Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example
Abstract
1. Introduction
2. Data and Methods
2.1. Research Approach
2.2. Overview of Study Area
2.3. Data Sources
2.4. Trend Analysis and Mutability Tests
2.5. Interpolation Extension Reduction Calculation
2.6. SWAT Hydrologic Model
2.7. Quantification and Evaluation of Blue–Green Water Resources
2.8. Assessment of Security of Supply and Demand for Blue and Green Water
2.9. Inter-Regional Allocation of Blue Water Volumes
3. Results and Analysis
3.1. Runoff Trends and Sudden Points of Change
3.2. Rate Determination and Validation of SWAT Model
3.3. Characterization of Spatial and Temporal Distribution of Blue–Green Water Resources
3.3.1. Inter-Annual Variability
3.3.2. Spatial Distribution
3.4. Assessment of Balance Between Supply and Demand of Blue and Green Water Resources
3.4.1. Statistical Analysis of Balance of Supply and Demand for Blue–Green Water Resources
3.4.2. Spatial and Temporal Distribution of Blue–Green Water Supply and Demand Security
3.5. Quantity of Water Resources Available for Inter-Regional Allocation
4. Deliberation
4.1. The Contradiction Between the Supply and Demand of Blue and Green Water Resources in the Basin and Its Regulation
4.2. SWAT Model Uncertainty
4.3. Research Limitations and Directions for Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuo, Q.; Hu, D.; Dou, M.; Zhang, X.; Ma, J. Research framework and core system of the strictest water resources management system based on the concept of human-water harmony. Resour. Sci. 2014, 36, 906912. [Google Scholar]
- Xia, J.; Zhai, J.; Zhan, C. Some thoughts on the research and development of water resources in China. Prog. Earth Sci. 2011, 26, 905–915. [Google Scholar]
- Tian, J.; Guo, S.; Liu, D.; Chen, Q.; Wang, Q.; Yin, J.; Wu, X.; He, S. Impacts of climate and land use change on runoff in the Han River Basin. J. Geogr. 2020, 75, 2307–2318. [Google Scholar]
- Lu, H.; Ge, S. A review of studies on the impact of urbanization on ecohydrological processes in watersheds. J. Ecol. 2021, 41, 13–26. [Google Scholar]
- Falkenmark, M.; Rockstrom, J. Building water resilience in the face of global change: From a blue-only to a green-blue water approach to land-water management. J. Water Resour. Plan-Ning Manag. 2010, 136, 606–610. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. J. Environ. Manag. 2018, 228, 346–362. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H. Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. J. Hydrol. 2010, 384, 187–197. [Google Scholar] [CrossRef]
- Yen, H.; Park, S.; Arnold, J.G.; Srinivasan, R.; Chawanda, C.J.; Wang, R.; Feng, Q.; Wu, J.; Miao, C.; Bieger, K.; et al. IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water 2019, 11, 1681. [Google Scholar] [CrossRef]
- Meng, C.; Zhou, J.; Tayyab, M.; Zhu, S.; Zhang, H. Integrating Artificial Neural Networks into the VIC Model for Rainfall-Runoff Modeling. Water 2016, 8, 407. [Google Scholar] [CrossRef]
- Peng, D.; Chen, J.; Fang, J. Simulation of Summer Hourly Stream Flow by Applying TOPMODEL and Two Routing Algorithms to the Sparsely Gauged Lhasa River Basin in China. Water 2015, 7, 4041–4053. [Google Scholar] [CrossRef]
- Qi, W.; Jin, Y.; Yin, Z.; Zhu, W. Analysis of blue-green water supply and demand balance in the Tumen River Basin based on SWAT model. J. Ecol. 2023, 43, 3116–3127. [Google Scholar]
- Yang, H.; Ni, F.; Deng, Y.; Shen, J. Characteristics of spatial and temporal changes of blue and green water resources in Jialing River Basin based on SWAT model. J. Water Resour. Water Eng. 2022, 33, 18–26. [Google Scholar]
- Gao, Y.; Zhou, Y.; Liu, Z.; Fu, H.; Huang, J.; Feng, Y. SWAT-based assessment of blue-green water and its drought response in the Beijiang River Basin. J. Changjiang Acad. Sci. 2021, 38, 18–26. [Google Scholar]
- Abate, B.Z.; Alaminie, A.A.; Assefa, T.T.; Tigabu, T.B.; He, L. Modeling climate change impacts on blue and green water of the Kobo-Golina River in data-scarce upper Danakil basin, Ethiopia. J. Hydrol. Reg. Stud. 2024, 53, 101756. [Google Scholar] [CrossRef]
- Woldesenbet, T.A. Impact of land use and land cover dynamics on ecologically-relevant flows and blue-green water resources. Ecohydrol. Hydrobiol. 2022, 22, 420–434. [Google Scholar] [CrossRef]
- Koycegiz, C.; Buyukyildiz, M. Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater in Semi-Arid Konya Closed Basin. Water 2019, 11, 147. [Google Scholar] [CrossRef]
