Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = density wave oscillations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 191
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

26 pages, 2868 KiB  
Article
Resonant Oscillations of Ion-Stabilized Nanobubbles in Water as a Possible Source of Electromagnetic Radiation in the Gigahertz Range
by Nikolai F. Bunkin, Yulia V. Novakovskaya, Rostislav Y. Gerasimov, Barry W. Ninham, Sergey A. Tarasov, Natalia N. Rodionova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(14), 6811; https://doi.org/10.3390/ijms26146811 - 16 Jul 2025
Viewed by 182
Abstract
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is [...] Read more.
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is considered. We develop a theoretical model based on the concept of gas bubbles stabilized by ions, or “bubstons”. The role of bicarbonate and hydronium ions in the formation and stabilization of bubstons is explained through the use of quantum chemical simulations. A new model of oscillating bubstons, which takes into account the double electric layer formed around their gas core, is proposed. Theoretical estimates of the frequencies and intensities of oscillations of such compound species are obtained. It was determined that oscillations of negatively charged bubstons can occur in the GHz frequency range, and should be accompanied by the emission of electromagnetic waves. To validate the theoretical assumptions, we used dynamic light scattering (DLS) and showed that, after subjecting aqueous solutions to vigorous shaking with a force of 4 or 8 N (kg·m/s2) and a frequency of 4–5 Hz, the volume number density of bubstons increased by about two orders of magnitude. Radiometric measurements in the frequency range of 50 MHz to 3.5 GHz revealed an increase in the intensity of radiation emitted by water samples upon the vibrational treatment. It is argued that, according to our new theoretical model, this radiation can be caused by oscillating bubstons. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

18 pages, 1001 KiB  
Article
Time-Resolved Information-Theoretic and Spectral Analysis of fNIRS Signals from Multi-Channel Prototypal Device
by Irene Franzone, Yuri Antonacci, Fabrizio Giuliano, Riccardo Pernice, Alessandro Busacca, Luca Faes and Giuseppe Costantino Giaconia
Entropy 2025, 27(7), 694; https://doi.org/10.3390/e27070694 - 28 Jun 2025
Viewed by 302
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that measures brain hemodynamic activity by detecting changes in oxyhemoglobin and deoxyhemoglobin concentrations using light in the near-infrared spectrum. This study aims to provide a comprehensive characterization of fNIRS signals acquired with a prototypal [...] Read more.
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that measures brain hemodynamic activity by detecting changes in oxyhemoglobin and deoxyhemoglobin concentrations using light in the near-infrared spectrum. This study aims to provide a comprehensive characterization of fNIRS signals acquired with a prototypal continuous-wave fNIRS device during a breath-holding task, to evaluate the impact of respiratory activity on scalp hemodynamics within the framework of Network Physiology. To this end, information-theoretic and spectral analysis methods were applied to characterize the dynamics of fNIRS signals. In the time domain, time-resolved information-theoretic measures, including entropy, conditional entropy and, information storage, were employed to assess the complexity and predictability of the fNIRS signals. These measures highlighted distinct informational dynamics across the breathing and apnea phases, with conditional entropy showing a significant modulation driven by respiratory activity. In the frequency domain, power spectral density was estimated using a parametric method, allowing the identification of distinct frequency bands related to vascular and respiratory components. The analysis revealed significant modulations in both the amplitude and frequency of oscillations during the task, particularly in the high-frequency band associated with respiratory activity. Our observations demonstrate that the proposed analysis provides novel insights into the characterization of fNIRS signals, enhancing the understanding of the impact of task-induced peripheral cardiovascular responses on NIRS hemodynamics. Full article
Show Figures

