Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = densified wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4018 KiB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Viewed by 461
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

14 pages, 959 KiB  
Article
Effective Wood Veneer Densification by Optimizing Key Parameters: Temperature, Equilibrium Moisture Content, and Pressure
by Tolgay Akkurt, Anti Rohumaa and Jaan Kers
Forests 2025, 16(6), 969; https://doi.org/10.3390/f16060969 - 7 Jun 2025
Viewed by 468
Abstract
Due to increasing environmental concerns and the scarcity of high-quality hardwood resources, enhancing wood properties—such as strength, surface smoothness, and impact resistance—has become essential, especially for veneer-based products. Wood densification is a promising method for such improvements, typically involving mechanical, thermo-mechanical, or hygrothermal-mechanical [...] Read more.
Due to increasing environmental concerns and the scarcity of high-quality hardwood resources, enhancing wood properties—such as strength, surface smoothness, and impact resistance—has become essential, especially for veneer-based products. Wood densification is a promising method for such improvements, typically involving mechanical, thermo-mechanical, or hygrothermal-mechanical processes. However, most prior studies examined only one densification parameter at a time. This study systematically investigates the combined effects of equilibrium moisture content (EMC), pressing temperature, and pressure on birch veneer densification. Birch veneers were densified radially using four temperatures (90–210 °C), three pressures (1.8–5.4 MPa), and three EMC levels (5%–20%) for a fixed pressing time of 8 min, resulting in 36 unique combinations. Results showed that higher pressing pressure and higher initial EMC consistently led to greater veneer densification. Optimal outcomes were achieved under two distinct conditions: (1) 90 °C with high EMC and high pressure, and (2) 210 °C with the same high EMC and high pressure. Intermediate temperatures (130–170 °C) were less effective. Temperatures above 200 °C were found critical due to lignin softening beyond its glass transition temperature. These findings highlight the interactive role of key parameters and provide practical guidance for upgrading low-quality veneers into high-performance engineered wood products in a sustainable and resource-efficient manner. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

11 pages, 714 KiB  
Article
Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production
by María Elena Jiménez-Mendoza, Faustino Ruiz-Aquino, José Guadalupe Rutiaga-Quiñones, Rossy Feria-Reyes, Wenceslao Santiago-García, Mario Ernesto Suárez-Mota, Ramiro Puc-Kauil and Rosalío Gabriel-Parra
Forests 2025, 16(5), 856; https://doi.org/10.3390/f16050856 - 20 May 2025
Viewed by 1120
Abstract
Fuels obtained from woody forest resources such as oaks have been traditionally used in various regions due to their availability and energy properties. In the search for sustainable bioenergy sources and the transition towards cleaner alternatives, biomass-derived fuels, such as charcoal and pellets, [...] Read more.
Fuels obtained from woody forest resources such as oaks have been traditionally used in various regions due to their availability and energy properties. In the search for sustainable bioenergy sources and the transition towards cleaner alternatives, biomass-derived fuels, such as charcoal and pellets, represent a relevant option for rural and urban communities. This study determines the chemical composition, physical and mechanical properties, and energy quality of pellets from two oak species (Quercus laurina and Q. rugosa) in San Sebastián Coatlán, Miahuatlán, Oaxaca. The chemical composition was determined in an Ankom fiber analyzer; the energetic, physical, and mechanical analysis was carried out with UNE-EN ISO and ASTM standards. On average, 56.18% and 54.63% cellulose, 17.81% and 17.87% lignin, and 13.96% and 13.78% hemicelluloses were obtained for Quercus laurina and Q. rugosa, respectively. Mechanical durability ranged from 87% to 95% for Q. laurina stump and Q. rugosa stem, respectively; for calorific value, values from 19.79 MJ Kg−1 to 20.31 MJ Kg−1 were recorded for Q. laurina stem and Q. rugosa stump, respectively. The forest biomass of both oak species is viable for pellet production. Full article
(This article belongs to the Special Issue Forest-Based Biomass for Bioenergy)
Show Figures

