Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = dental implant–abutment interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11273 KiB  
Article
The Effect of Different Tightening Torques of Implant Cone Morse Abutment Connection Under Dynamic Fatigue Loading: An In Vitro Study
by Felice Lorusso, Antonio Scarano, Sergio Rexhep Tari, Ishita Singhal, Funda Goker, Maria Costanza Soldini, Gianluca Martino Tartaglia and Massimo Del Fabbro
Biomimetics 2025, 10(8), 511; https://doi.org/10.3390/biomimetics10080511 - 4 Aug 2025
Viewed by 115
Abstract
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue [...] Read more.
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue test. Methods: Eighty conic implants (Ø: 3.8 mm L: 10 mm) with a 6° cone morse joint were embedded in resin blocks with an inclination of 30° ± 2°. The samples were divided into 8 groups (4 Test and 4 Control). The implant–abutment joints were coupled with different tightening torques: 25 Ncm (Group I), 30 Ncm (Group II), 35 Ncm (Group III) and 40 Ncm (Group IV). An in vitro cyclic loading test (1 × 104 loads) was performed for 4 Test groups, while 4 Control groups did not receive any forces. All the samples were assessed with Scanning Electron Microscopy to compare the microfractures and microgaps on flexion and extension points. Results: Microscopy observation results showed significant differences among torque groups. We found that 30 Ncm had the best stability with less microgap. Conclusions: Tightening torque plays an important role in the distortion of the cone morse joint under mechanical forces. However, further studies should be conducted to validate the results using different implant–abutment joints for comparison. Full article
Show Figures

Figure 1

16 pages, 1741 KiB  
Article
Effect of Crestal Position on Bone–Implant Stress Interface of Three-Implant Splinted Prostheses: A Finite Element Analysis
by Mario Ceddia, Giulia Marchioli, Tea Romasco, Luca Comuzzi, Adriano Piattelli, Douglas A. Deporter, Natalia Di Pietro and Bartolomeo Trentadue
Materials 2025, 18(14), 3344; https://doi.org/10.3390/ma18143344 - 16 Jul 2025
Viewed by 432
Abstract
Optimizing stress distribution at the bone–implant interface is critical to enhancing the long-term biomechanical performance of dental implant systems. Vertical misalignment between splinted implants can result in elevated localized stresses, increasing the risk of material degradation and peri-implant bone resorption. This study employs [...] Read more.
Optimizing stress distribution at the bone–implant interface is critical to enhancing the long-term biomechanical performance of dental implant systems. Vertical misalignment between splinted implants can result in elevated localized stresses, increasing the risk of material degradation and peri-implant bone resorption. This study employs three-dimensional finite element analysis (FEA) to evaluate the mechanical response of peri-implant bone under oblique loading, focusing on how variations in vertical implant platform alignment influence stress transmission. Four implant configurations with different vertical placements were modeled: (A) all crestal, (B) central subcrestal with lateral crestal, (C) lateral subcrestal with central crestal, and (D) all subcrestal. A 400 N oblique load was applied at 45° simulated masticatory forces. Von Mises stress distributions were analyzed in both cortical and trabecular bone, with a physiological threshold of 100 MPa considered for cortical bone. Among the models, configuration B exhibited the highest cortical stress, exceeding the physiological threshold. In contrast, configurations with uniform vertical positioning, particularly model D, demonstrated more favorable stress dispersion and lower peak values. Stress concentrations were consistently observed at the implant–abutment interface across all configurations, identifying this area as critical for design improvements. These findings underscore the importance of precise vertical alignment in implant-supported restorations to minimize stress concentrations and improve the mechanical reliability of dental implants. The results provide valuable insights for the development of next-generation implant systems with enhanced biomechanical integration and material performance under functional loading. Full article
Show Figures

