Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = dental bone substitutes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5728 KiB  
Review
Clinical Application of rhBMP-2 and Three-Dimensinal Preformed Titanium Mesh with Allograft and Xenograft for Peri-Implant Horizontal and Vertical Bone Augmentation–A Narrative Review with Technical Report
by Yeong Wook Kim, Saverio Cosola, Young Sam Kim, Young Min Park, Ugo Covani, Aimone Fabbri and Giovanni Battista Menchini-Fabris
J. Clin. Med. 2025, 14(13), 4788; https://doi.org/10.3390/jcm14134788 - 7 Jul 2025
Viewed by 629
Abstract
The reconstruction of a severely resorbed alveolar bone is a significant challenge in dental implantology and maxillofacial surgery. Traditional bone grafting materials, including autogenous, allogeneic, xenogeneic, and alloplastic materials, have limitations such as donor site morbidity, limited availability, and prolonged maturation periods. To [...] Read more.
The reconstruction of a severely resorbed alveolar bone is a significant challenge in dental implantology and maxillofacial surgery. Traditional bone grafting materials, including autogenous, allogeneic, xenogeneic, and alloplastic materials, have limitations such as donor site morbidity, limited availability, and prolonged maturation periods. To address these challenges, recombinant human bone morphogenetic protein-2 (rhBMP-2) has emerged as a potent osteoinductive factor that facilitates bone regeneration without the need for additional donor site surgery. This study introduces a box technique which combines rhBMP-2 (CowellBMP®, Cowellmedi, Busan, Republic of Korea) with a 3D-preformed titanium mesh (3D-PFTM), utilizing a mixture of allografts and xenografts for horizontal and vertical alveolar ridge augmentation. The technique leverages the structural stability provided by the OssBuilder® (Osstem, Seoul, Republic of Korea), a preformed titanium mesh, that allows for simultaneous implant placement and vertical ridge augmentation. This technique not only reduces the treatment time compared to traditional methods but also minimizes post-operative discomfort by eliminating the need for autogenous bone harvesting. Clinical outcomes from this technique demonstrate successful bone regeneration within a shorter period than previously reported techniques, with excellent bone quality and implant stability being observed just four months after vertical augmentation. In conclusion, the so called BOXAM (BMP-2, Oss-builder, Xenograft, Allograft, Maintenance) technique presents a promising therapeutic strategy for alveolar bone reconstruction, particularly in cases of severe bone resorption. Further studies are needed to evaluate the long-term outcomes and potential limitations of this approach, especially in scenarios where the inferior alveolar nerve proximity poses challenges for fixture placement. Full article
Show Figures

Figure 1

18 pages, 4774 KiB  
Article
Analysis of Implant Osseointegration, Bone Repair, and Sinus Mucosa Integrity Using Bio-Oss® and Hyaluronic Acid-Polynucleotide Gel (Regenfast®) in Maxillary Sinus Augmentation in Rabbits
by Hiroyuki Omori, Daniele Botticelli, Erick Ricardo Silva, Samuel Porfirio Xavier, Sérgio Luis Scombatti de Souza, Kaoru Kusano and Shunsuke Baba
Dent. J. 2025, 13(7), 293; https://doi.org/10.3390/dj13070293 - 28 Jun 2025
Viewed by 546
Abstract
Background: The combination of polynucleotides and hyaluronic acid with bovine bone grafts in maxillary sinus lift procedures appears to be a promising strategy to enhance bone regeneration. This study aimed to analyze implant osseointegration, bone repair and sinus mucosa integrity using Bio-Oss® [...] Read more.
Background: The combination of polynucleotides and hyaluronic acid with bovine bone grafts in maxillary sinus lift procedures appears to be a promising strategy to enhance bone regeneration. This study aimed to analyze implant osseointegration, bone repair and sinus mucosa integrity using Bio-Oss® and Hyaluronic Acid-Polynucleotide Gel (Regenfast®) in maxillary sinus augmentation in rabbits. Methods: Sinus floor elevation was performed in 12 rabbits, with one implant placed per sinus simultaneously. In the control group, sinuses were grafted with deproteinized bovine bone mineral (Bio-Oss®) alone; in the test group, Bio-Oss® was combined with Regenfast®. Two histological slides were obtained per sinus after 2 weeks (six animals) and 10 weeks (six animals): one from the grafted area alone (non-implant sites), and one from the implant site. Primary outcome variables included the percentage of newly formed bone, the extent of implant osseointegration, and the number of sinus mucosa perforations caused by contact with graft granules. Results: After 10 weeks of healing, the test group showed a significantly higher percentage of new bone formation (37.2 ± 6.7%) compared to the control group (26.8 ± 10.0%; p = 0.031); osseointegration extended to the implant apex in both groups; fewer sinus mucosa perforations were observed in the test group (n = 5) than in the control group (n = 14). Conclusions: The addition of Regenfast® to Bio-Oss® granules promoted enhanced bone regeneration within the elevated sinus area and was associated with a lower incidence of sinus membrane perforations compared to the use of Bio-Oss® alone. Full article
Show Figures