Figure 1

17 pages, 3763 KiB  
Article
Epoxy–Aminated Lignin Impregnation Combined with Densification for Enhanced Mechanical Properties and Deformation Fixation of Wood
by Zhizun Gao, Jiayi Sun, Zhenke Wei, Fanjun Yu, Zhe Qiu, Zefang Xiao and Yonggui Wang
Polymers 2025, 17(10), 1406; https://doi.org/10.3390/polym17101406 - 20 May 2025
Viewed by 558
Abstract
Hot-pressing densification is an effective method to enhance the mechanical properties of wood; however, excessively high pressing temperatures can cause thermal degradation of wood components, compromising these improvements. In this study, aminated lignin (AL), with improved water solubility and reactive amino groups facilitating [...] Read more.
Hot-pressing densification is an effective method to enhance the mechanical properties of wood; however, excessively high pressing temperatures can cause thermal degradation of wood components, compromising these improvements. In this study, aminated lignin (AL), with improved water solubility and reactive amino groups facilitating crosslinking, was utilized as a bio-based amine curing agent for the water-soluble, low-molecular-weight epoxy compound polyethylene glycol diglycidyl ether (PEGDGE). The PEGDGE-AL modifier was applied for wood impregnation, followed by hot-pressing densification at a relatively low temperature of 120 °C, to enhance the mechanical properties of wood. The chemical composition of AL was analyzed using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and X-ray photoelectron spectroscopy (XPS). The gelation and curing behavior of the PEGDGE-AL modifier demonstrated its ability to readily form a network structure at both room temperature and elevated temperatures. The impact strength of densified wood (DW) modified with 12 wt% PEGDGE and 8 wt% AL, denoted as 12PEGDGE+8AL-DW, exhibited an impact strength of 15.2 kJ/m2, representing a 72% increase compared to untreated wood (UW). The modulus of rupture (MOR) and modulus of elasticity (MOE) reached 241.1 MPa and 14.6 GPa, respectively, corresponding to 60% and 75% improvements over UW. Furthermore, the 24 h water uptake and thickness swelling of 12PEGDGE+8AL-DW were 45.2% and 24.7%, which were 11% and 43% lower than those of water-impregnated and hot-pressed densified wood (W-DW), respectively. This study provides a low-temperature route for wood densification while contributing to the valorization of lignin in high-performance material applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 6146 KiB  
Article
Design and Implementation of a Low-Pressure Briquetting Machine for the Use of Pinus spp. Wood Residues: An Approach to Appropriate Rural Technology
by Mario Morales-Máximo, Víctor Manuel Ruíz-García, José Guadalupe Rutiaga-Quiñones and Luis Bernado López-Sosa
Clean Technol. 2025, 7(1), 22; https://doi.org/10.3390/cleantechnol7010022 - 6 Mar 2025
Viewed by 1405
Abstract
This research analyzes the technical feasibility and implementation of an appropriate technology for the production of briquettes from Pinus spp. waste (sawdust and shavings) in a rural community in Michoacán, Mexico. The results indicate that local small-scale briquette production in the Pichátaro community [...] Read more.
This research analyzes the technical feasibility and implementation of an appropriate technology for the production of briquettes from Pinus spp. waste (sawdust and shavings) in a rural community in Michoacán, Mexico. The results indicate that local small-scale briquette production in the Pichátaro community has the potential to boost a local economy based on the manufacturing and marketing of densified solid biofuels. The design of the manual briquetting machine was developed through a participatory approach with community users. Structural simplicity and locally accessible maintenance were prioritized, the aspects that were addressed little in previous studies. The machine allows for the production of briquettes using a low-cost mixture composed of sawdust and Pinus spp. shavings, corn starch, and water. Based on local conditions and production needs, parameters such as reduced processing times and simplified manufacturing methods were identified as essential to establishing an efficient regional production and supply chain. Furthermore, the valorization of solid waste through the production of alternative biofuels contributes to the diversification of the energy matrix in rural residential sectors and small industries in communities in Mexico. The estimated cost of the machine is USD 75.44, and most of its components are easily replaceable, which favors its sustainability and prolonged use. This study demonstrates that the implementation of a low-pressure briquette system based on appropriate rural technologies represents a viable strategy for the use of wood waste and the promotion of sustainable energy solutions in rural communities. Full article
Show Figures