Figure 1

13 pages, 4569 KiB  
Article
Biconometric Connections in Dental Implants: A Pilot Mechanical Study
by Nicole Riberti, Michele Furlani, Emanuele Tognoli, Adriano Piattelli, Luca Comuzzi, Alessandra Giuliani and Andrea Gatto
Materials 2025, 18(7), 1415; https://doi.org/10.3390/ma18071415 - 23 Mar 2025
Viewed by 1737
Abstract
Background: In dental implants, micro-gaps at the fixation–abutment interface can cause peri-implantitis and/or loosening or loss of the fixation screw; therefore, three-dimensional imaging is widely used to examine different types of connections. In the present study, we focus on the analysis on biconometric [...] Read more.
Background: In dental implants, micro-gaps at the fixation–abutment interface can cause peri-implantitis and/or loosening or loss of the fixation screw; therefore, three-dimensional imaging is widely used to examine different types of connections. In the present study, we focus on the analysis on biconometric connections to detect and (possibly) measure the presence of micro-gaps in the as-positioned state and after repeated loading and unloading. Methods: Seven biconometric dental implants were characterized using micro-computed tomography (micro-CT). In two specimens (group 1), the cap was inserted, and only the apical portion was imaged, to evaluate the cap–abutment connection; in the remaining five specimens (group 2), the fixture–abutment connection was analyzed. Two implants in group 2 were also subjected to load tests to verify whether stresses could induce the formation of micro-gaps as a consequence of preload loss. Results: Micro-CT analysis showed the absence of micro-gaps greater than 10 µm in both cap–abutment and abutment–fixture connections. This was verified, in the fixture–abutment connection, even after mechanical loading and unloading. The results were reproducible in all the investigated samples in the different experimental conditions. Conclusions: In the human force range during chewing, the conical connection showed a high level of resistance to micro-gap formation at the implant–abutment interface. The absence of micro-gaps, as demonstrated here, provides encouraging preliminary data regarding the stability of the biconometric connections, which will be further verified in follow-up studies on a larger sample size. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Second Volume)
Show Figures

Graphical abstract

23 pages, 9581 KiB  
Article
Assessment of the Impact of Bone Quality and Abutment Configuration on the Fatigue Performance of Dental Implant Systems Using Finite Element Analysis (FEA)
by Meryem Erdoğdu, Mehmet Gökberkkaan Demirel, Reza Mohammadi and Neslihan Güntekin
J. Pers. Med. 2024, 14(10), 1040; https://doi.org/10.3390/jpm14101040 - 28 Sep 2024
Cited by 3 | Viewed by 1925
Abstract
Background and Objectives: The aim of this study was to evaluate the influence of abutment angulation, types, and bone quality on fatigue performance in dental implant systems. Materials and Methods: Three-dimensional models of maxillary 3-unit fixed implant-supported prostheses were analyzed. Abutments with different [...] Read more.
Background and Objectives: The aim of this study was to evaluate the influence of abutment angulation, types, and bone quality on fatigue performance in dental implant systems. Materials and Methods: Three-dimensional models of maxillary 3-unit fixed implant-supported prostheses were analyzed. Abutments with different angles and types were used. Healthy bone (Hb) and resorbed bone (Rb) were used. Conducted on implants, a force of 150 N was applied obliquely, directed from the palatal to the buccal aspect, at a specific angle of 30 degrees. The stress distribution and fatigue performance were then evaluated considering the types of bone used and the angles of the three different abutments. The simulation aspect of the research was carried out utilizing Abaqus 2020 software. Results: In all models, fatigue strengths in healthy bone were higher than in resorbed bone. Maximum stress levels were seen in models with angled implants. In almost all models with resorbed bone, fatigue performances were slightly lower. Conclusions: Increasing the abutment angle has been shown to increase stress levels and decrease fatigue performance in the adjacent bone and along the implant–abutment interface. In general, implants applied to healthy bone were found to have a higher success rate. It has also been suggested that multiunit abutments have beneficial effects on stress distribution and fatigue performance compared to resin cemented abutments. The type or angle of abutment and the quality of the bone can lead to biomechanical changes that affect the force distribution within the bone structure surrounding the implant. Clinicians can influence the biomechanical environment of the implant site by varying the abutment angle and type to suit the condition of bone health, potentially affecting the long-term success of implant treatment. Full article
(This article belongs to the Special Issue Digital Solutions in Dentistry as the Key to Personalized Treatment)
Show Figures

