Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,292)

Search Parameters:
Keywords = demand-perspective

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4822 KB  
Review
Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies
by Babar Azeem
Appl. Sci. 2025, 15(20), 10954; https://doi.org/10.3390/app152010954 (registering DOI) - 12 Oct 2025
Abstract
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. [...] Read more.
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. Sewage sludge is rich in essential macronutrients (N, P, K), micronutrients, and organic matter, making it a promising feedstock for agricultural applications. However, its use is constrained by challenges including compositional variability, presence of heavy metals, pathogens, and emerging contaminants such as microplastics and PFAS (Per- and Polyfluoroalkyl Substances). The manuscript discusses a range of stabilization and conversion techniques, such as composting, anaerobic digestion, pyrolysis, hydrothermal carbonization, and nutrient recovery from incinerated sludge ash. Special emphasis is placed on coating and encapsulation technologies that regulate nutrient release, improve fertilizer efficiency, and reduce environmental losses. The role of natural, synthetic, and biodegradable polymers in enhancing release mechanisms is analyzed in the context of agricultural performance and soil health. While these technologies offer environmental and agronomic benefits, large-scale adoption is hindered by technical, economic, and regulatory barriers. The review highlights key challenges and outlines future perspectives, including the need for advanced coating materials, improved contaminant mitigation strategies, harmonized regulations, and field-scale validation of CRFs. Overall, the valorisation of sewage sludge into CRFs presents a viable strategy for nutrient recovery, waste minimization, and sustainable food production. With continued innovation and policy support, sludge-based fertilizers can become a critical component of the green transition in agriculture. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

24 pages, 6626 KB  
Article
Harnessing GPS Spatiotemporal Big Data to Enhance Visitor Experience and Sustainable Management of UNESCO Heritage Sites: A Case Study of Mount Huangshan, China
by Jianping Sun, Shi Chen, Yinlan Huang, Huifang Rong and Qiong Li
ISPRS Int. J. Geo-Inf. 2025, 14(10), 396; https://doi.org/10.3390/ijgi14100396 (registering DOI) - 12 Oct 2025
Abstract
In the era of big data, the rapid proliferation of user-generated content enriched with geolocations offers new perspectives and datasets for probing the spatiotemporal dynamics of tourist mobility. Mining large-scale geospatial traces has become central to tourism geography: it reveals preferences for attractions [...] Read more.
In the era of big data, the rapid proliferation of user-generated content enriched with geolocations offers new perspectives and datasets for probing the spatiotemporal dynamics of tourist mobility. Mining large-scale geospatial traces has become central to tourism geography: it reveals preferences for attractions and routes to enable intelligent recommendation, enhance visitor experience, and advance smart tourism, while also informing spatial planning, crowd management, and sustainable destination development. Using Mount Huangshan—a UNESCO World Cultural and Natural Heritage site—as a case study, we integrate GPS trajectories and geo-tagged photographs from 2017–2023. We apply a Density-Field Hotspot Detector (DF-HD), a Space–Time Cube (STC), and spatial gridding to analyze behavior from temporal, spatial, and fully spatiotemporal perspectives. Results show a characteristic “double-peak, double-trough” seasonal pattern in the number of GPS tracks, cumulative track length, and geo-tagged photos. Tourist behavior exhibits pronounced elevation dependence, with clear vertical differentiation. DF-HD efficiently delineates hierarchical hotspot areas and visitor interest zones, providing actionable evidence for demand-responsive crowd diversion. By integrating sequential time slices with geography in a 3D framework, the STC exposes dynamic spatiotemporal associations and evolutionary regularities in visitor flows, supporting real-time crowd diagnosis and optimized spatial resource allocation. Comparative findings further confirm that Huangshan’s seasonal intensity is significantly lower than previously reported, while the high agreement between trajectory density and gridded photos clarifies the multi-tier clustering of route popularity. These insights furnish a scientific basis for designing secondary tour loops, alleviating pressure on core areas, and charting an effective pathway toward internal structural optimization and sustainable development of the Mount Huangshan Scenic Area. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

21 pages, 606 KB  
Article
The Role of Religion and Culture in Intergenerational Transnational Caregiving: Perspectives from Nigerian Christian Immigrants in Northern BC
by Chibuzo Stephanie Okigbo, Shannon Freeman, Dawn Hemingway, Jacqueline Holler and Glen Schmidt
Behav. Sci. 2025, 15(10), 1383; https://doi.org/10.3390/bs15101383 (registering DOI) - 12 Oct 2025
Abstract
Background/Rationale: Transnational caregiving may be influenced by religious beliefs and cultural traditions that frame elder care as both a moral and religious obligation. While migration alters caregiving dynamics, religious teachings and cultural expectations remain central in guiding transnational caregiving practices. This study examines [...] Read more.
Background/Rationale: Transnational caregiving may be influenced by religious beliefs and cultural traditions that frame elder care as both a moral and religious obligation. While migration alters caregiving dynamics, religious teachings and cultural expectations remain central in guiding transnational caregiving practices. This study examines how Christian Nigerians who have immigrated to Canada navigate caregiving responsibilities within a transnational context, integrating their religion, cultural values, and the practical realities of crossing borders. Methods: This study employed a predominantly qualitative narrative approach, drawing on in-depth interviews with Nigerian Christian immigrants (N = 10) providing transnational care. Data collection involved a pre-interview survey and semi-structured interviews, providing the opportunity for participants to share their lived experiences. Thematic analysis was used to identify recurring themes related to the role of religion and culture in caregiving, ensuring a comprehensive exploration of participants’ perspectives. Findings: Caregiving is shaped by religious duty and cultural obligation, reinforced by biblical teachings and cultural values. Participants view elder care as a moral responsibility, tied to spiritual rewards and familial duty. Despite migration demands, family-based care remains preferred over institutional care, with social stigma attached to neglecting elders. Conclusions: Religion and culture remain integral to transnational caregiving practices, sustaining caregiving responsibilities despite migration-related realities. While religious teachings provide moral guidance and emotional support, cultural expectations reinforce caregiving as a collective and intergenerational duty. Policies and resources are needed that support transnational caregivers, ensuring they can fulfill their caregiving roles while adapting to new sociocultural environments. Policymakers should prioritize the implementation of policies and programs to support transnational caregivers, including family reunification measures, caregiving-related travel provisions, culturally tailored eldercare services, diaspora–local collaborations, organized caregiver support groups, and financial mechanisms such as tax incentives for remittances dedicated to elder care. Full article
(This article belongs to the Section Social Psychology)
Show Figures

Figure 1

20 pages, 307 KB  
Article
Pathways for Hydrogen Adoption in the Brazilian Trucking Industry: A Low-Carbon Alternative to Fossil Fuels
by Daniel Monge Nogueira, Geraldo Cardoso Oliveira Neto, Claudia Aparecida de Mattos and Gabriela Scur
Processes 2025, 13(10), 3240; https://doi.org/10.3390/pr13103240 (registering DOI) - 11 Oct 2025
Abstract
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil, its application in heavy-duty vehicles still faces structural and technological barriers. This [...] Read more.
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil, its application in heavy-duty vehicles still faces structural and technological barriers. This study aimed to analyze the viability of hydrogen as an energy alternative for trucks in Brazil. The research adopted an exploratory qualitative approach, based on the expert analysis method, through semi-structured interviews with development engineers, representatives of heavy-duty vehicle manufacturers, and researchers specializing in hydrogen technologies. The data were organized into a thematic framework and interpreted using content analysis. The results show that, although there is growing interest and ongoing initiatives, challenges such as the cost of fuel cells, the lack of refueling infrastructure, and low technological maturity hinder large-scale adoption. From a theoretical perspective, the study contributes by integrating specialized literature with practical insights from key industry players, broadening the understanding of the energy transition. In practical terms, it outlines some strategic paths, such as expanding technological development and forming partnerships. From a social perspective, it emphasizes the importance of hydrogen as a pillar for sustainable, low-carbon mobility, capable of positively impacting public health and mitigating climate change. Full article
(This article belongs to the Special Issue Recent Advances in Green Hydrogen Production Processes)
16 pages, 1265 KB  
Article
The Esterase Gs Derived from Geobacillus sp. JM6 Exhibits Hydrolytic Activity on the PET Model Substrates
by Shuyan Duan, Zhaoyi Wei, Yushan Wei, Xiaoyue Cai, Yixuan Liu and Ruiran Fan
Biology 2025, 14(10), 1387; https://doi.org/10.3390/biology14101387 (registering DOI) - 11 Oct 2025
Abstract
The continuous increase in demand for polyethylene terephthalate (PET) has drawn global attention to the significant environmental pollution caused by the degradation of PET plastics. Exploring new PET-degrading enzymes is essential for enhancing the degradation efficiency of PET, and esterases and lipases with [...] Read more.
The continuous increase in demand for polyethylene terephthalate (PET) has drawn global attention to the significant environmental pollution caused by the degradation of PET plastics. Exploring new PET-degrading enzymes is essential for enhancing the degradation efficiency of PET, and esterases and lipases with plastic degradation capabilities have become a focal point of research. In this study, we utilized the ultra-efficient mutant FASTase of the PET-degrading enzyme IsPETase, derived from Ideonella sakaiensis, as a positive control, based on the similarity in enzyme activity and substrate. We investigated the PET model substrate degradation activities of the esterase Gs and lipase GI, both derived from Bacillus spp., as well as the lipase CAI derived from Pseudomonas spp. The results indicated that Gs exhibited excellent bis(2-hydroxyethyl) terephthalate (BHET) degradation activity; however, Gs demonstrated a lack of thermal stability when hydrolyzing BHET. Molecular docking analyses were conducted to identify the key amino acids involved in the degradation of BHET by Gs from a structural perspective. At the same time, GI and CAI showed no BHET degradation activity. The combination of Gs and the mono-2-hydroxyethyl terephthalate (MHET) hydrolase, MHETase, can completely hydrolyze BHET, and Gs also exhibited degradation activity against the PET model substrate bis(benzyloxyethyl) terephthalate and PET nanoparticles. Given the structural similarity between PET hydrolase LCC-ICCG and Gs, this study provides new enzyme resources for advancing the efficient biological enzymatic degradation of PET plastics. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
22 pages, 3652 KB  
Article
Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example
by Jiahui Zhang, Xinjian Fan, Xinghai Wang, Lirong Wang, Jiafang Wei and Yuhan Xiao
Water 2025, 17(20), 2935; https://doi.org/10.3390/w17202935 (registering DOI) - 11 Oct 2025
Abstract
Water demand has increased due to population growth and rapid socioeconomic development, creating conflicts between human activities and water resources and having a substantial impact on the balance between blue and green water supplies. Existing study lacks a spatial perspective to examine the [...] Read more.
Water demand has increased due to population growth and rapid socioeconomic development, creating conflicts between human activities and water resources and having a substantial impact on the balance between blue and green water supplies. Existing study lacks a spatial perspective to examine the inherent relationship between blue and green water supply and demand, particularly in terms of geographical differentiation characteristics and rational allocation of blue and green water supply–demand balance in inland river basins. Using the Taolai River Basin as a case study, this research uses the distributed hydrological model SWAT from a blue–green water resources viewpoint to simulate the spatiotemporal distribution features of blue and green water resources at the sub-basin scale from 2002 to 2021. The supply and demand balance relationship of blue and green water resources within the basin was investigated, an assessment index system for water resource security was developed, and the realizable potential of blue water resources was quantified using various indicators. The findings show that during the study period, the average annual green water resources in the Taolai River Basin were 1.95 times greater than blue water resources, making green water the most abundant component of regional water resources. Spatially, both blue and green water resources showed considerable latitudinal zonality, with a declining tendency from south to north and very consistent distribution patterns. Blue water resources showed high geographic variability, with a safety index more than one, suggesting that supply–demand imbalances were most concentrated in the upper and intermediate ranges of the irrigated region, as well as the desert zone, where safety levels were relatively low. In contrast, green water resources had a safety score ranging from 0.7 to 1.0, indicating great overall safety and negligible regional variability. During the research period, the average annual theoretical transferable blue water resources were 4.06 × 108 m3, based on cross-regional water resource allocation potential analysis. This reveals tremendous potential for enhancing regional water resource allocation, hence providing substantial support for effective water consumption within the Taolai River Basin and regional economic growth. In conclusion, the assessment method developed in this work provides a solid foundation for improving water resource allocation and sustainable management in river basins. It provides technical assistance in the construction of water network systems in inland river basins, which is critical in establishing reasonable water resource distribution across various areas within these basins. Full article
(This article belongs to the Special Issue Application of Hydrological Modelling to Water Resources Management)
Show Figures

Figure 1

35 pages, 894 KB  
Article
Dual Mechanisms of Digital Transformation in Sustaining Green Innovation: A Supply Chain Perspective on Capability–Motivation Dynamics
by Ziyang Shi and Danxue Fan
Sustainability 2025, 17(20), 9005; https://doi.org/10.3390/su17209005 (registering DOI) - 11 Oct 2025
Abstract
In the context of global industrial chain decarbonization, the perpetuation of corporate green innovation has emerged as a linchpin for sustaining a competitive advantage in the pursuit of environmental sustainability. Employing a panel data framework, this investigation analyzes A-share listed firms in China [...] Read more.
In the context of global industrial chain decarbonization, the perpetuation of corporate green innovation has emerged as a linchpin for sustaining a competitive advantage in the pursuit of environmental sustainability. Employing a panel data framework, this investigation analyzes A-share listed firms in China from 2011 to 2023. In terms of supply chain perspectives, this study utilizes fixed effects models, mediation analysis, and moderation analysis to empirically examine how downstream enterprises’ digital transformation affects the sustainability of upstream enterprises’ green innovation, while deconstructing the “capability–motivation” dual pathway underlying such sustainability. The key findings are as follows: (1) downstream digital transformation significantly strengthens upstream green innovation persistence through both capability reinforcement and motivation amplification, with a notably stronger impact on the latter; (2) mechanism tests show that capability improvement primarily arises from knowledge spillovers and enhanced supply–demand coordination efficiency, while motivation enhancement stems from intensified market competition and greater responsiveness to tax incentives; and (3) supply chain structural characteristics exert critical moderating effects. This research elucidates the operational logic and boundary conditions of supply chain digital coordination in driving green innovation persistence, contributing to theoretical frameworks while offering actionable insights for policymaking and corporate strategic optimization in sustainable supply chain management. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
38 pages, 2057 KB  
Review
Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions
by Surtipal Sharma, Ruchi Bharti, Monika Verma, Renu Sharma, Adília Januário Charmier and Manas Sutradhar
Catalysts 2025, 15(10), 970; https://doi.org/10.3390/catal15100970 (registering DOI) - 11 Oct 2025
Abstract
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because [...] Read more.
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because of their strong basicity, thermal stability, low toxicity, and cost-effectiveness. This review provides a comprehensive account of the recent strategies using CaO NPs as heterogeneous catalysts for the green synthesis of nitrogen- and oxygen-containing heterocycles through MCRs. Key reactions such as Biginelli, Hantzsch, and pyran annulations are discussed in detail, with emphasis on atom economy, reaction conditions, product yields, and catalyst reusability. In many instances, CaO NPs have enabled solvent-free or aqueous protocols with high efficiency and reduced reaction times, often under mild conditions. Mechanistic aspects are analyzed to highlight the catalytic role of surface basic sites in facilitating condensation and cyclization steps. The performance of CaO NPs is also compared with other oxide nanocatalysts, showcasing their benefits from green metrics evaluation like E-factor and turnover frequency. Despite significant progress, challenges remain in areas such as asymmetric catalysis, industrial scalability, and catalytic stability under continuous use. To address these gaps, future directions involving doped CaO nanomaterials, hybrid composites, and mechanochemical approaches are proposed. This review aims to provide a focused and critical perspective on CaO NP-catalyzed MCRs, offering insights that may guide further innovations in sustainable heterocyclic synthesis. Full article
38 pages, 1548 KB  
Perspective
RGB-D Cameras and Brain–Computer Interfaces for Human Activity Recognition: An Overview
by Grazia Iadarola, Alessandro Mengarelli, Sabrina Iarlori, Andrea Monteriù and Susanna Spinsante
Sensors 2025, 25(20), 6286; https://doi.org/10.3390/s25206286 - 10 Oct 2025
Abstract
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users [...] Read more.
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users in their living environments, preserving their privacy in human activity recognition through depth images and skeleton tracking. Concurrently, non-invasive BCIs can provide access to intent and control of users by decoding neural signals. The synergy between these technologies may allow holistic understanding of both physical context and cognitive state of users, to enhance personalized assistance inside smart homes. The successful deployment in integrating the two technologies needs addressing critical technical hurdles, including computational demands for real-time multi-modal data processing, and user acceptance challenges related to data privacy, security, and BCI illiteracy. Continued interdisciplinary research is essential to realize the full potential of RGB-D cameras and BCIs as AAL solutions, in order to improve the quality of life for independent or impaired people. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

14 pages, 535 KB  
Review
Problems of Synurbization—Wild Boar in the City
by Anna Rekiel, Marcin Sońta, Justyna Więcek and Maja Dudzik
Sustainability 2025, 17(20), 8988; https://doi.org/10.3390/su17208988 - 10 Oct 2025
Abstract
This work addresses the problem of synurbization, with its causes and effects specified using the example of wild boar (Sus scrofa). It presents basic biological parameters of the species, including those that promote its synurbization—small habitat demands, omnivorism, as well as [...] Read more.
This work addresses the problem of synurbization, with its causes and effects specified using the example of wild boar (Sus scrofa). It presents basic biological parameters of the species, including those that promote its synurbization—small habitat demands, omnivorism, as well as ecological, behavioral, and demographic flexibility. It also discusses intra-species transformations stemming from wild boar adaptation to the urban space and pinpoints habitat fragmentation, ecological restoration, and phenotypic flexibility as the underlying causes of people–wild boar interactions. These interactions are primarily negative because wild boars attack humans and domestic animals and cause many traffic accidents. An analysis of the literature included in this study shows that, unfortunately, there are currently no fully effective methods that could protect urban areas and their inhabitants from the threats posed by wild boars. In order for sustainable urban development policies to be effectively implemented, there is a need for intensive, holistic research and cooperation between experts in many fields: wildlife, economics, public health, sociology, ethics, psychology, and urban planning. The synurbanization of wild boars is a large and growing social problem, but from an ecological perspective, there is a need to take action and develop methods to mitigate human/wild animal conflicts, not only from a human perspective. A one-sided view and action can be a threat to many animal species. Full article
(This article belongs to the Special Issue Human–Wildlife Coexistence—Future Solution)
29 pages, 1219 KB  
Review
Economic Impact Assessment for Positive Energy Districts: A Literature Review
by Marco Volpatti, Andreas Tuerk, Camilla Neumann, Ilaria Marotta, Maria Beatrice Andreucci, Matthias Haase, Francesco Guarino, Rosaria Volpe and Adriano Bisello
Energies 2025, 18(20), 5341; https://doi.org/10.3390/en18205341 - 10 Oct 2025
Abstract
To address the global challenge of sustainable energy transition in cities, there is a growing demand for innovative solutions to provide flexible, low-carbon, and socio-economically profitable energy systems. In this context, there is a need for holistic evaluation frameworks for the prioritization and [...] Read more.
To address the global challenge of sustainable energy transition in cities, there is a growing demand for innovative solutions to provide flexible, low-carbon, and socio-economically profitable energy systems. In this context, there is a need for holistic evaluation frameworks for the prioritization and economic optimization of interventions. This paper provides a literature review on sustainable planning and economic impact assessment of innovative urban areas, such as Positive Energy Districts (PEDs), to analyze research trends in terms of evaluation methods, impacts, system boundaries, and identify conceptual and methodological gaps. A dedicated search was conducted in the Scopus database using several query strings to conduct a systematic review. At the end, 57 documents were collected and categorized by analysis approach, indicators, project interventions, and other factors. The review shows that the Cost–Benefit Analysis (CBA) is the most frequently adopted method, while Life Cycle Costing and Multi-Criteria Analysis result in a more limited application. Only in a few cases is the reduction in GHG emissions and disposal costs a part of the economic model. Furthermore, cost assessments usually do not consider the integration of the district into the wider energy network, such as the interaction with energy markets. From a more holistic perspective, additional costs and benefits should be included in the analysis and monetized, such as the co-impact on the social and environmental dimensions (e.g., social well-being, thermal comfort improvement, and biodiversity preservation) and other operational benefits (e.g., increase in property value, revenues from Demand Response, and Peer-To-Peer schemes) and disposal costs, considering specific discount rates. By adopting this multi-criteria thinking, future research should also deepen the synergies between urban sectors by focusing more attention on mobility, urban waste and green management, and the integration of district heating networks. According to this vision, investments in PEDs can generate a better social return and favour the development of shared interdisciplinary solutions. Full article
(This article belongs to the Special Issue Emerging Trends and Challenges in Zero-Energy Districts)
16 pages, 274 KB  
Article
Challenges of Innovation Through Gamification in the Classroom
by Magalí Denoni-Buján, Celia Marcen, Ana Gracia-Gil, Raquel Casanovas López and Sheila Coral-Aguilar
Educ. Sci. 2025, 15(10), 1341; https://doi.org/10.3390/educsci15101341 - 9 Oct 2025
Viewed by 135
Abstract
The demands of modern society regarding academic training have placed the focus of education on active methodologies. Their proven success also presents challenges for the innovation they entail. In this regard, methodological strategies such as gamification are currently focusing their analyses on design [...] Read more.
The demands of modern society regarding academic training have placed the focus of education on active methodologies. Their proven success also presents challenges for the innovation they entail. In this regard, methodological strategies such as gamification are currently focusing their analyses on design to ensure the effectiveness of their outcomes. With this in mind, we aim to analyse a gamification experience in higher education from the perspective of the various stakeholders involved. Using a qualitative methodology, data from an open-ended survey and the learning journals of 73 students were triangulated with the teaching journals of four lecturers. The category-based data analysis indicates that escape room-type games and digital boards are the most highly valued as innovative educational tools that promote active learning. Conflict resolution, cooperative work, and understanding of theoretical knowledge stood out as achieved objectives. The overall positive view, the classroom atmosphere of excitement and fun, and the impact on learning due to increased motivation were highlighted in participants’ opinions. From the lecturers’ perspective, the outcome is shown to be worthwhile in terms of effort and benefit. Full article
(This article belongs to the Collection Trends and Challenges in Higher Education)
14 pages, 1304 KB  
Article
RoadNet: A High-Precision Transformer-CNN Framework for Road Defect Detection via UAV-Based Visual Perception
by Long Gou, Yadong Liang, Xingyu Zhang and Jianfeng Yang
Drones 2025, 9(10), 691; https://doi.org/10.3390/drones9100691 - 9 Oct 2025
Viewed by 67
Abstract
Automated Road defect detection using Unmanned Aerial Vehicles (UAVs) has emerged as an efficient and safe solution for large-scale infrastructure inspection. However, object detection in aerial imagery poses unique challenges, including the prevalence of extremely small targets, complex backgrounds, and significant scale variations. [...] Read more.
Automated Road defect detection using Unmanned Aerial Vehicles (UAVs) has emerged as an efficient and safe solution for large-scale infrastructure inspection. However, object detection in aerial imagery poses unique challenges, including the prevalence of extremely small targets, complex backgrounds, and significant scale variations. Mainstream deep learning-based detection models often struggle with these issues, exhibiting limitations in detecting small cracks, high computational demands, and insufficient generalization ability for UAV perspectives. To address these challenges, this paper proposes a novel comprehensive network, RoadNet, specifically designed for high-precision road defect detection in UAV-captured imagery. RoadNet innovatively integrates Transformer modules with a convolutional neural network backbone and detection head. This design not only significantly enhances the global feature modeling capability crucial for understanding complex aerial contexts but also maintains the computational efficiency necessary for potential real-time applications. The model was trained and evaluated on a self-collected UAV road defect dataset (UAV-RDD). In comparative experiments, RoadNet achieved an outstanding mAP@0.5 score of 0.9128 while maintaining a fast-processing speed of 210.01 ms per image, outperforming other state-of-the-art models. The experimental results demonstrate that RoadNet possesses superior detection performance for road defects in complex aerial scenarios captured by drones. Full article
Show Figures

Figure 1

22 pages, 486 KB  
Article
Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India
by Yuanzao Zhu, Christian Klassert, Bernd Klauer and Erik Gawel
Water 2025, 17(19), 2917; https://doi.org/10.3390/w17192917 - 9 Oct 2025
Viewed by 189
Abstract
Urban water utilities in rapidly developing regions face growing challenges in ensuring continuous supply. Intermittent public water supply leads to unreliable and inequitable access, compelling households to adopt energy-intensive coping strategies. This creates a nexus between water and energy demand at the household [...] Read more.
Urban water utilities in rapidly developing regions face growing challenges in ensuring continuous supply. Intermittent public water supply leads to unreliable and inequitable access, compelling households to adopt energy-intensive coping strategies. This creates a nexus between water and energy demand at the household level. Few econometric analyses of household water demand have explicitly addressed this demand-side nexus in developing regions. Using survey data from the city of Pimpri-Chinchwad, India, where intermittent water supply is prevalent, we analyze household expenditures related to water access and estimate a piped water demand function with a Discrete-Continuous Choice model. We find that electricity expenditures for accessing water exceed water bills for approximately one-third of households. Including these costs in affordability calculations reveals hidden financial burdens, particularly for middle-income households. Water and electricity prices, income, and household size significantly influence water demand, with an income elasticity of 0.177 and water price elasticities ranging from 0 to −0.876. The cross-price elasticity of −0.097 indicates weak complementarity between electricity and piped water, suggesting electricity price changes do affect water use but are insufficient to drive substantial behavioral shifts. Targeted price increases in high-consumption blocks are more effective at curbing overuse, while simultaneous increases in water and electricity prices may heighten household vulnerability. These findings highlight the need for integrated, nexus-aware demand management strategies, particularly in regions with intermittent supply. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

20 pages, 6043 KB  
Article
Process Design and Optimisation Analysis for the Production of Ultra-High-Purity Phosphine
by Jingang Wang, Yu Liu, Jinyu Guo, Shuyue Zhou, Yawei Du and Xuejiao Tang
Separations 2025, 12(10), 274; https://doi.org/10.3390/separations12100274 - 9 Oct 2025
Viewed by 158
Abstract
With the increasing demand to scale the chip industry, attention is turning to the vital role that phosphanes and silanes play in semiconductor manufacturing processes such as chemical vapor deposition, plasma etching, and impurity doping. High-performance semiconductors often require a supply of ultra-pure [...] Read more.
With the increasing demand to scale the chip industry, attention is turning to the vital role that phosphanes and silanes play in semiconductor manufacturing processes such as chemical vapor deposition, plasma etching, and impurity doping. High-performance semiconductors often require a supply of ultra-pure gaseous phosphine (≥99.999%) to ensure the formation of defect-free thin-film structures with high integrity and strong functionality. In recent years, research on high-purity PH3 synthesis methods has mainly focused on two pathways: the acidic route with fewer side reactions, high by-product economics, and higher exergy of high-purity PH3, and the alkaline alternative with greater potential for practical application through lower reaction temperatures and a simpler reaction process. This paper presents the first comparative study and analysis on the preparation of ultra-high-purity PH3 and its process energy consumption. Using Aspen and its related software, the energy consumption and cost issues are discussed, and the process heat exchange network is established and optimised. By combining Aspen Plus V14 with MATLAB 2023, an artificial neural network (ANN) prediction model is established, and the parameters of the distillation section equipment are optimised through the NSGA-II model to solve problems such as low product yield and large equipment exergy loss. After optimisation, it can be found that in terms of energy consumption and cost indicators, the acidic process has greater advantages in large-scale production of high-purity PH3. The total energy consumption of the acidic process is 1.6 × 108 kJ/h, which is only one-third that of the alkaline process, while the cost of the heat exchange equipment is approximately three-quarters that of the alkaline process. Through dual-objective optimisation, the exergy loss of the acidic distillation part can be reduced by 1714.1 kW, and the economic cost can be reduced by USD 3673. Therefore, from the perspective of energy usage and equipment manufacturing, the comprehensive analysis of the acidic process has more advantages than that of the alkaline process. Full article
Show Figures

Figure 1

Back to TopTop