Figure 1

40 pages, 4791 KiB  
Article
Modified Semi-Lagrangian Godunov-Type Method Without Numerical Viscosity for Shocks
by Valeriy Nikonov
Fluids 2025, 10(5), 133; https://doi.org/10.3390/fluids10050133 - 16 May 2025
Viewed by 534
Abstract
Most high-order Euler-type methods have been proposed to solve one-dimensional scalar hyperbolic conservational law. These methods resolve smooth variations in flow parameters accurately and simultaneously identify the discontinuities. A disadvantage of Euler-type methods is the parameter change stretching in the shock over a [...] Read more.
Most high-order Euler-type methods have been proposed to solve one-dimensional scalar hyperbolic conservational law. These methods resolve smooth variations in flow parameters accurately and simultaneously identify the discontinuities. A disadvantage of Euler-type methods is the parameter change stretching in the shock over a few mesh cells. In reality, in the shock, the flow properties change abruptly at once for the computational mesh. In our considerations, the mean free path of a flow particle is much smaller than the mesh cell size. This paper describes a modification of the semi-Lagrangian Godunov-type method, which was proposed by the author in the previously published paper. The modified method also does not have numerical viscosity for shocks. In the previous article, a linear law for the distribution of flow parameters was employed for a rarefaction wave when modeling the Shu-Osher problem with the aim of reducing parasitic oscillations. Additionally, the nonlinear law derived from the Riemann invariants was used for the remaining test problems. This article proposes an advanced method, namely, a unified formula for the density distribution of rarefaction waves and modification of the scheme for modeling moderately strong shock waves. The obtained results of numerical analysis, including the standard problem of Sod, the Riemann problem of Lax, the Shu–Osher shock-tube problem and a few author’s test cases are compared with the exact solution, the data of the previous method and the Total Variation Deminishing (TVD) scheme results. This article delineates the further advancement of the numerical scheme of the proposed method, specifically presenting a unified mathematical formulation for an expanded set of test problems. Full article
Show Figures

Figure 1

24 pages, 11695 KiB  
Article
Experimental Investigation of PWM Throttling in a 50-Newton-Class HTP Monopropellant Thruster: Analysis of Pressure Surges and Oscillations
by Suk Min Choi and Christian Bach
Aerospace 2025, 12(5), 418; https://doi.org/10.3390/aerospace12050418 - 8 May 2025
Viewed by 443
Abstract
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead [...] Read more.
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead to pressure surges and oscillations in the propellant feed system, potentially compromising system reliability. This study investigates the influence of PWM parameters, specifically duty cycle and frequency, on pressure surges and oscillations in a 50-newton-class HTP monopropellant thruster. The objective is to identify stable operating conditions that mitigate these effects, thereby enhancing the reliability of PWM throttling for lander applications. An experimental setup was developed, including a 50-newton-class thruster with a MnO2/La/Al2O3 catalyst and a solenoid valve for PWM control. Cold flow tests using water characterized the valve response and water hammer effects, while hot fire tests with 90 wt.% HTP were used to evaluate thruster performance under steady-state and PWM conditions. Analytical methods, including Joukowsky’s equation and power spectral density analysis, were used to interpret the data and understand the underlying mechanisms. The results showed that while surge pressures generally aligned with steady-state values, specific PWM conditions led to amplified surges, particularly at low duty cycles. Additionally, high duty cycles induced chugging instability. The natural frequencies of the feed system were found to play a crucial role in these phenomena. Stable operating conditions were identified by avoiding duty cycles that cause constructive interference of pressure waves. This research demonstrates that by carefully selecting PWM parameters based on the feed system’s dynamic characteristics, pressure surges and oscillations can be minimized, ensuring reliable operation of HTP monopropellant thrusters in PWM throttling mode. These findings contribute to the development of more efficient and safer propulsion systems for spacecraft landers. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

15 pages, 13916 KiB  
Article
Nonequilibrium Molecular Velocity Distribution Functions Predicted by Macroscopic Gas Dynamic Models
by Maksim Timokhin and Yevgeniy Bondar
Mathematics 2025, 13(8), 1328; https://doi.org/10.3390/math13081328 - 18 Apr 2025
Viewed by 370
Abstract
In the present study, abilities of various macroscopic models (Navier–Stokes–Fourier, Burnett, original and regularized Grad’s 13-moment equations) in predicting the nonequilibrium molecular velocity distribution are examined. The results of the local distribution function reconstruction from flow macroparameters for the models considered are compared [...] Read more.
In the present study, abilities of various macroscopic models (Navier–Stokes–Fourier, Burnett, original and regularized Grad’s 13-moment equations) in predicting the nonequilibrium molecular velocity distribution are examined. The results of the local distribution function reconstruction from flow macroparameters for the models considered are compared with each other and with the reference solution. Two different flows are considered: normal shock wave and stationary regular reflection of oblique shock waves. The Direct Simulation Monte Carlo method is used to obtain the reference solution and the flow macroparameters required for the distribution function reconstruction. All models under consideration predict the distribution function in the upstream low-density region rather poorly, with strong oscillations and unphysical negative values (especially regularized Grad’s 13-moment equations). In the high-density downstream region, the shape of the reference distribution is close to equilibrium, and all macroscopic models predict it rather accurately. Full article
Show Figures