Graphical abstract

22 pages, 5580 KiB  
Article
Improving Eco-Friendly Polymer Adhesive Joints: Innovative Toughening Strategies for Consistent Performance Under Various Loading Conditions
by Shahin Jalali, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(5), 648; https://doi.org/10.3390/polym17050648 - 28 Feb 2025
Viewed by 872
Abstract
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive [...] Read more.
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive joints offer unique advantages such as improved load distribution, reduced stress concentration, and enhanced aesthetic appeal. This study aims to enhance delamination resistance in wooden adhesive joints using a novel method involving reinforced high-toughness resin on surfaces. Additionally, a hybrid substrate approach applies a tough layer to outer plies and a densified wood core with greater fiber direction strength. Normal, toughened, and hybrid single-lap joint specimens were analyzed through both experimental and numerical methods under various loading conditions, including quasi-static and intermediate rates. The proposed method involved bio-adhesive penetration into the wood substrate, forming a reinforced surface zone. The experimentally validated results show a significant improvement in joint strength, exhibiting an approximate 2.8-fold increase for the toughened joints compared to the reference joints under intermediate-rate conditions. Furthermore, the absorbed energy of the toughened joints increased by a substantial factor of up to 4.5 times under the same conditions. The fracture surfaces analysis revealed that the toughening method changed the failure mechanism of the joints from delamination to fiber breakage, indicating that the strength of the substrate was lower than that of the joint under impact conditions. The viscoelastic behavior of the bio-adhesive also influenced the response of the joints to the changing displacement rate. The toughening method enhanced the resilience and load-bearing capacity of the wood joints, making them more suitable for dynamic applications. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

24 pages, 5539 KiB  
Review
Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization
by Kamil Roman and Emilia Grzegorzewska
Energies 2024, 17(24), 6392; https://doi.org/10.3390/en17246392 - 19 Dec 2024
Cited by 2 | Viewed by 2671
Abstract
This article aims to provide a comprehensive review of the use of logging residues in manufacturing briquettes, and to demonstrate their potential as a renewable energy source. Technical aspects of briquetting are examined, including wood properties, particle size, moisture content, and process temperature. [...] Read more.
This article aims to provide a comprehensive review of the use of logging residues in manufacturing briquettes, and to demonstrate their potential as a renewable energy source. Technical aspects of briquetting are examined, including wood properties, particle size, moisture content, and process temperature. Forest residues, such as branches and treetops, have a high energy potential with calorific values reaching up to 20 MJ∙kg−1 after briquetting. Densifying these residues increases their energy density (achieving up to 1120 kg∙m−3) and reduces waste and greenhouse gas emissions. Briquetting processes were analyzed economically and environmentally, with studies showing that production costs can be reduced by 25% when using locally sourced residues. This review recommends optimizing production processes to improve briquette durability and quality. Future research directions focused on developing cost-effective briquetting technologies tailored for small- and medium-sized businesses are identified in the study. Rural and economically disadvantaged regions could benefit from these advancements in briquetting. This paper advocates improved collaboration with international organizations to standardize briquette quality, promoting market acceptance and trade. Technology such as briquetting has the potential to advance renewable energy systems and achieve global climate goals. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

17 pages, 3824 KiB  
Article
Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants
by Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs and Janis Vetra
J. Funct. Biomater. 2024, 15(10), 287; https://doi.org/10.3390/jfb15100287 - 28 Sep 2024
Cited by 2 | Viewed by 1316
Abstract
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of [...] Read more.
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol–water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material’s shape stability, water resistance, and reduced swelling. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

