancing through targeted interventions. Conclusions: The study demonstrates a significant correlation between visual–motor integration and masticatory muscle efficiency. It emphasizes lateralized neuromuscular activation’s influence on occlusal contact distribution. Moreover, it identifies mandibular torsion–endfeel inverse correlation as a potential diagnostic marker for craniomandibular dysfunctions via surface electromyography. Full article
(This article belongs to the Special Issue Orthodontics: Current Advances and Future Options)
Show Figures

Figure 1

14 pages, 871 KiB  
Article
Evaluation of Deviations Produced by Soft Tissue Fitting in Virtually Planned Orthognathic Surgery
by Álvaro Pérez-Sala, Pablo Montes Fernández-Micheltorena, Miriam Bobadilla, Ricardo Fernández-Valadés Gámez, Javier Martínez Goñi, Ángela Villanueva, Iñigo Calvo Archanco, José Luis Del Castillo Pardo de Vera, José Luis Cebrián Carretero, Carlos Navarro Cuéllar, Ignacio Navarro Cuellar, Gema Arenas, Ana López López, Ignacio M. Larrayoz and Rafael Peláez
Appl. Sci. 2025, 15(15), 8478; https://doi.org/10.3390/app15158478 - 30 Jul 2025
Viewed by 426
Abstract
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital [...] Read more.
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital assessment using computer-aided design (CAD) and computer-aided manufacturing (CAM) tools enhances surgical predictability. However, limitations in soft tissue simulation often require surgeon input to optimize aesthetic results and minimize surgical impact. This study aimed to evaluate the accuracy of virtual surgery planning (VSP) by analyzing the relationship between planning deviations and surgical satisfaction. A single-center, retrospective study was conducted on 16 patients who underwent OS at San Pedro University Hospital of La Rioja. VSP was based on CT scans using Dolphin Imaging software (v12.0, Patterson Dental, St. Paul, MN, USA) and surgeries were guided by VSP-designed occlusal splints. Outcomes were assessed using the Orthognathic Quality of Life (OQOL) questionnaire and deviations were measured through pre- and postoperative imaging. The results showed high satisfaction scores and good overall outcomes, despite moderate deviations from the virtual plan in many cases, particularly among Class II patients. A total of 63% of patients required VSP modifications due to poor soft tissue fitting, with 72% of these being Class II DFDs. Most deviations involved less maxillary advancement than planned, while maintaining optimal occlusion. This suggests that VSP may overestimate advancement needs, especially in Class II cases. No significant differences in satisfaction were observed between patients with low (<2 mm) and high (>2 mm) deviations. These findings support the use of VSP as a valuable planning tool for OS. However, surgeon experience remains essential, especially in managing soft tissue behavior. Improvements in soft tissue prediction are needed to enhance accuracy, particularly for Class II DFDs. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

6 pages, 1231 KiB  
Interesting Images
A Personalized 3D-Printed CAD/CAM Functional Space Maintainer Following the Premature Loss of a Primary First Molar in a Five-Year-Old Child
by Rasa Mladenovic, Andrija Nedeljkovic, Ljiljana Vujacic, Marko Stevanovic, Vladan Djordjevic, Srbislav Pajic and Kristina Mladenovic
Reports 2025, 8(3), 125; https://doi.org/10.3390/reports8030125 - 29 Jul 2025
Viewed by 286
Abstract
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of [...] Read more.
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of permanent teeth. To preserve space, the fabrication of a space maintainer is necessary. Since conventional space maintainers do not restore masticatory function, this study presents an innovative solution for space preservation following the extraction of the first primary molar through the design of the functional space maintainer KOS&MET (Key Orthodontic System and Materials Enhanced Therapy). The space maintainer was designed using the 3Shape Dental Designer 2023 version software tool and manufactured via additive 3D printing, utilizing a metal alloy with high resistance to masticatory forces. The crown is supported by the primary canine, while an intraoral window is created to monitor the eruption of the successor tooth. This design does not interfere with occlusion and enables bilateral chewing. Masticatory performance was assessed using two-color chewing gum, and the results showed improvement after cementing the space maintainer. This innovative approach not only preserves space for permanent teeth but also enhances masticatory function, contributing to the proper growth and development of the jaws and teeth. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