Figure 1

24 pages, 16861 KiB  
Article
Modeling a Multi-Lane Highway System Considering the Combined Impacts of Overtaking Mechanisms and Aggressive Lane-Changing Behaviors
by Shuhong Yang, Bin Huang, Chuan Tian and Yirong Kang
Mathematics 2025, 13(8), 1291; https://doi.org/10.3390/math13081291 - 15 Apr 2025
Viewed by 559
Abstract
This paper suggests a new multi-lane lattice model that incorporates both overtaking mechanisms and drivers’ aggressive lane-changing behaviors to investigate macroscopic traffic stability in multi-lane expressway environments. To enhance the fidelity of lane-changing simulation, the proposed model reformulates lane-changing protocols by integrating empirical [...] Read more.
This paper suggests a new multi-lane lattice model that incorporates both overtaking mechanisms and drivers’ aggressive lane-changing behaviors to investigate macroscopic traffic stability in multi-lane expressway environments. To enhance the fidelity of lane-changing simulation, the proposed model reformulates lane-changing protocols by integrating empirical observations of aggressive driving patterns in real-world scenarios. Through theoretical derivation, we formulate a density wave partial differential equation that captures the spatio-temporal propagation of congestion patterns near critical stability thresholds while analytically obtaining the linear stability criterion for the proposed model. The validity of these theoretical constructs is validated through systematic numerical simulation. Key findings reveal that when overtaking passing rates are relatively low, the driver’s aggressive lane-changing strategy exhibits a pronounced stabilizing effect on multi-lane systems and effectively mitigates traffic oscillation amplitudes. Conversely, under high passing rate conditions, such aggressive driving behaviors are shown to exert detrimental effects on both traffic fluctuation suppression and system-wide stability. Notably, our findings also demonstrate that expanding the number of lanes merges as a viable strategy to enhance systemic robustness. Full article
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading
by Katsumi Tsuchiya and Xiaolu Wang
Fluids 2025, 10(4), 89; https://doi.org/10.3390/fluids10040089 - 1 Apr 2025
Viewed by 506
Abstract
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation [...] Read more.
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation frequency, acoustic strength or input power density, and the presence/absence of a “stabilizing” nozzle. High-speed, high-resolution imaging made it possible to qualitatively identify four representative transitions/demarcations: (1) the onset of a protrusion on otherwise flat free surface; (2) the appearance of undulation along the growing protuberance; (3) the triggering of emanating beads fountain out of this foundation-like region; and (4) the induction of droplets bursting and/or mist spreading. Quantitatively examined were the two-parameters specifications—on the degrees as well as induction—of the periodicity in the protrusion-surface and beads-fountain oscillations, detected over wider ranges of driving/excitation frequency (0.43–3.0 MHz) and input power density (0.5–10 W/cm2) applied to the ultrasound transducer of flat surface on which the nozzle was either mounted or not. The resulting time sequence of images processed for the extended operating ranges, regarding the fountain structure pertaining, in particular, to recurring beads, confirms the wave-associated nature, i.e., their size “scalability” to the ultrasound wavelength, predictable from the traveling wave relationship. The thresholds in acoustic conditions for each of the four transition states of the fountain structure have been identified—notably, the onset of plausible “bifurcation” in the chain-beads’ diameter below a critical excitation frequency. Full article
(This article belongs to the Special Issue Advances in Multiphase Flow Science and Technology, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 695 KiB  
Article
Fundamental Oscillation Modes in Neutron Stars with Hyperons and Delta Baryons
by O. P. Jyothilakshmi, P. E. Sravan Krishnan, V. Sreekanth, Harsh Chandrakar and Tarun Kumar Jha
Symmetry 2025, 17(2), 230; https://doi.org/10.3390/sym17020230 - 5 Feb 2025
Cited by 2 | Viewed by 1060
Abstract
For a new parameterization of the modified effective chiral model, developed primarily to regulate the density content of the symmetry energy and its higher order terms, equations of state (EoSs) for hyperon-rich matter (H) and delta baryon matter (Δ) [...] Read more.
For a new parameterization of the modified effective chiral model, developed primarily to regulate the density content of the symmetry energy and its higher order terms, equations of state (EoSs) for hyperon-rich matter (H) and delta baryon matter (Δ) were obtained. The models were used to investigate the emission of gravitational waves (GWs) through f-mode oscillations in the corresponding neutron stars. We obtained the stellar structure, f-mode frequency and tidal deformability Λ for our models. We report that the Δ EoS is stiffer compared to the H EoS. We also analyzed the velocity of sound in these media. The corresponding mass–radius relationships were obtained and compared with various observations. We studied the dependence of f-mode frequencies on the stellar mass, redshift and tidal deformability. We employed the well known Cowling approximation to obtain the f-mode frequencies for l=2,3 and 4 modes of oscillation. We found that the f-mode frequencies of the H and Δ EoSs were almost the same in the lower mass region, while we observed a substantial difference between them in the high-mass region. We also obtained an empirical relation for the EoSs considered. The various attributes obtained for our models showed close agreement with various observational constraints from pulsars and GW events. Full article
(This article belongs to the Special Issue The Equation of State of Compact Stars)
Show Figures