11 pages, 3082 KiB  
Article
The Effect of Different Densification Levels on the Mechanical Properties of Southern Yellow Pine
by Suman Pradhan, Aadarsha Lamichhane, Dalila Belaidi and Mostafa Mohammadabadi
Sustainability 2024, 16(15), 6662; https://doi.org/10.3390/su16156662 - 4 Aug 2024
Cited by 1 | Viewed by 1542
Abstract
Plantations, typically involving the cultivation of fast-growing trees like southern yellow pine, offer avenues to enhance sustainability and manage limited resources more effectively. However, fast-growing trees suffer from low mechanical properties due to less dense wood. Densification and the development of engineered wood [...] Read more.
Plantations, typically involving the cultivation of fast-growing trees like southern yellow pine, offer avenues to enhance sustainability and manage limited resources more effectively. However, fast-growing trees suffer from low mechanical properties due to less dense wood. Densification and the development of engineered wood products represent approaches to developing high-performance products from fast-growing tree species. In this study, the correlation between the densification levels and mechanical properties of a fast-growing species, loblolly pine (Pinus taeda L.), was established to improve resource utilization. Wood specimens were densified at three compression ratios: 16.67%, 33.33%, and 50.00%. The impact of densification levels on bending strength, bending stiffness, shear strength, and hardness was studied. The findings highlighted the positive impact of densification on structural integrity, as bending stiffness consistently improved, eventually reaching a 42% enhancement at a compression ratio of 50.00%. However, bending strength showed an initial increasing trend but reached a plateau at higher densification levels. Densification levels showed minimal changes in shear strength parallel to the grain. Notably, densification significantly enhanced hardness properties, particularly on the tangential surface, where a fourfold increase was observed at a 50% compression ratio. Overall, these findings reveal the relation between the compression ratio and the mechanical properties of lumber and are beneficial for utilizing lower-quality wood species in construction and engineering applications. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

13 pages, 2075 KiB  
Article
The Effect of Hardwood Veneer Densification on Plywood Density, Surface Hardness, and Screw Withdrawal Capacity
by Heikko Kallakas, Tolgay Akkurt, Alexander Scharf, Fred Mühls, Anti Rohumaa and Jaan Kers
Forests 2024, 15(7), 1275; https://doi.org/10.3390/f15071275 - 22 Jul 2024
Cited by 2 | Viewed by 1702
Abstract
Increasing environmental awareness and the carbon-storing capability of wood have amplified its relevance as a building material. The demand for high-quality wood species necessitates exploring alternative, underutilized wood sources due to limited forest areas and premium wood volume. Consequently, the veneer-based industry is [...] Read more.
Increasing environmental awareness and the carbon-storing capability of wood have amplified its relevance as a building material. The demand for high-quality wood species necessitates exploring alternative, underutilized wood sources due to limited forest areas and premium wood volume. Consequently, the veneer-based industry is considering lower-value hardwood species like grey alder (Alnus Incania), black alder (Alnus glutinosa), and aspen (Populus tremula) as substitutes for high-quality birch (Betula pendula). Initially less appealing due to their lower density and mechanical properties, these species show promise through densification, which enhances their density, strength, and hardness. This study aims to enhance plywood screw withdrawal capacity and surface hardness by densifying low-density wood species and using them in plywood face-veneer layers, or in all layers. The relationship between the wood density, surface hardness, and screw withdrawal capacity of plywood made of low-value species like aspen and black alder is examined. Experimental work with a pilot-scale veneer and plywood production line demonstrates improved surface hardness (65% and 93% for aspen and black alder, respectively) and screw withdrawal capacity (16% and 35% for aspen and black alder, respectively) in densified face veneer plywood. This research highlights the potential of densified low-value wood species to meet construction requirements, expanding their practical applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