Figure 1

19 pages, 4384 KiB  
Article
Porous Osteoplastic Composite Materials Based on Alginate–Pectin Complexes and Cation-Substituted Hydroxyapatites
by Galina A. Davydova, Inna V. Fadeeva, Elena S. Trofimchuk, Irina I. Selezneva, Muhriddin T. Mahamadiev, Lenar I. Akhmetov, Daniel S. Yakovsky, Vadim P. Proskurin, Marco Fosca, Viktoriya G. Yankova, Julietta V. Rau and Vicentiu Saceleanu
Polymers 2025, 17(13), 1744; https://doi.org/10.3390/polym17131744 - 23 Jun 2025
Viewed by 665
Abstract
Novel three-dimensional porous composites of alginate–pectin (A/P) with zinc- or manganese-substituted hydroxyapatites (A/P-ZnHA and A/P-MnHA) were synthesized via lyophilization and calcium cross-linking. Powder X-ray diffraction and infrared spectroscopy analyses confirmed single-phase apatite formation (crystallite sizes < 1 µm), with ZnHA exhibiting lattice contraction [...] Read more.
Novel three-dimensional porous composites of alginate–pectin (A/P) with zinc- or manganese-substituted hydroxyapatites (A/P-ZnHA and A/P-MnHA) were synthesized via lyophilization and calcium cross-linking. Powder X-ray diffraction and infrared spectroscopy analyses confirmed single-phase apatite formation (crystallite sizes < 1 µm), with ZnHA exhibiting lattice contraction (*c*-axis: 6.881 Å vs. 6.893 Å for HA). Mechanical testing revealed tunable properties: pristine A/P sponges exhibited an elastic modulus of 4.7 MPa and a tensile strength of 0.10 MPa, reduced by 30–70% by HA incorporation due to increased porosity (pore sizes: 112 ± 18 µm in the case of MnHA vs. 148 ± 23 µm-ZnHA). Swelling capacity increased 2.3–2.8-fold (125–155% vs. 55% for A/P), governed by polysaccharide interactions. Scanning electron microscopy investigation showed microstructural evolution from layered A/P (<100 µm) to tridimensional architectures with embedded mineral particles. The A/P-MnHA composites demonstrated minimal cytotoxicity for the NCTC cells and good viability of dental pulp stem cells, while A/P-ZnHA caused ≈20% metabolic suppression, attributed to hydrolysis-induced acidification. Antibacterial assays highlighted A/P-MnHA′s broad-spectrum efficacy against Gram-positive (Bacillus atrophaeus) and Gram-negative (Pseudomonas protegens) strains, whereas A/P-ZnHA targeted only the Gram-positive strain. The developed composite sponges combine cytocompatibility and antimicrobial activity, potentially advancing osteoplastic materials for bone regeneration and infection control in orthopedic/dental applications. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

15 pages, 1994 KiB  
Article
A Histologic Study on the Use of Tooth as a Graft Material in Oral Surgery: Analysis of 187 Samples
by Elio Minetti, Silvio Taschieri and Stefano Corbella
Materials 2025, 18(11), 2518; https://doi.org/10.3390/ma18112518 - 27 May 2025
Viewed by 426
Abstract
Background: To reconstruct and maintain hard tissues over time, it is necessary to follow effective protocols and use appropriate materials. The selection of the graft material and its properties can also affect the final outcomes. For this purpose, numerous graft materials have [...] Read more.
Background: To reconstruct and maintain hard tissues over time, it is necessary to follow effective protocols and use appropriate materials. The selection of the graft material and its properties can also affect the final outcomes. For this purpose, numerous graft materials have been suggested. Among the valuable alternatives to these biomaterials, interest in using teeth as graft material has grown in recent years. Aim: The aim of the study was to investigate the histomorphometric outcomes of using tooth-derived materials when used as a bone substitute. Methods: We evaluated the histological results of autologous demineralized tooth graft material prepared using a Tooth Transformer device. A total of 187 histological samples from 186 subjects (52% male and 48% female, with an average age of 56.30 ± 12.97 years) were analyzed. The analysis focused on the total bone volume (BV%), residual tooth material (residual graft, TT%), and vital bone (VB%). The differences between the presence and absence of the resorbable membrane were also analyzed. Results: The amount of VB was 36.28 ± 19.09%, the residual graft TT was 9.6 ± 10.76%, and 46.96 ± 13.85% was the total bone volume (BV). The presence of membrane increased the amount of BV% and reduced the time to produce bone. Conclusions: The procedure using demineralized autologous tooth-derived biomaterial may be a predictable method for producing new vital bone capable of supporting dental implant rehabilitation and the use of membrane allow better results. Full article
(This article belongs to the Special Issue Dental Materials in Modern Implant Dentistry)
Show Figures

Graphical abstract

26 pages, 3380 KiB  
Review
Novel Applications of Natural Biomaterials in Dentistry—Properties, Uses, and Development Perspectives
by Magdalena Paczkowska-Walendowska, Maciej Kulawik, Jakub Kwiatek, Dimitrios Bikiaris and Judyta Cielecka-Piontek
Materials 2025, 18(9), 2124; https://doi.org/10.3390/ma18092124 - 5 May 2025
Cited by 1 | Viewed by 1958
Abstract
Natural biomaterials have gained significant attention in modern dentistry due to their biocompatibility, biodegradability, and low immunogenicity. These materials, including alginate, cellulose, chitosan, collagen, and hydroxyapatite, have been widely explored for their applications in stomatology. They play a crucial role in periodontal disease [...] Read more.
Natural biomaterials have gained significant attention in modern dentistry due to their biocompatibility, biodegradability, and low immunogenicity. These materials, including alginate, cellulose, chitosan, collagen, and hydroxyapatite, have been widely explored for their applications in stomatology. They play a crucial role in periodontal disease treatment, caries prevention, and implantology, providing an alternative to synthetic materials. Natural polymers such as chitosan and cellulose are utilized in drug delivery systems and tissue regeneration, while hydroxyapatite serves as a bone substitute due to its osteoconductive properties. Collagen-based scaffolds and coatings enhance periodontal and bone tissue regeneration. Additionally, bioengineered and chemically modified biomaterials offer improved mechanical and biological characteristics, expanding their clinical applications. This review aims to provide a comprehensive analysis of the biological properties, advantages, and limitations of selected natural biomaterials in dentistry. It explores their applications in various aspects of stomatology, including periodontal disease prevention and regeneration, dental caries prevention, bone substitutes in implantology, and dental implant coating. Although natural biomaterials exhibit promising properties, further research is necessary to refine their performance, enhance stability, and ensure long-term safety. Advancements in nanotechnology and bioengineering continue to drive the development of innovative natural biomaterials, paving the way for more effective and biocompatible dental therapies. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Graphical abstract

10 pages, 6229 KiB  
Article
Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering
by Jaqueline Silva dos Santos, Ana Carla Gonçales Souza, Ricardo Fantasia, Rafael Cury Cecato, Gabriela Aline Dias, Victor Eduardo de Souza Batista, Roberta Okamoto and Fellippo Ramos Verri
Coatings 2025, 15(3), 297; https://doi.org/10.3390/coatings15030297 - 4 Mar 2025
Viewed by 954
Abstract
Synthetic bone substitutes based on hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are widely used in regenerative dentistry due to their favorable biocompatibility and osteoconductive properties. This study aimed to evaluate, through laboratory-based analyses, the porosity and surface characteristics of the Nanosynt Block (FGM [...] Read more.
Synthetic bone substitutes based on hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are widely used in regenerative dentistry due to their favorable biocompatibility and osteoconductive properties. This study aimed to evaluate, through laboratory-based analyses, the porosity and surface characteristics of the Nanosynt Block (FGM Dental Group®) for bone regeneration applications. The Nanosynt Block, consisting of 60% HA and 40% β-TCP, was analyzed using scanning electron microscopy (SEM) for surface morphology characterization, micro-computed tomography (Micro-CT) for internal structure evaluation, and mercury intrusion porosimetry for porosity assessment. SEM imaging followed the ASTM E1829-02 standard, while Micro-CT and porosimetry provided detailed quantitative data. SEM analysis revealed a homogeneous pore distribution on the surface. Micro-CT indicated high structural stability and consistent volumetric porosity, ranging from 73.27% to 77.08%. Porosimetry indicated a total porosity of 94.9%, with a median pore diameter of 799 nm, characteristics suitable for promoting cellular adhesion and fluid infiltration. The structural and morphological properties of the Nanosynt Block highlight its potential to support initial bone formation and mechanical stability in clinical applications. These findings provide a robust basis for subsequent in vivo investigations to validate its clinical efficacy. Full article
(This article belongs to the Special Issue Machine Learning-Driven Advancements in Coatings)
Show Figures

Figure 1

14 pages, 2845 KiB  
Article
Assessment of Fluoride-Releasing Materials in Remineralization of Adjacent Demineralized Enamel
by Onsinee Puttipanampai, Piyaphong Panpisut and Thanya Sitthisettapong
Appl. Sci. 2025, 15(4), 2077; https://doi.org/10.3390/app15042077 - 16 Feb 2025
Cited by 2 | Viewed by 1297
Abstract
This study aimed to evaluate the ability of fluoride-releasing restorative materials to remineralize artificially demineralized proximal enamel adjacent to class II restorations. Fifty-four demineralized enamel lesions were created on extracted premolar teeth, and the baseline lesion depth (LD) and mineral density (MD) were [...] Read more.
This study aimed to evaluate the ability of fluoride-releasing restorative materials to remineralize artificially demineralized proximal enamel adjacent to class II restorations. Fifty-four demineralized enamel lesions were created on extracted premolar teeth, and the baseline lesion depth (LD) and mineral density (MD) were measured using micro-CT. The samples were randomly assigned to one of four groups, each in contact with a class II restorative material: Filtek Z350 XT™ (FZ), Cention N® (CN), Fuji II LC® (FJ), or Equia Forte® (EQ). Finally, post 14 days of pH cycling, measurements were taken. SEM, EDX, and Raman Imaging Microscopy were additionally performed. The results showed significant reductions in LD for all fluoride-releasing materials (CN, FJ, EQ). EQ and CN showed a significantly higher percentage change in LD than FZ. The MD of adjacent demineralized enamel increased significantly in all groups. There was no significant difference in the percentage change in MD between groups. SEM-EDX images revealed greater mineral deposition in fluoride-releasing materials than FZ. The Ca/P ratio of demineralized enamel adjacent to CN was equal to that of EQ, while FJ demonstrated the highest ratio. In conclusion, fluoride-releasing materials exhibited a reduction in the LD of adjacent demineralized enamel and demonstrated Ca/P ratios higher than FZ. CN may be an alternative restorative material to remineralize adjacent demineralized enamel. Full article
(This article belongs to the Special Issue Bioactive Dental Materials: A Paradigm Shift in Dentistry?)
Show Figures

Figure 1

13 pages, 2031 KiB  
Article
Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study
by Valessa F. Carvalho, João Garcez-Filho, Roberta Okamoto, Paula B. Frigério, Priscila L. Santos, Arthur B. Novaes Junior, Michel R. Messora and Mario Taba Jr
Appl. Sci. 2025, 15(2), 993; https://doi.org/10.3390/app15020993 - 20 Jan 2025
Viewed by 995
Abstract
This study evaluated the clinical and tomographic outcomes of socket healing. Immediate implants were placed in the molar area, and the gap was filled with either deproteinized bovine bone mineral (B) or collagen matrix (BM), n = 14/group. Scores of epithelization healing, immunoassay [...] Read more.
This study evaluated the clinical and tomographic outcomes of socket healing. Immediate implants were placed in the molar area, and the gap was filled with either deproteinized bovine bone mineral (B) or collagen matrix (BM), n = 14/group. Scores of epithelization healing, immunoassay for VEGF, IL-1β, and FGF from wound exudate, keratinized mucosa variation (ΔKM), and bone levels were evaluated. The B group had slower tissue maturation than BM (p < 0.05), but gingival epithelialization was similar (p > 0.05). At the restorative phase, the B group exhibited greater ΔKM at prosthesis installation—1 to 2 months of postoperative (increase of 0.29 mm) compared to the BM group (reduction of −1.5 mm) (p < 0.05). Inflammatory tissue responses as well as vertical and horizontal bone remodeling were similar (p > 0.05). Crestal bone remodeling was limited to less than 0.8 mm for both groups. Taken together, the B and BM groups behaved similarly and promoted stable conditions for biomaterial incorporation in the socket healing after immediate implant placement in molar areas. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

16 pages, 7531 KiB  
Article
Mg-Doped Carbonated Hydroxyapatite and Tricalcium Phosphate Anodized Coatings on Titanium Implant Alloys
by Amisha Parekh, Maggie Moore, Amol V. Janorkar and Michael D. Roach
Appl. Sci. 2024, 14(24), 11831; https://doi.org/10.3390/app142411831 - 18 Dec 2024
Cited by 4 | Viewed by 1336
Abstract
The rising demand for dental and orthopedic implants and their frequent aseptic loosening failure mode necessitate the drive to continue modifying implant surfaces to improve osseointegration outcomes. Plasma-sprayed hydroxyapatite coatings are widely used but are prone to delamination. This study involves a single-step [...] Read more.
The rising demand for dental and orthopedic implants and their frequent aseptic loosening failure mode necessitate the drive to continue modifying implant surfaces to improve osseointegration outcomes. Plasma-sprayed hydroxyapatite coatings are widely used but are prone to delamination. This study involves a single-step anodization process utilizing a novel electrolyte to produce Mg-doped carbonated hydroxyapatite and tricalcium phosphate-containing coatings on four titanium alloy surfaces. XRD confirmed hydroxyapatite and tricalcium phosphate formation, with FTIR examination revealing carbonate substitutions indicative of bone-like apatite formation in each oxide. SEM analyses revealed micro- and nano-scaled surface features on each oxide. SEM and EDS analyses of the oxide coating cross-sections showed each group to be bi-layered with an inner titanium dioxide-rich layer and an outer hydroxyapatite/tricalcium phosphate-rich layer. The oxide layer adhesion quality was shown to be good on CPTi, TAV, and TiMo α + β implant alloy surfaces. Unfortunately, the anodization process also resulted in an undesirable and embrittling omega phase at the substrate–oxide interface due to the migration of molybdenum into the inner oxide. Nonetheless, the anodized coatings on the CPTi and TAV alloy substrates, which are the most widely used titanium alloys for implant applications, show much potential for improving future patient outcomes. Full article
Show Figures

Figure 1

24 pages, 2440 KiB  
Review
Hydroxyapatite from Mollusk Shells: Characteristics, Production, and Potential Applications in Dentistry
by Florin Lucian Muntean, Iustin Olariu, Diana Marian, Teodora Olariu, Emanuela Lidia Petrescu, Tudor Olariu and George Andrei Drăghici
Dent. J. 2024, 12(12), 409; https://doi.org/10.3390/dj12120409 - 16 Dec 2024
Cited by 5 | Viewed by 2518
Abstract
Modern dentistry is turning towards natural sources to overcome the immunological, toxicological, aesthetic, and durability drawbacks of synthetic materials. Among the first biomaterials used as endosseous dental implants, mollusk shells also display unique features, such as high mechanical strength, superior toughness, hierarchical architecture, [...] Read more.
Modern dentistry is turning towards natural sources to overcome the immunological, toxicological, aesthetic, and durability drawbacks of synthetic materials. Among the first biomaterials used as endosseous dental implants, mollusk shells also display unique features, such as high mechanical strength, superior toughness, hierarchical architecture, and layered, microporous structure. This review focusses on hydroxyapatite—a bioactive, osteoconductive, calcium-based material crucial for bone healing and regeneration. Mollusk-derived hydroxyapatite is widely available, cost-effective, sustainable, and a low-impact biomaterial. Thermal treatment coupled with wet chemical precipitation and hydrothermal synthesis are the most common methods used for its recovery since they provide efficiency, scalability, and the ability to produce highly crystalline and pure resulting materials. Several factors, such as temperature, pH, and sintering parameters, modulate the size, purity, and crystallinity of the final product. Experimental and clinical data support that mollusk shell-derived hydroxyapatite and its carbonated derivatives, especially their nanocrystaline forms, display notable bioactivity, osteoconductivity, and osteoinductivity without causing adverse immune reactions. These biomaterials are therefore highly relevant for specific dental applications, such as bone graft substitutes or dental implant coatings. However, continued research and clinical validation is needed to optimize the synthesis of mollusk shell-derived hydroxyapatite and determine its applicability to regenerative dentistry and beyond. Full article
Show Figures

Figure 1

12 pages, 5389 KiB  
Article
Effects of Platelet-Rich Fibrin on Bone Healing Around Implants Placed in Maxillary Sinuses: A Histomorphometric Assessment in Rabbits
by Gustavo Augusto Grossi-Oliveira, Eduardo Dallazen, Thabet Asbi, João Matheus Fonseca-Santos, Paulo Domingos Ribeiro-Júnior, Jamil A. Shibli, Cinthya Massari Grecco, Osvaldo Magro-Filho, Carlos Fernando Mourão, Doron Haim, Yaniv Mayer and Leonardo P. Faverani
J. Funct. Biomater. 2024, 15(12), 375; https://doi.org/10.3390/jfb15120375 - 12 Dec 2024
Cited by 1 | Viewed by 1256
Abstract
This study investigated the effect of platelet-rich fibrin (PRF) on bone healing around implants placed in elevated sinus cavities. Forty New Zealand albino rabbits were divided into eight groups, based on the time of sacrifice (14 or 40 days) and the material used: [...] Read more.
This study investigated the effect of platelet-rich fibrin (PRF) on bone healing around implants placed in elevated sinus cavities. Forty New Zealand albino rabbits were divided into eight groups, based on the time of sacrifice (14 or 40 days) and the material used: blood clot (control), hydroxyapatite (HA) from bovine bone, HA combined with PRF, and PRF alone. Each group consisted of five animals (n = 5). A histological analysis measured bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). The results showed significant increases in the BIC and BAFO values at 40 days compared to 14 days in most groups. At day 14, the HA+PRF group had higher BIC than the clot and the PRF alone groups. At 40 days, HA+PRF maintained the highest BIC across all groups (p < 0.05), though it did not show an advantage for BAFO. These findings indicate that combining HA with PRF promotes better osseointegration around implants placed immediately in maxillary sinus augmentation. Given the limited research on PRF’s biological impact, these results underscore the importance of evaluating PRF’s role in peri-implant healing and its potential benefits for clinical use in sinus augmentation. Full article
(This article belongs to the Special Issue New Biomaterials in Periodontology and Implantology)
Show Figures

Figure 1

14 pages, 5990 KiB  
Article
Migration Prevention of Carbonate Apatite Granules Through Crystal Interlocking Driven by Bassanite-to-Gypsum Transformation on Granule Surface
by Luis Miguel Torres Escalante, Koichiro Hayashi and Kunio Ishikawa
Appl. Sci. 2024, 14(23), 11261; https://doi.org/10.3390/app142311261 - 3 Dec 2024
Viewed by 2511
Abstract
Granular bone substitutes are commonly used in dental treatments owing to their adaptability to irregular bone defects. However, granule migration during and after implantation poses a significant challenge, impairing bone regeneration. This study addresses this issue by setting carbonate apatite (CAp) granules using [...] Read more.
Granular bone substitutes are commonly used in dental treatments owing to their adaptability to irregular bone defects. However, granule migration during and after implantation poses a significant challenge, impairing bone regeneration. This study addresses this issue by setting carbonate apatite (CAp) granules using crystal interlocking owing to the bassanite (calcium sulfate hemihydrate (CSH))-to-gypsum (calcium sulfate dihydrate (CSD)) transformation on the granule surface. CAp granules were mixed with CSH slurry (water/CSH ratio of 0.4) at varying CSH/CAp ratios of 0.33, 0.43, 0.54, 0.67, and 0.82. At all of these mixing ratios, needle-shaped CSD crystals formed on the CAp granule surface, and the CSD crystals interlocked with each other; consequently, CAp granules were set. As the CSH/CAp ratio increased from 0.33 to 0.82, the CSD crystal length increased from 6.58 to 6.79 μm, while the setting time decreased from 30.3 to 15.5 min. Although the porosity of the set CAp granules decreased with an increase in the CSH/CAp ratio, the set granules maintained intergranular spaces of 77.3 μm at a CSH/CAp ratio of 0.82 conducive to cellular infiltration. After immersion in saline for six days, the set CAp granules at a CSH/CAp ratio of 0.82 maintained their original shape, demonstrating enhanced stability compared to lower CSH/CAp ratios where partial or complete collapse occurred. The porosity and specific surface area increased to 59.9% and 3.66 m2/g, respectively, and the intergranular spaces increased to 176.4 μm. Therefore, mixing the CAp granules with CSH at a ratio of 0.82 may prevent granule migration during and after implantation. Moreover, the CSD component of the granules is likely to resorb more rapidly than the CAp component in vivo, promoting porosity in the set granules and facilitating efficient bone replacement. Full article
(This article belongs to the Collection Dental Composites and Adhesives in Dentistry)
Show Figures

Figure 1

12 pages, 4283 KiB  
Article
Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats
by Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Marcelly Braga Gomes, Naara Gabriela Monteiro, Ana Cláudia Ervolino da Silva, Reinhard Gruber, Paulo Noronha Lisboa-Filho, Pedro Henrique Silva Gomes-Ferreira and Roberta Okamoto
J. Funct. Biomater. 2024, 15(11), 328; https://doi.org/10.3390/jfb15110328 - 5 Nov 2024
Cited by 3 | Viewed by 3267
Abstract
Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim [...] Read more.
Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss®, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both p < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

22 pages, 6834 KiB  
Article
Tomographic and Electron Microscopy Description of Two Bone-Substitute Xenografts for the Preservation of Dental Alveoli
by Lemy Vanessa Barba-Rosado, Maria-Fernanda Realpe, Carlos-Humberto Valencia-Llano, Diego López-Tenorio, Ismael Enrique Piñeres-Ariza and Carlos David Grande-Tovar
Int. J. Mol. Sci. 2024, 25(20), 10942; https://doi.org/10.3390/ijms252010942 - 11 Oct 2024
Viewed by 1420
Abstract
After tooth extraction, bone levels in the alveoli decrease. Using a bone substitute can help minimize this bone loss. The substitute can be sourced from a human or animal donor or synthetically prepared. In this study, we aimed to address the following PICOS [...] Read more.
After tooth extraction, bone levels in the alveoli decrease. Using a bone substitute can help minimize this bone loss. The substitute can be sourced from a human or animal donor or synthetically prepared. In this study, we aimed to address the following PICOS question: In patients needing dental alveolar preservation for implant placement, how does alveolar preservation using a bovine hydroxyapatite bone xenograft with collagen compare to a xenograft without collagen in terms of changes in alveolar height and width, bone density, and the characteristics of the bone tissue observed in biopsies taken at 6 months? We evaluated two xenograft-type bone substitutes for preserving post-extraction dental sockets using tomography and microscopy to answer that question. A total of 18 dental alveoli were studied: 11 preserved with a xenograft composed of apatite (InterOss) and 7 with a xenograft composed of apatite–collagen (InterOss Collagen). Tomographic controls were performed at 1 and 6 months, and microscopic studies were performed on 13 samples. The biopsies were examined with scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). A Multivariate Analysis of Variance (MANOVA) was conducted in the statistical analysis, revealing a significant increase in bone density over time (p = 0.04). Specifically, bone density increased from an average of 526.14 HU at 30 days to 721.96 HU at 60 days in collagen-free samples. However, no statistically significant differences in height or width were found between groups. The MANOVA results indicated that the overall model had a low predictive ability for height, width, and density variables (R-squared values were low), likely due to sample size limitations and the complexity of bone tissue dynamics. On the other hand, FTIR analysis revealed the presence of phosphate groups, carbonates, and amides I, II, and III, indicative of inorganic (hydroxyapatite) and organic (type I collagen) materials in the xenografts. TGA and DSC showed high thermal stability, with minimal mass loss below 150 °C. Finally, both xenografts were influential in alveolar bone regeneration after extraction without significant differences. The trend of increasing collagen density suggests an effect that requires further investigation. However, it is recommended that the sample size be increased to enhance the validity of the results. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

24 pages, 2803 KiB  
Review
Dental Applications of Ion-Substituted Hydroxyapatite: A Review of the Literature
by Eisha Imran, May L. Mei, Kai Chun Li, Jithendra Ratnayake, Manikandan Ekambaram and Paul R. Cooper
Dent. J. 2024, 12(10), 304; https://doi.org/10.3390/dj12100304 - 25 Sep 2024
Cited by 5 | Viewed by 3136
Abstract
Hydroxyapatite (HA) forms an essential constituent of human teeth and bone. Its distinctive characteristic features, such as bioactivity and osteoconductivity, make it an ideal candidate to be used as an implant coating in restorative dentistry and maxillofacial surgery for bone regeneration. However, low [...] Read more.
Hydroxyapatite (HA) forms an essential constituent of human teeth and bone. Its distinctive characteristic features, such as bioactivity and osteoconductivity, make it an ideal candidate to be used as an implant coating in restorative dentistry and maxillofacial surgery for bone regeneration. However, low fracture toughness and brittleness are a few of the inherent features of HA, which limit its application in load-bearing areas. The potential of HA to engage its lattice structure with either partial or complete substitution with external ions has become an increasing area of research as this phenomenon has the potential to enhance the biological and functional properties of the material. Consequently, this review aimed to highlight the role of various substituted ions in dental applications. Data indicate that the newly formed HA-substituted biomaterials demonstrate enhanced remineralization and antimicrobial activity along with improved hardness. Ion-substituted HA offers a promising strategy for future clinical research as these materials may be incorporated into various dental products for therapeutic treatments. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

Back to TopTop