Figure 1

20 pages, 4829 KiB  
Article
Study on Sound Field Properties of Parametric Array Under the Influence of Underwater Waveguide Interface Scattering Based on Non-Paraxial Model—Theory and Experiment
by Yuan Cao, Jie Shi, Jiangyi Zhang, Yuezhu Cheng and Haokang Shi
J. Mar. Sci. Eng. 2025, 13(2), 286; https://doi.org/10.3390/jmse13020286 - 4 Feb 2025
Viewed by 727
Abstract
This paper theoretically and experimentally studies the effect of underwater waveguide interface scattering on the nonlinear sound field characteristics of parametric array (PA) radiation. Based on the image source method, the components of the sound field in the waveguide are first analyzed. Then, [...] Read more.
This paper theoretically and experimentally studies the effect of underwater waveguide interface scattering on the nonlinear sound field characteristics of parametric array (PA) radiation. Based on the image source method, the components of the sound field in the waveguide are first analyzed. Then, a non-paraxial model is developed to account for the influence of interface scattering. This model enables accurate calculation of the wide-angle sound field. The impact of the sound source depth and the interface reflection coefficient on the distribution of the difference-frequency wave (DFW) sound field in the waveguide is studied. The interface alters the phase distribution of the DFW’s virtual source density function, thereby affecting the sound field accumulation process. Waveguide interfaces with different absorption coefficients influence the amplitude oscillation caused by interface reflection and change the sidelobe size of the DFW beam. The DFW sound field distribution is measured at three typical frequencies. Simulation and experimental results show that the attenuation of the DFW’s axial sound pressure level in the waveguide oscillates, and the DFW’s beamwidth gradually widens as the frequency decreases. The calculated results from the proposed model agree well with the measured data, with average errors along the sound axis and depth being less than 3 dB and 6 dB, respectively. This demonstrates the model’s superior applicability compared to the existing free-field model. Full article
(This article belongs to the Topic Advances in Underwater Acoustics and Aeroacoustics)
Show Figures