11 pages, 465 KiB  
Article
Analysis of Energy Potential of Switchgrass Biomass
by Michael Ioelovich
Biomass 2024, 4(3), 740-750; https://doi.org/10.3390/biomass4030041 - 8 Jul 2024
Cited by 2 | Viewed by 1234
Abstract
In this research, the energy potential of switchgrass (SG) was analyzed to find promising directions for producing bioenergy from this biomass. The first direction is determining the thermal energy of bioethanol extracted from SG biomass after its pretreatment, enzymatic hydrolysis (saccharification), and fermentation [...] Read more.
In this research, the energy potential of switchgrass (SG) was analyzed to find promising directions for producing bioenergy from this biomass. The first direction is determining the thermal energy of bioethanol extracted from SG biomass after its pretreatment, enzymatic hydrolysis (saccharification), and fermentation of the resulting glucose. It was established that after a two-stage pretreatment of 1 ton of SG with dilute solutions of nitric acid and alkali, the largest amount of bioethanol can be extracted with an energy potential of 4.9 GJ. It is also shown that by the utilization of solid and liquid waste, the production cost of bioethanol can be reduced. On the other hand, the direct combustion of 1 ton of the initial SG biomass used as a solid biofuel provides an increased amount of thermal energy of 18.3 GJ, which is 3.7 times higher than the energy potential of the resulting bioethanol extracted from 1 ton of this biomass. Thus, if the ultimate goal is to obtain the maximum energy amount, then another direction for obtaining bioenergy from biomass should be implemented, namely, direct combustion, preferably after pelletizing. Studies have shown that fuel characteristics of SG pellets such as the gross thermal energy and density of thermal energy are lower than those of wood pellets, but they can be improved if the SG biomass is densified into pellets together with binders made from polymer waste. Full article
Show Figures

Figure 1

12 pages, 1752 KiB  
Article
Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine
by Przemysław Mania, Carlo Kupfernagel and Simon Curling
Forests 2024, 15(6), 892; https://doi.org/10.3390/f15060892 - 21 May 2024
Cited by 7 | Viewed by 2361
Abstract
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With [...] Read more.
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells. Full article
Show Figures

