Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Procedures
2.3. Keratinized Mucosa Measurement
2.4. Clinical Assessment of Epithelialization
2.5. Immunoassay
2.6. Cone Beam Computed Tomography Measurements
2.7. Statistical Analysis
3. Results
3.1. Results: Characteristics of the Study
3.2. Keratinized Mucosa Measurement
3.3. Clinical Assessment of Epithelialization
3.4. Immunoassay
3.5. Cone Beam Computed Tomography Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araujo, M.G.; Sukekava, F.; Wennstrom, J.L.; Lindhe, J. Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog. J. Clin. Periodontol. 2005, 32, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Carral, C.; Argibay, O.; Linares, A. Implant placement in fresh extraction sockets. Periodontology 2000 2019, 79, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, M.; Lambert, F.; Knafo, B.; Popelut, A.; Vandenberghe, B.; Finelle, B. Immediate implant in the posterior region combined with alveolar ridge preservation and sealing socket abutment: A retrospective 3D radiographic analysis. Clin. Implant Dent. Relat. Res. 2020, 23, 61–72. [Google Scholar] [CrossRef]
- Araujo, M.G.; Linder, E.; Lindhe, J. Bio-Oss collagen in the buccal gap at immediate implants: A 6-month study in the dog. Clin. Oral Implant. Res. 2011, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Sanchez, I.; Sanz-Martin, I.; Ortiz-Vigon, A.; Molina, A.; Sanz, M. Complications in bone-grafting procedures: Classification and management. Periodontology 2000 2022, 88, 86–102. [Google Scholar] [CrossRef]
- Yuenyongorarn, P.; Kan, J.Y.K.; Rungcharassaeng, K.; Matsuda, H.; Roe, P.; Lozada, J.L.; Caruso, J. Facial Gingival Changes With and Without Socket Gap Grafting Following Single Maxillary Anterior Immediate Tooth Replacement: One-Year Results. J. Oral Implantol. 2020, 46, 496–505. [Google Scholar] [CrossRef]
- Avila-Ortiz, G.; Chambrone, L.; Vignoletti, F. Effect of alveolar ridge preservation interventions following tooth extraction: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46 (Suppl. S21), 195–223. [Google Scholar] [CrossRef]
- Thalmair, T.; Fickl, S.; Schneider, D.; Hinze, M.; Wachtel, H. Dimensional alterations of extraction sites after different alveolar ridge preservation techniques—A volumetric study. J. Clin. Periodontol. 2013, 40, 721–727. [Google Scholar] [CrossRef]
- Thoma, D.S.; Bienz, S.P.; Lim, H.C.; Lee, W.Z.; Hammerle, C.H.F.; Jung, R.E. Explorative randomized controlled study comparing soft tissue thickness, contour changes, and soft tissue handling of two ridge preservation techniques and spontaneous healing two months after tooth extraction. Clin. Oral Implant. Res. 2020, 31, 565–574. [Google Scholar] [CrossRef]
- Seyssens, L.; Eeckhout, C.; Cosyn, J. Immediate implant placement with or without socket grafting: A systematic review and meta-analysis. Clin. Implant Dent. Relat. Res. 2022, 24, 339–351. [Google Scholar] [CrossRef]