Figure 1

17 pages, 3945 KiB  
Article
Numerical Simulation Analysis of Laser Ultrasonic Detection of Defects in Silicon Carbide
by Yuan Yin, Jinbao Xia, Hongkun Nie, Bo Yao, Daofa Sun, Longnan Ma, Ruihang Li, Zihao Li and Baitao Zhang
Crystals 2025, 15(2), 125; https://doi.org/10.3390/cryst15020125 - 24 Jan 2025
Viewed by 1108
Abstract
Silicon carbide (SiC) is widely used in power electronic devices and other fields, the defects of which can significantly impact its performance in device fabrication. Laser ultrasonic non-destructive testing (NDT) as a novel and effective approach can detect these defects in real time. [...] Read more.
Silicon carbide (SiC) is widely used in power electronic devices and other fields, the defects of which can significantly impact its performance in device fabrication. Laser ultrasonic non-destructive testing (NDT) as a novel and effective approach can detect these defects in real time. This study introduces a numerical model for the SiC NDT that elucidates the dynamic interactions between laser-induced ultrasonic waves and surface defects, and internal defects in SiC, respectively. Results show NDT is an effective way to locate the SiC defect and the ultrasonic waves’ vibration amplitude of detection points at defect edges increases by at least 16% compared to adjacent points, with a maximum of 43%. A comparative assessment between surface and internal defect vibration responses for acoustic is also made. For internal defects, the oscillation time of the acoustic wave at the detection point on the surface away from the edge of the defect at the excitation point exceeds that of surface defects by 100 ns, and the amplitude near the excitation point is more pronounced, reaching 1.44 nm, which is 4.2 times that of corresponding surface defects. Additionally, a linear relationship is observed between the arrival time of transmitted Rayleigh Waves (RSR) and internal defect length, with a correlation coefficient of 0.9878. Similarly, a linear relationship is established between the amplitude of reflected Rayleigh Waves (rR) and defect width, with a correlation coefficient of 0.9976, providing an effective way to quantify the inner defect. Furthermore, transient temperature profiles at distinct positions and transient acoustic fields and the relationship of acoustic vibration amplitude increasing with laser spot size under a fixed laser power density are also analyzed. This model provides a theoretical foundation for laser ultrasonic NDT setup and choice of micro-vibration detection device. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Crystal Materials)
Show Figures

Figure 1

15 pages, 3464 KiB  
Article
Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019
by Bruna Alves Oliveira Destéfani, Micael Fernando Broggio and Carlos Alberto Eiras Garcia
Atmosphere 2025, 16(1), 92; https://doi.org/10.3390/atmos16010092 - 16 Jan 2025
Viewed by 1002
Abstract
This study investigates cyclone dynamics and impacts in the Southwestern Atlantic, with a focus on their effects on southern Brazil. As climate change intensifies coastal vulnerability, understanding cyclone behavior has become essential. Using the TRACK and cycloTRACK algorithms, we examined cyclone trajectories and [...] Read more.
This study investigates cyclone dynamics and impacts in the Southwestern Atlantic, with a focus on their effects on southern Brazil. As climate change intensifies coastal vulnerability, understanding cyclone behavior has become essential. Using the TRACK and cycloTRACK algorithms, we examined cyclone trajectories and cyclogenesis densities from 1979 to 2019 to analyze seasonal and spatial patterns shaped by large-scale atmospheric circulations, including the Antarctic Oscillation (AAO). The analysis explores trends in cyclone activity across various temporal and spatial scales, identifying key regions of cyclogenesis and trajectory density. Results indicate that the cycloTRACK algorithm is more effective at tracking more intense and consistent cyclones, excluding weaker systems. Seasonal patterns suggest variability in cyclone formation, likely associated with atmospheric instability and ocean–atmosphere interactions. While trends reveal an increase in cyclone passages in southern Brazil, these systems are strongly associated with extreme climatic events in the region, including coastal storms, intense precipitation, strong winds, and high waves. By clarifying cyclone dynamics and seasonal patterns, this study enhances our understanding of cyclone behavior and contributes to improved assessments of regional climate resilience in southern Brazil. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 3684 KiB  
Article
The Posterior Dominant Rhythm Remains Within Normal Limits in the Microgravity Environment
by Vasileios Kokkinos, Andreas M. Koupparis, Tomer Fekete, Eran Privman, Ofer Avin, Ophir Almagor, Oren Shriki and Amir Hadanny
Brain Sci. 2024, 14(12), 1194; https://doi.org/10.3390/brainsci14121194 - 27 Nov 2024
Viewed by 2090
Abstract
Background: Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain’s health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm [...] Read more.
Background: Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain’s health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm (PDR) change under microgravity conditions compared to earth-based scalp EEG recordings. Methods: Three crew members during the 16-day AXIOM-1 mission to the International Space Station (ISS), underwent scalp EEG recordings before, during, and after the mission by means of a dry-electrode self-donning headgear designed to support long-term EEG recordings in space. Resting-state recordings were performed with eyes open and closed during relaxed wakefulness. The electrodes representative of EEG activity in each occipital lobe were used, and consecutive PDR oscillations were identified during periods of eye closure. In turn, cursor-based markers were placed at the negative peak of each sinusoidal wave of the PDR. Waveform averaging and time-frequency analysis were performed for all PDR samples for the respective pre-mission, mission, and post-mission EEGs. Results: No significant differences were found in the mean frequency of the PDR in any of the crew subjects between their EEG on the ISS and their pre- or post-mission EEG on ground level. The PDR oscillations varied over a ±1Hz standard deviation range. Similarly, no significant differences were found in PDR’s power spectral density. Conclusions: Our study shows that the spectral features of the PDR remain within normal limits in a short exposure to the microgravity environment, with its frequency manifesting within an acceptable ±1 Hz variation from the pre-mission mean. Further investigations for EEG features and markers reflecting the human brain neurophysiology during space missions are required. Full article
Show Figures