19 pages, 967 KiB  
Article
Clinical–Biological Assessment of Prosthetic Field Following Pre-Prosthetic Phase Related to Prosthetic Treatment Solutions
by Petruţa Siminiuc, Doriana Agop-Forna, Cristina Dascălu and Norina Forna
Clin. Pract. 2025, 15(8), 140; https://doi.org/10.3390/clinpract15080140 - 26 Jul 2025
Viewed by 148
Abstract
Background. Extensive partial edentulism alters the biological and functional balance of the stomatognathic system, requiring targeted pre-prosthetic procedures to optimize treatment outcomes. Objectives. The aim of this study was to assess the extent of improvement in the clinical–biological scores of the [...] Read more.
Background. Extensive partial edentulism alters the biological and functional balance of the stomatognathic system, requiring targeted pre-prosthetic procedures to optimize treatment outcomes. Objectives. The aim of this study was to assess the extent of improvement in the clinical–biological scores of the prosthetic field in patients with extensive edentulism, following pre-prosthetic interventions. Materials and Method. This prospective, cross-sectional study investigated 194 subjects with extensive partial edentulism. Clinical–biological scores, initially and following the pre-prosthetic phase, were recorded using a scoring system that evaluated dental and periodontal status, bone and mucosal support, occlusion, and mandibulo-cranial relationships. Statistical comparisons of clinical–biological scores were related to the type of prosthetic therapy. Statistical significance was considered at a p-value < 0.05. Results. There was an overall significant improvement in the clinical–biological scores initially (mean value 20.2) and after pre-prosthetic procedures (mean value 23.22) (p < 0.001). When treatment groups were divided, the implant-assisted prosthesis group showed the best improvement in all domains, followed by the conventional fixed-prostheses group (p < 0.01). Dental support improved significantly in those with semi-rigid composite prostheses (p = 0.014), while periodontal support was improved in both fixed- and hybrid-implant groups. Mucosal and bone support improved mostly in the fixed-implant groups (p = 0.014). Conclusions. Pre-prosthetic procedures significantly enhance the biological and functional readiness of the prosthetic field, with the degree of improvement influenced by the complexity and type of planned prosthetic rehabilitation. The findings underscore the value of individualized pre-prosthetic protocols as an essential component of prosthetic treatment planning. Full article
Show Figures

Figure 1

11 pages, 1124 KiB  
Communication
Fracture Resistance of 3D-Printed Fixed Partial Dentures: Influence of Connector Size and Materials
by Giulia Verniani, Edoardo Ferrari Cagidiaco, SeyedReza Alavi Tabatabaei and Alessio Casucci
Materials 2025, 18(15), 3468; https://doi.org/10.3390/ma18153468 - 24 Jul 2025
Viewed by 244
Abstract
Background: Limited data are available regarding the mechanical performance of 3D-printed fixed partial dentures (FPDs) fabricated from different materials and connector geometries. The purpose of this in vitro study was to evaluate the influence of connector size and material type on the fracture [...] Read more.
Background: Limited data are available regarding the mechanical performance of 3D-printed fixed partial dentures (FPDs) fabricated from different materials and connector geometries. The purpose of this in vitro study was to evaluate the influence of connector size and material type on the fracture resistance of three-unit posterior FPDs fabricated with two commercially available 3D-printable dental resins. Methods: A standardized metal model with two cylindrical abutments was used to design three-unit FPDs. A total of sixty samples were produced, considering three connector sizes (3 × 3 mm, 4 × 4 mm, and 5 × 5 mm) and two different resins: Temp Print (GC Corp., Tokyo, Japan) and V-Print c&b temp (Voco GmbH, Cuxhaven, Germany) (n = 10). Specimens were fabricated with a DLP printer (Asiga MAX UV), post-processed per manufacturer recommendations, and tested for fracture resistance under occlusal loading using a universal testing machine. Data were analyzed using nonparametric tests (Mann–Whitney U and Kruskal–Wallis; α = 0.05). Results: Significant differences were found between material and connector size groups (p < 0.001). Temp Print (GC Corp., Tokyo, Japan) demonstrated higher mean fracture loads (792.34 ± 578.36 N) compared to V-Print c&b temp (Voco GmbH, Cuxhaven, Germany) (359.74 ± 131.64 N), with statistically significant differences at 4 × 4 and 5 × 5 mm connectors. Fracture strength proportionally increased with connector size. FPDs with 5 × 5 mm connectors showed the highest resistance, reaching values above 1500 N. Conclusions: Both connector geometry and material composition significantly affected the fracture resistance of 3D-printed FPDs. Larger connector dimensions and the use of Temp Print (GC Corp., Tokyo, Japan) resin enhanced mechanical performance. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
In Vivo Wear Analysis of Leucite-Reinforced Ceramic Inlays/Onlays After 14 Years
by Ragai-Edward Matta, Lara Berger, Oleksandr Sednyev, Dennis Bäuerle, Eva Maier, Werner Adler and Michael Taschner
Materials 2025, 18(15), 3446; https://doi.org/10.3390/ma18153446 - 23 Jul 2025
Viewed by 296
Abstract
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect [...] Read more.
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect restorations of 21 patients were available for comprehensive wear analysis, with complete follow-up data for up to 14 years. Three-dimensional measurements relied on digitized epoxy resin models produced immediately post-insertion (baseline) and subsequently at 2, 4, and 14 years. The occlusal region on the baseline model was delineated for comparative analysis. Three-dimensional superimpositions with models from subsequent time points were executed to assess wear in terms of average linear wear and volumetric loss. Statistical analyses were conducted in R (version 4.4.1), employing Mann–Whitney U tests (material comparisons) and Wilcoxon signed rank tests (time point comparisons), with a significance threshold of p ≤ 0.05. During the entire study period, an increase in wear was observed at each assessment interval, gradually stabilizing over time. Significant differences in substance loss were found between the follow-up time points, both for mean (−0.536 ± 0.249 mm after 14a) and integrated distance (−18,935 ± 11,711 mm3 after 14a). In addition, significantly higher wear was observed after 14 years with gold as antagonist compared to other materials (p ≤ 0.03). The wear behavior of IPS Empress® ceramics demonstrates clinically acceptable long-term outcomes, with abrasion characteristics exhibiting stabilization over time. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Second Volume)
Show Figures

Figure 1

46 pages, 6649 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 467
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

12 pages, 2053 KiB  
Article
Distalization with Clear Aligners: Accuracy, Impact of Mini-Screws, and Clinical Outcomes
by Teresa Pinho, Diana Melo, Sofia Ferreira and Maria Gonçalves
Dent. J. 2025, 13(7), 316; https://doi.org/10.3390/dj13070316 - 14 Jul 2025
Viewed by 313
Abstract
Background: Distalization is a fundamental orthodontic strategy for correcting Class II and Class III malocclusions, particularly in cases where specific dental or skeletal conditions favor its application. Recent technological advances have enabled complex dental movements to be performed using clear aligners, aided by [...] Read more.
Background: Distalization is a fundamental orthodontic strategy for correcting Class II and Class III malocclusions, particularly in cases where specific dental or skeletal conditions favor its application. Recent technological advances have enabled complex dental movements to be performed using clear aligners, aided by digital planning platforms such as ClinCheck®. Methods: This retrospective study aimed to evaluate the accuracy of ClinCheck® in predicting molar and canine distalization outcomes with the Invisalign® system and to identify clinical factors influencing treatment predictability. Thirty patients with complete permanent dentition and at least 2 mm of programmed distalization were selected. Planned movements were extracted from the Invisalign® Doctor Site and compared to achieved outcomes using Geomagic® Control X™ software. Occlusal improvements were assessed using the Peer Assessment Rating (PAR) indexResults: The results revealed significant discrepancies between the programmed and achieved distalization, with mean deviations greater than 1 mm in both arches. Skeletal anchorage with mini-screws significantly improved distalization outcomes in the maxillary arch; however, no significant effect was observed in the mandibular arch. Additionally, no significant associations were found between distalization outcomes and skeletal pattern (ANB angle) or facial biotype. Conclusions: Clear aligners are effective in achieving substantial occlusal improvements, particularly when combined with personalized digital planning and supplementary strategies such as skeletal anchorage. Mandibular cases demonstrated greater reductions in PAR scores, emphasizing the potential of aligners in complex distalization treatments. Full article
Show Figures

Figure 1

28 pages, 12965 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme? Part I: A Review on the Provenance, Evolution and Properties of the System
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 32; https://doi.org/10.3390/cmtr18030032 - 12 Jul 2025
Cited by 1 | Viewed by 844
Abstract
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its [...] Read more.
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its technical and functional features. Results: The Matrix WaveTM System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion. Conclusion: The Matrix WaveTM MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of “omnidirectional” in-situ-bending provides a distinctive feature not found in alternate MMF solutions. Full article
Show Figures

Figure 1

15 pages, 1454 KiB  
Article
A Thermal Imaging Camera as a Diagnostic Tool to Study the Effects of Occlusal Splints on the Elimination of Masticatory Muscle Tension
by Danuta Lietz-Kijak, Adam Andrzej Garstka, Lidia Szczucka, Roman Ardan, Monika Brzózka-Garstka, Piotr Skomro and Camillo D’Arcangelo
Dent. J. 2025, 13(7), 313; https://doi.org/10.3390/dj13070313 - 11 Jul 2025
Viewed by 411
Abstract
Medical Infrared Thermography (MIT) is a safe, non-invasive technique for assessing temperature changes on the skin’s surface that may reflect pathological processes in the underlying tissues. In temporomandibular joint disorders (TMDs), which are often associated with reduced mobility and muscle overactivity, tissue metabolism [...] Read more.
Medical Infrared Thermography (MIT) is a safe, non-invasive technique for assessing temperature changes on the skin’s surface that may reflect pathological processes in the underlying tissues. In temporomandibular joint disorders (TMDs), which are often associated with reduced mobility and muscle overactivity, tissue metabolism and blood flow may be diminished, resulting in localized hypothermia. Aim: The purpose of this study was to evaluate muscle tone in the masseter, suprahyoid, and sternocleidomastoid muscles following the application of two types of occlusal splints, a Michigan splint and a double repositioning splint, based on temperature changes recorded using a Fluke Ti401 PRO thermal imaging camera. Materials and Methods: Sixty dental students diagnosed with TMDs were enrolled in this study. After applying the inclusion and exclusion criteria, participants were randomly assigned to one of two groups. Group M received a Michigan splint, while group D was treated with a double repositioning splint. Results: The type of occlusal splint influenced both temperature distribution and muscle tone. In the double repositioning splint group, temperature decreased by approximately 0.8 °C between T1 and T3, whereas in the Michigan splint group, temperature increased by approximately 0.7 °C over the same period. Conclusions: Occlusal splint design has a measurable impact on temperature distribution and muscle activity. The double repositioning splint appears to be more effective in promoting short-term muscle relaxation and may provide relief for patients experiencing muscular or myofascial TMD symptoms. Full article
(This article belongs to the Special Issue Management of Temporomandibular Disorders)
Show Figures

Figure 1

17 pages, 1208 KiB  
Article
Structural Features of the Temporomandibular Joint Evaluated by MRI and Their Association with Oral Function and Craniofacial Morphology in Female Patients with Malocclusion: A Cross-Sectional Study
by Mari Kaneda, Yudai Shimpo, Kana Yoshida, Rintaro Kubo, Fumitaka Kobayashi, Akira Mishima, Chinami Igarashi and Hiroshi Tomonari
J. Clin. Med. 2025, 14(14), 4921; https://doi.org/10.3390/jcm14144921 - 11 Jul 2025
Viewed by 387
Abstract
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, [...] Read more.
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, few studies have examined how TMJ structural features observed on MRI findings relate to oral function and craniofacial morphology in female patients with malocclusion. To investigate the associations among TMJ structural features, oral function, and craniofacial morphology in female patients with malocclusion, using MRI findings interpreted in conjunction with a preliminary assessment based on selected components of the DC/TMDs Axis I protocol. Methods: A total of 120 female patients (mean age: 27.3 ± 10.9 years) underwent clinical examination based on DC/TMDs Axis I and MRI-based structural characterization of the TMJ. Based on the structural features identified by MRI, patients were classified into four groups for comparison: osteoarthritis (OA), bilateral disk displacement (BDD), unilateral disk displacement (UDD), and a group with Osseous Change/Disk Displacement negative (OC/DD (−)). Occlusal contact area, occlusal force, masticatory efficiency, tongue pressure, and lip pressure were measured. Lateral cephalometric analysis assessed skeletal and dental patterns. Results: OA group exhibited significantly reduced occlusal contact area (p < 0.0083, η2 = 0.12) and occlusal force (p < 0.0083, η2 = 0.14) compared to the OC/DD (−) group. Cephalometric analysis revealed that both OA and BDD groups had significantly larger ANB angles (OA: 5.7°, BDD: 5.2°, OC/DD (−): 3.7°; p < 0.0083, η2 = 0.21) and FMA angles (OA: 32.4°, BDD: 31.8°, OC/DD (−): 29.0°; p < 0.0083, η2 = 0.17) compared to the OC/DD (−) group. No significant differences were observed in masticatory efficiency, tongue pressure, or lip pressure. Conclusions: TMJ structural abnormalities detected via MRI, especially osteoarthritis, are associated with diminished oral function and skeletal Class II and high-angle features in female patients with malocclusion. Although orthodontic treatment is not intended to manage TMDs, MRI-based structural characterization—when clinically appropriate—may aid in treatment planning by identifying underlying joint conditions. Full article
Show Figures

Figure 1

37 pages, 438 KiB  
Review
Three-Dimensionally Printed Splints in Dentistry: A Comprehensive Review
by Luka Šimunović, Samir Čimić and Senka Meštrović
Dent. J. 2025, 13(7), 312; https://doi.org/10.3390/dj13070312 - 10 Jul 2025
Viewed by 682
Abstract
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed [...] Read more.
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed dental splints across various disciplines, including prosthodontics, orthodontics, oral surgery, and restorative dentistry. Key 3D printing technologies such as stereolithography (SLA), digital light processing (DLP), and material jetting are discussed, along with the properties of contemporary photopolymer resins used in splint fabrication. Evidence indicates that while 3D-printed splints generally meet ISO standards for flexural strength and wear resistance, their mechanical properties are often 15–30% lower than those of heat-cured PMMA in head-to-head tests (flexural strength range 50–100 MPa vs. PMMA 100–130 MPa), and study-to-study variability is high. Some reports even show significantly reduced hardness and fatigue resistance in certain resins, underscoring material-specific heterogeneity. Clinical applications reviewed include occlusal stabilization for bruxism and temporomandibular disorders, surgical wafers for orthognathic procedures, orthodontic retainers, and endodontic guides. While current limitations include material aging, post-processing complexity, and variability in long-term outcomes, ongoing innovations—such as flexible resins, multi-material printing, and AI-driven design—hold promise for broader adoption. The review concludes with evidence-based clinical recommendations and identifies critical research gaps, particularly regarding long-term durability, pediatric applications, and quality control standards. This review supports the growing role of 3D printing as an efficient and versatile tool for delivering high-quality splint therapy in modern dental practice. Full article
(This article belongs to the Special Issue Digital Dentures: 2nd Edition)
25 pages, 11401 KiB  
Article
In Vitro Comparison of Monolithic Zirconia Crowns: Marginal/Internal Adaptation and 3D-Quantified Preparation Defects Using Air-Driven, Electric-Driven, and Piezoelectric Ultrasonic Handpieces
by Rand Saman Jadid and Abdulsalam Rasheed Al-Zahawi
Prosthesis 2025, 7(4), 75; https://doi.org/10.3390/prosthesis7040075 - 1 Jul 2025
Viewed by 813
Abstract
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were [...] Read more.
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were performed using the air-driven handpiece with a guide pin-ended tapered fissure diamond bur on a modified dental surveyor. The finishing process utilized three handpiece types (n = 24/group) with fine/superfine diamond burs under controlled force with a fixed number of rotations and controlled advancement time. Marginal/internal adaptation was evaluated via the triple-scan technique; defects (marginal, axial, and occlusal) were quantified based on predefined criteria through the inspection of the Standard Tessellation Language (STL) file. Results: One-way ANOVA with Tukey HSD and Kruskal–Wallis with Dunn–Bonferroni tests were utilized. The marginal gap showed no significant differences (p > 0.05, η2 = 0.04). The electric handpiece outperformed the ultrasonic (p = 0.023, η2 = 0.105) in internal adaptation, while the air-driven showed no differences (p > 0.05). The ultrasonic handpiece produced fewer marginal defects than the air-driven (p = 0.039, ε2 = 0.132), but more axial defects (median 9 vs. 6, p = 0.014, ε2 = 0.168) than the electric handpiece and occlusal defects (5 vs. 3, 4 p = 0.007, p = 0.015, ε2 = 0.227) than rotary handpieces. The air-driven handpiece exhibited comparable defect numbers to the electric handpiece without statistical significance (p > 0.05). Conclusions: Handpiece selection had a small effect on marginal adaptation but more pronounced effects on overall defect formations and internal adaptation. The ultrasonic handpiece’s decreased marginal defects but variable axial/occlusal results reveal technological constraints, whereas rotary handpieces’ consistency reflects their operator-dependent nature. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Graphical abstract

4 pages, 160 KiB  
Editorial
Ceramic Dental Restorations—From Materials Sciences to Applications
by Han Chao Chang and Satoshi Yamaguchi
Materials 2025, 18(13), 3116; https://doi.org/10.3390/ma18133116 - 1 Jul 2025
Viewed by 284
Abstract
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives [...] Read more.
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives to traditional alloys and pure metals [...] Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
Back to TopTop