- Schropp, L.; Wenzel, A.; Kostopoulos, L.; Karring, T. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. Int. J. Periodontics Restor. Dent. 2003, 23, 313–323. [Google Scholar]
- Ferrus, J.; Cecchinato, D.; Pjetursson, E.B.; Lang, N.P.; Sanz, M.; Lindhe, J. Factors influencing ridge alterations following immediate implant placement into extraction sockets. Clin. Oral Implant. Res. 2010, 21, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Blasi, G. Significance of keratinized mucosa/gingiva on peri-implant and adjacent periodontal conditions in erratic maintenance compliers. J. Periodontol. 2019, 90, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Perussolo, J.; Souza, A.B.; Matarazzo, F.; Oliveira, R.P.; Araujo, M.G. Influence of the keratinized mucosa on the stability of peri-implant tissues and brushing discomfort: A 4-year follow-up study. Clin. Oral Implant. Res. 2018, 29, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pacheco, A.; Soto-Penaloza, D.; Gomez, M.; Penarrocha-Oltra, D.; Alarcon, M.A. Socket seal surgery techniques in the esthetic zone: A systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. Int. J. Implant Dent. 2021, 7, 13. [Google Scholar] [CrossRef]
- Garcez-Filho, J.; Carvalho, V.F.; Taba, M., Jr. Usage of xenogeneic bone intentionally left exposed to the oral environment after immediate implant placement: A case report with six-year follow-up. J. Int. Acad. Periodontol. 2023, 25, 120–129. [Google Scholar] [CrossRef]
- Levine, R.A.; Dias, D.R.; Wang, P.; Araujo, M.G. Effect of the buccal gap width following immediate implant placement on the buccal bone wall: A retrospective cone-beam computed tomography analysis. Clin. Implant Dent. Relat. Res. 2022, 24, 403–413. [Google Scholar] [CrossRef]
- Jung, G.-U.; Jeon, T.-H.; Kang, M.-H.; Um, I.-W.; Song, I.-S.; Ryu, J.-J.; Jun, S.-H. Volumetric, Radiographic, and Histologic Analyses of Demineralized Dentin Matrix Combined with Recombinant Human Bone Morphogenetic Protein-2 for Ridge Preservation: A Prospective Randomized Controlled Trial in Comparison with Xenograft. Appl. Sci. 2018, 8, 1288. [Google Scholar] [CrossRef]
- Barone, A.; Ricci, M.; Tonelli, P.; Santini, S.; Covani, U. Tissue changes of extraction sockets in humans: A comparison of spontaneous healing vs. ridge preservation with secondary soft tissue healing. Clin. Oral Implant. Res. 2013, 24, 1231–1237. [Google Scholar] [CrossRef]
- Kohale, B.R.; Agrawal, A.A.; Raut, C.P. Effect of low-level laser therapy on wound healing and patients’ response after scalpel gingivectomy: A randomized clinical split-mouth study. J. Indian Soc. Periodontol. 2018, 22, 419–426. [Google Scholar] [CrossRef]
- de Souza, M.M.; Martinez, C.J.H.; Carvalho, V.F.; Furlaneto, F.A.C.; Palioto, D.B.; Messora, M.R.; Scombatti de Souza, S.L.; Novaes, A.B., Jr.; Taba, M.J. Alveolar ridge and keratinized gingiva preservation using collagen matrix and inorganic bone substitute in flapless extractions: A case series of exposed biomaterials. J. Int. Acad. Periodontol. 2022, 24, 10. [Google Scholar]