Figure 1

21 pages, 14782 KiB  
Article
Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis
by Mehmet Onur Yağır, Şaduman Şen and Uğur Şen
Biomimetics 2024, 9(8), 498; https://doi.org/10.3390/biomimetics9080498 - 16 Aug 2024
Cited by 1 | Viewed by 1983
Abstract
Studies on dental implant abutments’ geometric design and material selection offer significant innovations and results. These studies aim to improve the abutments’ functionality and aesthetic performance, minimize microcavities’ formation, and ensure implant-supported prostheses’ longevity. For example, CAD-CAM fabricated custom abutments have been found [...] Read more.
Studies on dental implant abutments’ geometric design and material selection offer significant innovations and results. These studies aim to improve the abutments’ functionality and aesthetic performance, minimize microcavities’ formation, and ensure implant-supported prostheses’ longevity. For example, CAD-CAM fabricated custom abutments have been found to produce a better marginal fit and fewer microgaps than standard abutments. In an in vitro study, transepithelial abutments offered lower microgap values than titanium-based abutments and provided a better fit at the implant–abutment interface. It is known that studies to improve mechanical and biological performance with Polyether Ether Ketone (PEEK) material have been addressed. New materials such as PEEK and zirconia have offered significant advantages in biocompatibility and aesthetics. Along with those studies, different abutment designs are also important. Abutment geometry is optimized to improve stress distribution and minimize peri-implant bone loss. In implant and abutment connections with different angles, mechanical life performances may vary depending on static and dynamic load. These studies emphasize the importance of material research on different types of connections to improve dental implants’ durability, homogeneous load distribution, and reliability. The abutment parts used in implant treatment are insufficient to distribute the load homogeneously against chewing pressure due to their materials and geometry. Non-uniform load distribution damages the abutment and the prosthetic crown, accelerating the wear process. This study aimed to create different abutment designs to improve dental implants’ biomechanical performance and longevity. This study aimed to increase the mechanical durability of the implant–abutment connection by reducing stress concentrations in response to masticatory compression on the abutment in different directions and forces and to guarantee the long-term success of the implant system by providing a more homogeneous stress distribution. It aimed to apply different forces in the axial direction to these models in a simulation environment and to calculate and compare the deformation and stress load distribution. As a method, three-dimensional models of the parts used in implant treatments and forming the implant system were designed. Different abutment designs were created with these models. Taking the current material values used in implant treatments as a reference, finite element analysis (FEA) was performed by applying different axial loads to each implant system model in the ANSYS software (version 24.1). Comparative analysis graphs were prepared and interpreted for the stress values obtained after the applied load. This study evaluated the mechanical performance of different abutment models (A, B, C, D, and E) under a 100 N load using the Kruskal–Wallis test. The Kruskal–Wallis test showed significant differences between the groups (p < 0.001). The greatest difference was observed between models E and A (q′ = 6.215), with a significant difference also found between models C and A (q′ = 3.219, p < 0.005). Regarding stress values, the highest stress on the abutment was observed in Model B (97.4 MPa), while the lowest stress was observed in Model E (9.6 MPa). The crown exhibited the highest stress in Model B (22.7 MPa) and the lowest in Model E (17.3 MPa). The implant stress was highest in Model C (14.8 MPa) and lowest in Model B (11.3 MPa). The stress values for the cortical bone and cancellous bone were quite similar across the models, showing no significant differences. These findings indicate that the abutment design and material selection significantly impact mechanical performance. Among the implant systems created with five different abutment models, in which the existing abutment geometry was also compared, homogeneous and axial distribution of the load on the abutment was achieved, especially with viscoelastic and surface area increased abutment designs. Clinically, the inadequacy and limited mounting surface or geometry of the abutments used in today’s implant treatment applications have led to different design searches. It was concluded that the designs in this study, which are considered alternatives to existing abutment models, contribute positively to the mechanical life of the abutment material, considering the von Mises stresses and directions. This study brings a new perspective to today’s practices and offers an alternative to treatment practices. Full article
Show Figures