Figure 1

13 pages, 6271 KiB  
Article
Bound States and Particle Production by Breather-Type Background Field Configurations
by Abhishek Rout and Brett Altschul
Symmetry 2024, 16(12), 1571; https://doi.org/10.3390/sym16121571 - 24 Nov 2024
Cited by 1 | Viewed by 677
Abstract
We investigate the interaction of fermion fields with oscillating domain walls, inspired by breather-type solutions of the sine-Gordon equation, a nonlinear system of fundamental importance. Our study focuses on the fermionic bound states and particle production induced by a time-dependent scalar background field. [...] Read more.
We investigate the interaction of fermion fields with oscillating domain walls, inspired by breather-type solutions of the sine-Gordon equation, a nonlinear system of fundamental importance. Our study focuses on the fermionic bound states and particle production induced by a time-dependent scalar background field. The fermions couple to two domain walls undergoing harmonic motion, and we explore the resulting dynamics of the fermionic wave functions. We demonstrate that while fermions initially form bound states around the domain walls, the energy provided by the oscillatory motion of the scalar field induces an outward flux of fermions and antifermions, leading to particle production and eventual flux propagation toward spatial infinity. Through numerical simulations, we observe that the fermion density exhibits quasiperiodic behavior, with partial recurrences of the bound state configurations after each oscillation period. However, the fermion wave functions do not remain localized, and over time, the density decreases as more particles escape the vicinity of the domain walls. Our results highlight that the sine-Gordon-like breather background, when coupled non-supersymmetrically to fermions, does not preserve integrability or stability, with the oscillations driving a continuous energy transfer into the fermionic modes. This study sheds light on the challenges of maintaining steady-state fermion solutions in time-dependent topological backgrounds and offers insights into particle production mechanisms in nonlinear dynamical systems with oscillating solitons. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

9 pages, 5085 KiB  
Communication
Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator
by Chuanhong Xiao, Ruizhe Ren, Zhenhua Wu, Yijun Li, Qing You, Zongjun Shi, Kaichun Zhang, Xiaoxing Chen, Mingzhou Zhan, Diwei Liu, Renbin Zhong and Shenggang Liu
Sensors 2024, 24(18), 5891; https://doi.org/10.3390/s24185891 - 11 Sep 2024
Viewed by 960
Abstract
This paper presents a method to enhance extended interaction oscillator (EIO) output power based on a dual-cavity parallel structure (DCPS). This stucture consists of two conventional ladder-line structures in parallel through a connecting structure, which improves the coupling efficiency between the cavities. The [...] Read more.
This paper presents a method to enhance extended interaction oscillator (EIO) output power based on a dual-cavity parallel structure (DCPS). This stucture consists of two conventional ladder-line structures in parallel through a connecting structure, which improves the coupling efficiency between the cavities. The dual output power fusion structure employs an H-T type combiner as the output coupler, which can effectively combine the two input waves in phase to further increase the output power. The dispersion characteristics, coupling impedance, and field distribution of the DCPS are investigated through numerical and simulation calculations, and the optimal operating parameters and output structure are obtained by PIC simulation. At an operating voltage of 12.6 kV, current density of 200 A/cm2, and longitudinal magnetic field of 0.5 T, the DCPS EIO exhibits an output power exceeding 600 W at a frequency of 140.6 GHz. This represents a nearly three-fold enhancement compared with the 195 W output of the conventional ladder-line EIO structure. These findings demonstrate the significant improvement in output power and interaction efficiency achieved by the DCPS for the EIO device. Full article
(This article belongs to the Special Issue Millimeter Wave and Terahertz Source, Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop