Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator
Abstract
1. Introduction
2. Structural Design and Cold Cavity Analysis
3. PIC Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.S.; Park, J.; Temkin, R.J. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Siegel, P. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Wang, Y. Research on a High-Order Mode Multibeam Extended-Interaction Oscillator With Coaxial Structure. IEEE Trans. Plasma Sci. 2020, 48, 1902–1909. [Google Scholar] [CrossRef]
- Chang, Z.; Meng, L.; Li, H.; Wang, B.; Yuan, X.; Xu, C.; Peng, R.; Yin, Y. A High-Efficiency Dual-Cavity Extended Interaction Oscillator. IEEE Trans. Electron Devices 2020, 67, 335–340. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Niu, X.; Zhang, T.; Liu, Y. Design of a Peculiar TM35 Transverse Mode THz Extended Interaction Oscillator for Multibeam kW-Class Operation. IEEE Trans. Plasma Sci. 2024, 52, 707–714. [Google Scholar] [CrossRef]
- Joye, C.D.; Cook, A.M.; Calame, J.P.; Abe, D.K.; Vlasov, A.N.; Chernyavskiy, I.A.; Nguyen, K.T.; Wright, E.L.; Pershing, D.E.; Kimura, T.; et al. Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE Trans. Electron Devices 2014, 61, 1672–1678. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Liu, D.; Wang, W.; Zhao, T.; Zhong, R.; Shi, Z.; Zhang, K.; Duan, Z.; Wei, Y.; et al. Novel 0.22-THz Extended Interaction Oscillator Based on the Four-Sheet-Beam Orthogonal Interconnection Structure. IEEE Trans. Electron Devices 2023, 70, 1917–1922. [Google Scholar] [CrossRef]
- Zu, Y.; Lan, Y.; Yuan, X.; Xu, X.; Chen, Q.; Li, H.; Cole, M.T.; Yin, Y.; Wang, B.; Meng, L.; et al. Research on a Highly Overmoded Slow Wave Circuit for 0.3-THz Extended Interaction Oscillator. IEEE Trans. Electron Devices 2023, 70, 2165–2169. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, S.; Guo, J.; Wang, Z.; Tang, T.; Gong, H.; Lu, Z.; Duan, Z.; Gong, Y. A 0.14 THz Angular Radial Extended Interaction Oscillator. IEEE Trans. Electron Devices 2022, 69, 1468–1473. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Zhang, T.; Liu, Y.; Guo, G.; Li, H. Design and research of a novel structure for extended interaction oscillators. Phys. Plasmas 2022, 29. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Ren, R.; Xiao, C.; Shi, Z.; Zhao, T.; Hu, M.; Wei, Y.; Duan, Z.; Gong, Y.; et al. A Novel 2-D Slotted Structure Extended Interaction Oscillator. IEEE Trans. Electron Devices 2023, 70, 2780–2785. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Liu, Y.; Guo, G.; Li, H. Design and Cold Test on the Slow Wave Structure of a Wide-Voltage Tuned and High-Power Extended Interaction Oscillator in W-Band. IEEE Trans. Plasma Sci. 2023, 51, 381–385. [Google Scholar] [CrossRef]
- Xu, C.; Meng, L.; Paoloni, C.; Qin, Y.; Bi, L.; Wang, B.; Li, H.; Yin, Y. A 0.35-THz Extended Interaction Oscillator Based on Overmoded and Bi-Periodic Structure. IEEE Trans. Electron Devices 2021, 68, 5814–5819. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Zhang, T.; Liu, Y.; Guo, G.; Li, H. THz Radiation from a TM51 Mode Sheet Beam Extended Interaction Oscillator With Low Injection. IEEE Trans. Plasma Sci. 2022, 50, 1081–1086. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Y.; Xu, D.; Li, X.; Dai, Z.; Li, H.; Jiang, W.; Wu, Z.; Liu, G.; Yao, Y.; et al. Performance and Experimental Progress of a Compact W-band High Average Power Sheet Beam Extended Interaction Oscillator. IEEE Electron Device Lett. 2023, 44, 144–147. [Google Scholar] [CrossRef]
- Chang, Z.; Shu, G.; Tian, Y.; He, W. A Multimode Extended Interaction Oscillator with Broad Continuous Electric Tuning Range. IEEE Trans. Electron Devices 2022, 69, 3947–3952. [Google Scholar] [CrossRef]
- Chang, Z.; Shu, G.; He, W. An Extended Interaction Oscillator Capable of Continuous Multimode Operation. IEEE Trans. Electron Devices 2021, 68, 6470–6475. [Google Scholar] [CrossRef]
- Liao, J.; Shu, G.; Lin, G.; Lin, J.; Li, Q.; He, J.; Ren, J.; Chang, Z.; Xu, B.; Deng, J.; et al. Study of a 0.3-THz Extended Interaction Oscillator Based on the Pseudospark-Sourced Sheet Electron Beam. IEEE Trans. Plasma Sci. 2023, 51, 2199–2204. [Google Scholar] [CrossRef]
- Bi, L.; Jiang, X.; Qin, Y.; Xu, C.; Wang, B.; Yin, Y.; Li, H.; Meng, L. Power Enhancement of Subterahertz Extended Interaction Oscillator Based on Overmoded Multigap Circuit and Linearly Distributed Two Electron Beams. IEEE Trans. Electron Devices 2022, 69, 792–797. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Lu, G.; Yang, W.; Wu, F.; Yu, Z.; Jiang, J. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial. Carbon 2017, 123, 668–675. [Google Scholar] [CrossRef]
Institution | Frequency | Voltage | Current | Power |
---|---|---|---|---|
(GHz) | (kV) | (A) | (W) | |
CPI | 93.8 | 20.3 | 0.69 | 1400 |
UESTC | 140 | 18 | 1.5 | 661 |
CPI | 140 | / | / | 200 |
UESTC | 220 | 16.6 | 3.2 | 500 |
CPI | 214.5 | 11 | 0.095 | 13.3 |
UESTC | 300 | 14.8 | 0.25 | 250 |
Parameter | Quantity | Value (mm) |
---|---|---|
a1 | Gap depth | 0.42 |
a2 | Coupling cavity width | 1.68 |
a3 | Beam tunnel width | 0.40 |
a4 | Coupling cavity width | 1.68 |
h1 | Beam tunnel height | 2.00 |
h2 | Gap height | 3.00 |
h3 | Coupling cavity height | 1.50 |
h4 | Coupling cavity height | 1.10 |
d | Gap width | 0.22 |
p | Period length | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Ren, R.; Wu, Z.; Li, Y.; You, Q.; Shi, Z.; Zhang, K.; Chen, X.; Zhan, M.; Liu, D.; et al. Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors 2024, 24, 5891. https://doi.org/10.3390/s24185891
Xiao C, Ren R, Wu Z, Li Y, You Q, Shi Z, Zhang K, Chen X, Zhan M, Liu D, et al. Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors. 2024; 24(18):5891. https://doi.org/10.3390/s24185891
Chicago/Turabian StyleXiao, Chuanhong, Ruizhe Ren, Zhenhua Wu, Yijun Li, Qing You, Zongjun Shi, Kaichun Zhang, Xiaoxing Chen, Mingzhou Zhan, Diwei Liu, and et al. 2024. "Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator" Sensors 24, no. 18: 5891. https://doi.org/10.3390/s24185891
APA StyleXiao, C., Ren, R., Wu, Z., Li, Y., You, Q., Shi, Z., Zhang, K., Chen, X., Zhan, M., Liu, D., Zhong, R., & Liu, S. (2024). Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors, 24(18), 5891. https://doi.org/10.3390/s24185891