Figure 1

21 pages, 4449 KiB  
Article
Microbial Leakage through Three Different Implant–Abutment Interfaces on Morse Taper Implants In Vitro
by Ricardo Faria Ribeiro, Victor Barboza da Mata, Lucas de Oliveira Tomaselli, Anselmo Agostinho Simionato, Emerson de Souza Santos, Adriana Cláudia Lapria Faria, Renata Cristina Silveira Rodrigues and Cássio do Nascimento
Dent. J. 2024, 12(7), 226; https://doi.org/10.3390/dj12070226 - 19 Jul 2024
Cited by 1 | Viewed by 1364
Abstract
The objective of this study was to evaluate microbial leakage by means of genome counts, through the implant–abutment interface in dental implants with different Morse taper abutments. Fifty-six samples were prepared and divided in four groups: CMC TB (14 Cylindrical Implants–14 TiBase Abutments), [...] Read more.
The objective of this study was to evaluate microbial leakage by means of genome counts, through the implant–abutment interface in dental implants with different Morse taper abutments. Fifty-six samples were prepared and divided in four groups: CMC TB (14 Cylindrical Implants–14 TiBase Abutments), CMX TB (14 Conical Implants–14 TiBase Abutments), CMX PU (14 Conical Implants–14 Universal Abutment) and CMX U (14 Tapered Implants–14 UCLA Abutments). Assemblies had their interface submerged in saliva as the contaminant. Samples were subjected either to thermomechanical cycling (2 × 106 mechanical cycles with frequency of 5 Hz and load of 120 N simultaneously with thermal cycles of 5–55 °C) or thermal cycling (5–55 °C). After cycling, the contents from the inner parts of assemblies were collected and analyzed using the Checkerboard DNA–DNA hybridization technique. Significant differences in the total genome counts were found after both thermomechanical or thermal cycling: CMX U > CMX PU > CMX TB > CMC TB. There were also significant differences in individual bacterial counts in each of the groups (p < 0.05). Irrespective of mechanical cycling, the type of abutment seems to influence not only the total microbial leakage through the interface, but also seems to significantly reflect differences considering individual target species. Full article
Show Figures

Figure 1

11 pages, 463 KiB  
Article
Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate
by Ilton José Mafra, Dimorvan Bordin, Rafael S. Siroma, Vittorio Moraschini, Leonardo P. Faverani, João Gabriel Souza, Carlos Fernando Mourão and Jamil Awad Shibli
Dent. J. 2024, 12(6), 181; https://doi.org/10.3390/dj12060181 - 13 Jun 2024
Cited by 1 | Viewed by 1879
Abstract
The present short-term retrospective study evaluated the implant survival rate and peri-implant bone loss around additive-manufactured titanium implants placed in sinuses grafted with Plenum Osshp (Plenum Bioengenharia, Jundia, SP, Brazil) (70HA:30β-TCP) material. A total of 39 implants were inserted after 23 sinus floor [...] Read more.
The present short-term retrospective study evaluated the implant survival rate and peri-implant bone loss around additive-manufactured titanium implants placed in sinuses grafted with Plenum Osshp (Plenum Bioengenharia, Jundia, SP, Brazil) (70HA:30β-TCP) material. A total of 39 implants were inserted after 23 sinus floor elevation procedures in 16 consecutive patients. Prosthetic rehabilitation included fixed partial prostheses (three units), single crowns (eleven units), and fixed full arches (three units). Clinical and radiographic parameters of implant-supported restorations were evaluated after at least one year of occlusal loading. The implant–crown success criteria included the absence of pain, suppuration, and clinical mobility, an average distance between the implant shoulder and the first visible bone contact (DIB) < 1.0 mm from the initial surgery, and the absence of prosthetic complications at the implant–abutment interface. The overall cumulative implant survival rate was 97.43%. No prosthetic complications at the implant–abutment interface were reported. After one year, the mean DIB was 0.23 mm ± 0.14. Within the limits of this retrospective study, it can be concluded that 70 HA:30 β-TCP allowed stable and reliable bone support to maintain healthy conditions around titanium dental implants produced by additive manufacturing. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