Figure 1

18 pages, 2874 KiB  
Article
Fabrication of High-Performance Densified Wood via High-Pressure Steam Treatment and Hot-Pressing
by Weizhi Huang, Yangxi Jin, Yi Guo, Jiaqi Deng, Haoyang Yu and Bobing He
Polymers 2024, 16(7), 939; https://doi.org/10.3390/polym16070939 - 29 Mar 2024
Cited by 5 | Viewed by 2505
Abstract
The fabrication of sustainable structural materials with high physical properties to replace engineering plastics is a major challenge for modern industry, and wood, as the most abundant sustainable natural raw material on the planet, has received a great deal of attention from researchers. [...] Read more.
The fabrication of sustainable structural materials with high physical properties to replace engineering plastics is a major challenge for modern industry, and wood, as the most abundant sustainable natural raw material on the planet, has received a great deal of attention from researchers. Researchers have made efforts to enhance the physical properties of wood in order to replace plastics. However, it is also difficult to meet practical demands at a low cost. Herein, we report a simple and efficient top-down strategy to transform bulk natural basswood into a high-performance structural material. This three-step strategy involves partial removal of hemicellulose and lignin via treating basswood by boiling an aqueous mixture of NaOH and Na2SO3, and a high-pressure steam treatment (HPST) was applied to delignified wood followed by hot-pressing, which allowed the wood to absorb moisture uniformly and quickly. HPST-treated dense delignified wood (HDDW) has a tensile strength of ~420 MPa, which is 6.5 times better than natural basswood (~65 MPa). We systematically investigated the various factors affecting the tensile strength of this wood material and explored the reasons why these factors affect the tensile strength, as well as the intrinsic connection between the moisture absorbed through HPST and the increased tensile strength of HDDW. Through our experiments, we realized the enhancement mechanism of HDDW and the optimal experimental conditions for the fabrication of HDDW. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 5108 KiB  
Article
Influences of Species and Density on the Horizontal Flame Spread Behavior of Densified Wood
by Yang Zhou, Wenxi Qiu, Penghui Zhou, Zhengyang Wang, Xiaonan Zhang, Xiangyu Mao and Rongwei Bu
Buildings 2024, 14(3), 620; https://doi.org/10.3390/buildings14030620 - 27 Feb 2024
Cited by 2 | Viewed by 1706
Abstract
Densified wood possesses outstanding mechanical properties and serves as a desired construction material for modern timber buildings. However, the limited research on its flame behavior hinders its broader applications. The authors of this paper experimentally and analytically investigated the influence of wood species [...] Read more.
Densified wood possesses outstanding mechanical properties and serves as a desired construction material for modern timber buildings. However, the limited research on its flame behavior hinders its broader applications. The authors of this paper experimentally and analytically investigated the influence of wood species and density on horizontal flame spread behavior. Densified oak and densified fir were tested. The flame spread rate decreased with wood density in both densified wood types. Their values were close at the same density. The mass loss rate (m˙) of the densified wood decreased with the increase in wood density. The densified oak had higher m˙ due to its lower lignin content. Dimensionless correlations between the m˙ and density were obtained which agree with the experiments. The flame heights (Lf) of the densified wood also decreased with the increase in wood density. The densified oak had higher Lf due to its higher m˙. As the densified wood density increased, the radiation (and conduction) was reduced (and enhanced), but the convection remained constant. The densified oak had lower convection, lower conduction, and higher radiation than the densified fir at the same density. Gas-phase heat transfer was dominant in the flame spread of the densified wood, but conduction was also significant as its contribution can be as high as 70% of gaseous heat transfer. Full article
(This article belongs to the Special Issue Behaviour and Safety of Building Structures in Fire)
Show Figures

Figure 1

19 pages, 7429 KiB  
Article
Characterization of Densified Pine Wood and a Zero-Thickness Bio-Based Adhesive for Eco-Friendly Structural Applications
by Shahin Jalali, Catarina da Silva Pereira Borges, Ricardo João Camilo Carbas, Eduardo André de Sousa Marques, João Carlos Moura Bordado and Lucas Filipe Martins da Silva
Materials 2023, 16(22), 7147; https://doi.org/10.3390/ma16227147 - 13 Nov 2023
Cited by 3 | Viewed by 1784
Abstract
This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive’s strength [...] Read more.
This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive’s strength and fracture properties under zero-thickness conditions. The research also encompasses the characterization of densified pine wood, an innovative wood product distinguished by enhanced mechanical properties, which is subsequently compared to natural pine wood. We conducted a comprehensive characterization of wood’s strength properties, utilizing dogbone-shaped samples in the fiber direction, and block specimens in the transverse direction. Butt joints were employed for adhesive testing. Mode I fracture properties were determined via compact tension (CT) and double cantilever beam (DCB) tests for wood and adhesive, respectively, while mode II response was assessed through end-loaded split (ELS) tests. The densification procedure, encompassing chemical and mechanical processes, was a focal point of the study. Initially, wood was subjected to acid boiling to remove the wood matrix, followed by the application of pressure to enhance density. As a result, wood density increased by approximately 100 percent, accompanied by substantial improvements in strength and fracture energy along the fiber direction by about 120 percent. However, it is worth noting that due to the delignification nature of the densification method, properties in the transverse direction, mainly reliant on the lignin matrix, exhibited compromises. Also introduced was an innovative technique to evaluate the bio-based adhesive, applied as a zero-thickness layer. The results from this method reveal promising mechanical properties, highlighting the bio-based adhesive’s potential as an eco-friendly substitute for synthetic adhesives in the wood industry. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

Back to TopTop