- Chen, Z.; Li, J.; Wang, H.L.; Yu, H. Initial Bone Volume Changes After Immediate Implant Placement Associated with Filling the Gap Using Bovine Bone in Molar Sites. Int. J. Oral Maxillofac. Implant. 2019, 34, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Puisys, A.; Linkevicius, R.; Alkimavicius, J.; Gineviciute, E.; Linkeviciene, L. The influence of submerged healing abutment or subcrestal implant placement on soft tissue thickness and crestal bone stability. A 2-year randomized clinical trial. Clin. Implant Dent. Relat. Res. 2020, 22, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Puisys, A.; Steigmann, M.; Vindasiute, E.; Linkeviciene, L. Influence of Vertical Soft Tissue Thickness on Crestal Bone Changes Around Implants with Platform Switching: A Comparative Clinical Study. Clin. Implant Dent. Relat. Res. 2015, 17, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Zukauskas, S.; Puisys, A.; Andrijauskas, P.; Zaleckas, L.; Vindasiute-Narbute, E.; Linkevicius, T. Influence of Implant Placement Depth and Soft Tissue Thickness on Crestal Bone Stability Around Implants With and Without Platform Switching: A Comparative Clinical Trial. Int. J. Periodontics Restor. Dent. 2021, 41, 347–355. [Google Scholar] [CrossRef]
- Sculean, A.; Gruber, R.; Bosshardt, D.D. Soft tissue wound healing around teeth and dental implants. J. Clin. Periodontol. 2014, 41 (Suppl. S15), S6–S22. [Google Scholar] [CrossRef]
- Zaki, J.; Yusuf, N.; El-Khadem, A.; Scholten, R.; Jenniskens, K. Efficacy of bone-substitute materials use in immediate dental implant placement: A systematic review and meta-analysis. Clin. Implant Dent. Relat. Res. 2021, 23, 506–519. [Google Scholar] [CrossRef]
- Razavi, T.; Palmer, R.M.; Davies, J.; Wilson, R.; Palmer, P.J. Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography. Clin. Oral Implant. Res. 2010, 21, 718–725. [Google Scholar] [CrossRef]
Variable | n | Mean ± SD (Range) Number (%) |
---|---|---|
Patients | ||
Age (years) | 26 | 64.82 ± 11.75 (42–86) |
Gender | 26 | |
Female | 14 (53.85) | |
Male | 12 (46.15) | |
Implant | ||
Position/Tooth area | 28 | |
16 | 3 (10.71) | |
17 | 2 (7.14) | |
26 | 7 (25) | |
27 | 2 (7.14) | |
36 | 2 (7.14) | |
37 | 3 (10.71) | |
46 | 5 (17.87) | |
47 | 3 (10.71) | |
48 | 1 (3.58) | |
Type | ||
Tissue level, SLActive, TiZr | 28 (100) | |
Implant brand | ||
Straumann | 28 (100) | |
Implant Diameter | ||
Narrow 3.3 RN | 28 (100) | |
Implant length (mm) | 28 | |
8 | 2 (7.15) | |
10 | 17 (60.71) | |
12 | 9 (32.14) | |
Implant survival (%) | 28 | 100% |
Type of biomaterial | ||
B | 14 | |
Jaw | ||
Upper | 8 (57.14) | |
Lower | 6 (42.86) | |
BM | 14 | |
Jaw | ||
Upper | 6 (42.86) | |
Lower | 8 (57.14) | |
Vertical soft tissue thickness (mm) | ||
B | 11 | 2.17 (0.48) |
BM | 11 | 2.33 (0.48) |
Baseline | 1 to 2 Months PO | ∆ 1 to 2 Months PO—Baseline | Prosthesis Installation | ∆ Prosthesis Installation—Baseline | ∆ Prosthesis Installation—1 to 2 Months PO | |
---|---|---|---|---|---|---|
B (n = 14) | 3.57 ± 1.4 | 5.57 ± 1.95 | 2.00 ± 0.78 | 5.86 ± 2.03 | 2.29 ± 1.54 | 0.29 ± 1.38 a |
BM (n = 14) | 3.25 ± 1.96 | 5.79 ± 2.26 | 2.54 ± 1.2 | 4.29 ± 2.13 | 1.04 ± 1.70 | −1.5 ± 1.74 b |
BM | B | |
---|---|---|
D02 | 1 (0) Aa | 1 (0.75) Aa |
D07 | 4 (0) Ab | 3 (1) Ab |
D30 | 4 (0) Ab | 4 (0) Ac |
Bone Level | B | BM | ΔB-BM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 ± SD | T2 ± SD | ΔT1-T2 | p-Value | T1 ± SD | T2 ± SD | ΔT1-T2 | p-Value | ΔB-BM | p-Value | |
BUCCAL HBT | ||||||||||
0 | 2.44 ± 0.51 | 1.70 ± 0.45 | 0.74 | 0.285 | 2.74 ± 0.51 | 1.63 ± 0.45 | 1.11 | 0.112 | 0.06 | 0.923 |
−1 | 2.95 ± 0.62 | 2.51 ± 0.55 | 0.44 | 0.595 | 3.64 ± 0.59 | 2.72 ± 0.53 | 0.92 | 0.253 | −0.21 | 0.779 |
−2 | 2.86 ± 0.47 | 2.67 ± 0.41 | 0.20 | 0.785 | 4.01 ± 0.44 | 3.32 ± 0.39 | 0.70 | 0.243 | −0.69 | 0.254 |
RL | 4.18 ± 0.56 | 3.91 ± 0.50 | 0.27 | 0.720 | 4.98 ± 0.54 | 3.83 ± 0.49 | 1.15 | 0.122 | 0.08 | 0.905 |
2 | 4.71 ± 0.66 | 4.58 ± 0.58 | 0.13 | 0.881 | 5.05 ± 0.63 | 4.48 ± 0.56 | 0.57 | 0.505 | 0.10 | 0.907 |
LINGUAL HBT | ||||||||||
0 | 1.54 ± 0.45 | 1.04 ± 0.39 | 0.50 | 0.407 | 2.12 ± 0.40 | 1.42 ± 0.36 | 0.69 | 0.207 | −0.38 | 0.471 |
−1 | 2.01 ± 0.43 | 1.83 ± 0.38 | 0.18 | 0.755 | 2.57 ± 0.39 | 2.06 ± 0.36 | 0.51 | 0.344 | −0.23 | 0.662 |
−2 | 2.77 ± 0.44 | 2.63 ± 0.38 | 0.15 | 0.803 | 3.11 ± 0.39 | 2.81 ± 0.35 | 0,30 | 0.573 | −0.18 | 0.726 |
RL | 3.51 ± 0.39 | 3.31 ± 0.34 | 0.20 | 0.698 | 3.56 ± 0.35 | 3.32 ± 0.31 | 0.24 | 0.606 | −0.01 | 0.985 |
2 | 4.28 ± 0.42 | 4.18 ± 0.36 | 0.10 | 0.855 | 3.50 ± 0.38 | 3.80 ± 0.34 | −0.29 | 0.565 | 0.38 | 0.444 |
Mean ± SD | Median | ΔB-BM | p-Value | |
---|---|---|---|---|
Buccal Bone Levels (ΔVBH T1-T2) | ||||
B | 0.69 ± 0.87 | 0.91 | 0.12 | 0.749 |
BM | 0.58 ± 0.78 | 0.14 | ||
Lingual Bone Levels (ΔVBH T1-T2) | ||||
B | 0.75 ± 1.00 | 0.21 | 0.34 | 0.338 |
BM | 0.41 ± 0.53 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, V.F.; Garcez-Filho, J.; Okamoto, R.; Frigério, P.B.; Santos, P.L.; Novaes Junior, A.B.; Messora, M.R.; Taba Jr, M. Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study. Appl. Sci. 2025, 15, 993. https://doi.org/10.3390/app15020993
Carvalho VF, Garcez-Filho J, Okamoto R, Frigério PB, Santos PL, Novaes Junior AB, Messora MR, Taba Jr M. Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study. Applied Sciences. 2025; 15(2):993. https://doi.org/10.3390/app15020993
Chicago/Turabian StyleCarvalho, Valessa F., João Garcez-Filho, Roberta Okamoto, Paula B. Frigério, Priscila L. Santos, Arthur B. Novaes Junior, Michel R. Messora, and Mario Taba Jr. 2025. "Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study" Applied Sciences 15, no. 2: 993. https://doi.org/10.3390/app15020993
APA StyleCarvalho, V. F., Garcez-Filho, J., Okamoto, R., Frigério, P. B., Santos, P. L., Novaes Junior, A. B., Messora, M. R., & Taba Jr, M. (2025). Exposure of Xenogeneic Biomaterial to the Oral Environment and Its Impact on Tissue Healing of Immediate Dental Implants: A Case–Control Study. Applied Sciences, 15(2), 993. https://doi.org/10.3390/app15020993