12 pages, 3435 KiB  
Article
The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method
by Eser Pala, Ismail Ozdemir, Thomas Grund and Thomas Lampke
Crystals 2024, 14(1), 20; https://doi.org/10.3390/cryst14010020 - 24 Dec 2023
Cited by 4 | Viewed by 2527
Abstract
Dental implant fracture is closely connected to the stress buildup surrounding the implant system during static loading. In areas where the cross-section of the implant rapidly changes or where the geometry of the implant system has discontinuities, stress concentrations arise. Therefore, the implant’s [...] Read more.
Dental implant fracture is closely connected to the stress buildup surrounding the implant system during static loading. In areas where the cross-section of the implant rapidly changes or where the geometry of the implant system has discontinuities, stress concentrations arise. Therefore, the implant’s design is crucial in preventing early failure of the implant system, including fracture, screw loosening, and increased leakage, in addition to reducing stresses at the implant–abutment interface. In the current work, three-dimensional (3D) models of mechanically connected Ti6-Al-4V implant systems in various dimensions were constructed. Finite element analysis (FEA) was used to conduct a stress study of the created implants under actual acting force static loading conditions in accordance with ISO 14801. In the created models, design elements including implant screw type, thickness, and taper angle of abutment were modified in order to increase the longevity of the implants. The results show that the equivalent stress level was dramatically reduced from 596.22 MPa to 212.72 MPa in the implant model, which exhibits a more homogeneous stress pattern under static loading conditions. By increasing the implant wall thickness from 0.15 mm to 0.40 mm in the region adjacent to the abutment, the stress levels, especially at the internal screw, were significantly reduced. Also, the design modification in Model B, establishing contact between the abutment and the upper part of the conical surface of the implant, resulted in a decrease in stress in the internal screw. Thus, enhanced homogeneity in stress distribution not only improves the harmony between the implant and surrounding tissues, thus increasing patient comfort and reducing the risk of complications, but also holds promise for the development of new implants capable of withstanding the forces encountered in the oral environment due to the relatively smoother stress transmission observed in this model. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 6434 KiB  
Article
Implant-Supported Fixed Partial Dentures with Posterior Cantilevers: In Vitro Study of Mechanical Behavior
by Fernando García-Sala Bonmatí, Naia Bustamante-Hernández, Jorge Alonso Pérez-Barquero, Jesús Maneiro-Lojo, Carla Fons-Badal, Carla Labaig-Caturla, Lucía Fernández-Estevan and Rubén Agustín-Panadero
Materials 2023, 16(20), 6805; https://doi.org/10.3390/ma16206805 - 22 Oct 2023
Cited by 1 | Viewed by 2013
Abstract
Rehabilitation with dental implants is not always possible due to the lack of bone quality or quantity, in many cases due to bone atrophy or the morbidity of regenerative treatments. We find ourselves in situations of performing dental prostheses with cantilevers in order [...] Read more.
Rehabilitation with dental implants is not always possible due to the lack of bone quality or quantity, in many cases due to bone atrophy or the morbidity of regenerative treatments. We find ourselves in situations of performing dental prostheses with cantilevers in order to rehabilitate our patients, thus simplifying the treatment. The aim of this study was to analyze the mechanical behavior of four types of fixed partial dentures with posterior cantilevers on two dental implants (convergent collar and transmucosal internal connection) through an in vitro study (compressive loading and cyclic loading). This study comprised four groups (n = 76): in Group 1, the prosthesis was screwed directly to the implant platform (DS; n = 19); in Group 2, the prosthesis was screwed to the telescopic interface on the implant head (INS; n = 19); in Group 3, the prosthesis was cemented to the telescopic abutment (INC; n = 19); and in Group 4, the prosthesis was cemented to the abutment (DC; n = 19). The sets were subjected to a cyclic loading test (80 N load for 240,000 cycles) and compressive loading test (100 KN load at a displacement rate of 0.5 mm/min), applying the load until failure occurred to any of the components at the abutment–prosthesis–implant interface. Subsequently, an optical microscopy analysis was performed to obtain more data on what had occurred in each group. Results: Group 1 (direct screw-retained prosthesis, DS) obtained the highest mean strength value of 663.5 ± 196.0 N. The other three groups were very homogeneous: 428.4 ± 63.1 N for Group 2 (INS), 486.7 ± 67.8 N for Group 3 (INC), and 458.9 ± 38.9 N for Group 4 (DC). The mean strength was significantly dependent on the type of connection (p < 0.001), and this difference was similar for all of the test conditions (cyclic and compressive loading) (p = 0.689). Implant-borne prostheses with convergent collars and transmucosal internal connections with posterior cantilevers screwed directly to the implant connection are a good solution in cases where implant placement cannot avoid extensions. Full article
Show Figures

Figure 1

12 pages, 5155 KiB  
Article
Influence of the Use of Transepithelial Abutments vs. Titanium Base Abutments on Microgap Formation at the Dental Implant–Abutment Interface: An In Vitro Study
by Rocío Cascos, Alicia Celemín-Viñuela, Nataly Mory-Rubiños, Cristina Gómez-Polo, Rocío Ortega, Rubén Agustín-Panadero and Miguel Gómez-Polo
Materials 2023, 16(19), 6532; https://doi.org/10.3390/ma16196532 - 1 Oct 2023
Cited by 4 | Viewed by 3946
Abstract
This in vitro study aimed to assess the presence of microgaps at the implant–abutment interface in monolithic zirconia partial implant-supported fixed prostheses on transepithelial abutments versus Ti-base abutments. Methods: Sixty conical connection dental implants were divided into two groups (n = 30). [...] Read more.
This in vitro study aimed to assess the presence of microgaps at the implant–abutment interface in monolithic zirconia partial implant-supported fixed prostheses on transepithelial abutments versus Ti-base abutments. Methods: Sixty conical connection dental implants were divided into two groups (n = 30). The control group consisted of three-unit bridge monolithic zirconia connected to two implants by a transepithelial abutment. The test group consisted of monolithic zirconia three-unit restoration connected to two implants directly by a titanium base (Ti-base) abutment. The sample was subjected to thermocycling (10,000 cycles at 5 °C to 55 °C, dwelling time 50 s) and chewing simulation (300,000 cycles, under 200 N at frequencies of 2 Hz, at a 30° angle). The microgap was evaluated at six points (mesiobuccal, buccal, distobuccal, mesiolingual, lingual, and distolingual) of each implant–abutment interface by using a scanning electron microscope (SEM). The data were analyzed using the Mann–Whitney U tests (p > 0.05). Results: The SEM analysis showed a smaller microgap at the implant–abutment interface in the control group (0.270 μm) than in the test group (3.902 μm). Statistically significant differences were observed between both groups (p < 0.05). Conclusions: The use or not of transepithelial abutments affects the microgap size. The transepithelial abutments group presented lower microgap values at the interface with the implant than the Ti-base group in monolithic zirconia partial implant-supported fixed prostheses. However, both groups had microgap values within the clinically acceptable range. Full article
Show Figures

Figure 1

12 pages, 720 KiB  
Review
Influence of Implant–Abutment Connection Biomechanics on Biological Response: A Literature Review on Interfaces between Implants and Abutments of Titanium and Zirconia
by Sunyoung Choi, Young Suk Kang and In-Sung Luke Yeo
Prosthesis 2023, 5(2), 527-538; https://doi.org/10.3390/prosthesis5020036 - 1 Jun 2023
Cited by 25 | Viewed by 9858
Abstract
The interface between a dental implant and an abutment is stabilized by two mechanical characteristics: a preload of an abutment screw and the friction between the contact surfaces of the implant and the abutment. These mechanical properties are quantitatively analyzed by using physical [...] Read more.
The interface between a dental implant and an abutment is stabilized by two mechanical characteristics: a preload of an abutment screw and the friction between the contact surfaces of the implant and the abutment. These mechanical properties are quantitatively analyzed by using physical and mechanical formulas. The important thing is that such mechanical properties cause various biological phenomena when medical devices are inserted into human bodies. Some mechanical complications in dental implant prostheses are closely associated with biological complications. This literature review explores the mechanical complications of the implant–abutment connection and their biological effects in a titanium dental implant system, which is the system most widely used in dental clinics. Understanding the biomechanics of the implant–abutment connection helps to predict the merits and limits of zirconia dental implants, which have been recently introduced and clinically applied. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

9 pages, 2292 KiB  
Article
The Fracture Resistance of Additively Manufactured Monolithic Zirconia vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of Ceramic Crowns: An In Vitro Study
by Amirali Zandinejad, Marta Revilla-León, Mohammad Mujtaba Methani, Leila Nasiry Khanlar and Dean Morton
Dent. J. 2021, 9(10), 115; https://doi.org/10.3390/dj9100115 - 8 Oct 2021
Cited by 17 | Viewed by 4008
Abstract
(1) Background: This study compared the fracture resistance of additively manufactured monolithic zirconia and bi-layered alumina toughened zirconia crowns on implants. (2) Methods: Maxillary model with a dental implant replacing right second bicuspid was obtained. Custom abutments and full-contour crowns for additively manufactured [...] Read more.
(1) Background: This study compared the fracture resistance of additively manufactured monolithic zirconia and bi-layered alumina toughened zirconia crowns on implants. (2) Methods: Maxillary model with a dental implant replacing right second bicuspid was obtained. Custom abutments and full-contour crowns for additively manufactured monolithic zirconia and bi-layered alumina reinforced zirconia crowns (n = 10) were fabricated. The crowns were cemented to implant-supported zirconia abutments and the assembly fixed onto resin blocks. Fracture resistance was measured using a universal testing machine at a crosshead speed of 2 mm/min. A Kruskal–Wallis test was used to analyze the data. (3) Results: Although additively manufactured monolithic zirconia crowns demonstrated a higher mean fracture resistance than bi-layered alumina toughened zirconia crowns, statistical analysis revealed no significant difference in fracture resistance between the two groups. All specimens fractured at the implant–abutment interface. (4) Conclusions: Additively manufactured bi-layered alumina toughened zirconia crowns demonstrated similar fracture resistance to additively manufactured monolithic zirconia crowns when cemented to implant-supported zirconia abutments. Full article
Show Figures

Figure 1

15 pages, 443 KiB  
Review
Factors Influencing Marginal Bone Loss around Dental Implants: A Narrative Review
by Jakub Kowalski, Barbara Lapinska, Joseph Nissan and Monika Lukomska-Szymanska
Coatings 2021, 11(7), 865; https://doi.org/10.3390/coatings11070865 - 19 Jul 2021
Cited by 40 | Viewed by 13632
Abstract
Implant supported dental prostheses are increasingly used in dental practice. The aim of this narrative review is to present the influence of transmucosal surface of prosthetic abutment and implant on peri-implant tissue. The article describes causes of bone loss around the dental implant. [...] Read more.
Implant supported dental prostheses are increasingly used in dental practice. The aim of this narrative review is to present the influence of transmucosal surface of prosthetic abutment and implant on peri-implant tissue. The article describes causes of bone loss around the dental implant. Moreover, properties of different materials are compared and discussed. The advantages, disadvantages, and biomechanical concept of different implant-abutment connections are presented. The location of connections in relation to the bone level and the influence of microgap between the abutment and implant are described. Additionally, the implant abutments for cemented and screwed prosthetic restorations are compared. The influence of implant and abutment surface at the transmucosal level on peri-implant soft tissue is discussed. Finally, the biological aspect of abutment-implant connection is analyzed. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments)
Show Figures

Figure 1

9 pages, 2554 KiB  
Communication
Survival Rate and Deformation of External Hexagon Implants with One-Piece Zirconia Crowns
by Marco Antonio Bottino, Flávio Rosa de Oliveira, Clarice Ferreira Sabino, José Cícero Dinato, Laís Regiane Silva-Concílio and João Paulo Mendes Tribst
Metals 2021, 11(7), 1068; https://doi.org/10.3390/met11071068 - 2 Jul 2021
Cited by 9 | Viewed by 2680
Abstract
This study aimed to evaluate the survival rates of several external hexagon implants directly connected to zirconia crowns after thermomechanical fatigue. The deformation of the hexagons and the integrity of zirconia crowns were also evaluated. A monolithic zirconia crown (Y-TZP) and four different [...] Read more.
This study aimed to evaluate the survival rates of several external hexagon implants directly connected to zirconia crowns after thermomechanical fatigue. The deformation of the hexagons and the integrity of zirconia crowns were also evaluated. A monolithic zirconia crown (Y-TZP) and four different external hexagon dental implants (n = 10, N = 40) were mounted together and embedded in polyurethane. The specimens were subjected to thermomechanical cycling for 2.5 × 106 cycles, at 3.0 Hz frequency, at 200 N loading. The interface of the implant/zirconia crown system, zirconia crowns integrity before and after cycling, and the implant hexagon surface were evaluated under stereomicroscopy and SEM. A nanohardness analysis was performed to verify the hardness of zirconia and implants. Statistical analysis was performed using the Kaplan-Meier test, Multi-Sample Survival Tests, Logrank Test, (p = 0.05). The data did not show significant differences in the survival rates of different implant groups. However, some crowns presented fractures (16.67%) and the external hexagon region of the implants presented plastic deformations (100%). During chewing simulation, the interface between titanium implant and zirconia abutment can promote plastic deformation in the metal and surface defects in the ceramic. In addition, the types of interface defects can be affected by the external hexagon design. Full article
(This article belongs to the Section Biobased and Biodegradable Metals)
Show Figures

Figure 1

13 pages, 4290 KiB  
Article
Effect of Fabrication Technique on the Microgap of CAD/CAM Cobalt–Chrome and Zirconia Abutments on a Conical Connection Implant: An In Vitro Study
by Pedro Molinero-Mourelle, Rocio Cascos-Sanchez, Burak Yilmaz, Walter Yu Hang Lam, Edmond Ho Nang Pow, Jaime Del Río Highsmith and Miguel Gómez-Polo
Materials 2021, 14(9), 2348; https://doi.org/10.3390/ma14092348 - 30 Apr 2021
Cited by 22 | Viewed by 3558
Abstract
The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered [...] Read more.
The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered and castable) and Zirconia (milled)). After chewing simulation (300,000 cycles, under 200 N loads at 2 Hz at a 30° angle) and thermocycling (10,000 cycles, 5 to 50 °C, dwelling time 55 s), the implant–abutment microgap was measured 14 times at each of the four anatomical aspects on each specimen by using a scanning electron microscope (SEM). Kruskal–Wallis and pair-wise comparison were used to analyze the data (α = 0.05). Results: The SEM analysis revealed smaller microgaps with Co–Cr milled abutments (0.69–8.39 μm) followed by Zr abutments (0.12–6.57 μm), Co–Cr sintered (7.31–25.7 μm) and cast Co–Cr (1.68–85.97 μm). Statistically significant differences were found between milled and cast Co–Cr, milled and laser-sintered Co–Cr, and between Zr and cast and laser-sintered Co–Cr (p < 0.05). Conclusions: The material and the abutment fabrication technique affected the implant–abutment microgap magnitude. The Zr and the milled Co–Cr presented smaller microgaps. Although the CAD/CAM abutments presented the most favorable values, all tested groups had microgaps within a range of 10 to 150 μm. Full article
(This article belongs to the Special Issue Ceramic Materials for Dental Implant and CAD-CAM Prostheses)
Show Figures

Figure 1

Back to TopTop