- Zhu, M.; Ni, F.; Deng, Y.; Ren, H.; Wang, Y.; Wu, M.; Yue, Z.; Jiang, N.; Wen, W. The Yangtze River source area blue green water response to climate and vegetation of wet and greening. J. Water Resour. Water Eng. 2025, 4, 40–48. [Google Scholar]
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Wang, F.; Li, L.F. Analysis of Optimal Water Resource Allocation in the Shuanglunhe Irrigation District Based on Supply-Demand Balance. Water Sci. Eng. Technol. 2025, 4, 6–8. [Google Scholar]
- Liu, X.; Wang, X.; Zhao, X.; Wang, L. Analysis of Water Resources Situation and Research on Optimal Allocation Strategies in the Haihe River Basin, Shandong Province, 2000–2021. Hydropower Water Resour. Technol. (Chin. Engl.) 2024, 55, 297–303. [Google Scholar]
- Nkwasa, A.; Chawanda, C.J.; Msigwa, A.; Komakech, H.C.; Verbeiren, B.; van Griensven, A. How Can We Represent Seasonal Land Use Dynamics in SWAT and SWAT+ Models for African Cultivated Catchments? Water 2020, 12, 1541. [Google Scholar] [CrossRef]
- Wang, Y. Development and application of hydrological time series trend and mutation analysis system. Gansu Sci. Technol. 2016, 32, 36–37. [Google Scholar]
- Shan, C.; Zhao, F.; Wang, Y.; Yang, C.; Wei, F.; Zhou, X. Study on the Evolvement Trend Process of Hydrological Elements in Luanhe River Basin, China. Water 2024, 16, 1169. [Google Scholar] [CrossRef]
- Ishak, E.; Rahman, A. Examination of Changes in Flood Data in Australia. Water 2019, 11, 1734. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, W.; Wang, J.; Wang, Y.; Huang, Y.; Hou, B.; Lu, C. The Impact of Climate Change on the Duration and Division of Flood Season in the Fenhe River Basin, China. Water 2016, 8, 105. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.Y.; Jia, D.Y.; Zhang, J.; Wang, J.Z.; Zhao, W.G. Research of Abrupt Changes of Sandstorm Frequency in Hexi Corridor in Recent 50 Years. J. Desert Res. 2011, 31, 1579–1584. [Google Scholar]
- Neitsch, S.; Armold, J.; Kiniry, J.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Li, W.; Yang, X.; Ren, L.; Gao, T.; Gu, Y. Characterization of spatial and temporal distribution of blue/green water resources in the Yellow River source area based on SWAT model. China Rural. Water Conserv. Hydropower 2021, 8, 59–66. [Google Scholar]
- Wang, W.; Zhao, Y.; Guan, T.; Chen, D.; Jia, H.; Zhang, X.; Yu, Y. Simulation of Pollution Characteristics in the Upper Chishui River Basin of Karst Regions Using the SWAT Model. Environ. Sci. Technol. 2024, 47, 117–124. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Jiang, J.; Lyu, L.; Han, Y.; Sun, C. Effect of climate variability on green and blue water resources in a temperate monsoon watershed, northeastern China. Sustainability 2021, 13, 2193. [Google Scholar] [CrossRef]
- Lv, L.T.; Wang, X.R.; Jiang, Y.; Sun, C.Z. Characterization of spatial and temporal distribution of blue and green water in the Dongjiang River Basin based on SWAT model. Water Resour. Conserv. 2017, 33, 53–60. [Google Scholar]
- Richter, B.D.; Davis, M.M.; Ape, C.; Konradl, C. A presumptive stranded for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- Xie, P.X.; Zhuo, L.; Yang, X.; Huang, H.R.; Gao, X.R.; Wu, P.T. Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin; a case for the Yellow River Basin. J. Hydrol. 2020, 500, 125222. [Google Scholar] [CrossRef]
- Rodrigues, D.B.B.; Gupta, H.V.; Merdiondo, E.M. A Blue/Green Water-based Accounting Framework for Assessment of Water Security. Water Resour. Res. 2014, 50, 7187–7205. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Liu, J.; Jin, Y.L.; Yang, S.T.; Zhou, X.; Luo, Y. Research on the Supply-Demand Relationship and Allocable Quantity Assessment Method for Blue and Green Water Resources. Sci. Surv. Mapp. 2024, 49, 169–179. [Google Scholar]
- Mao, G.Q.; Liu, J.G.; Han, F.; Meng, Y.; Tan, Y.; Zheng, Y.; Zheng, C.M. Assessing the interlinkage of green and blue water in an arid catchment in Northwest Chins. Environ. Geochem. Health 2020, 42, 933–953. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the west African sub-continent using the SWAT hydrologic model. J. Hydrol. 2007, 352, 30–49. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
Data | Explanation | Source |
---|---|---|
DEM | 30 m spatial resolution | Geospatial Data Cloud (https://www.gscloud.cn/) |
Land use data | Land cover at 1 km resolution in 1980 and 2020 | Center for Resource and Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn) |
Soil data | 1 km spatial resolution soil physical and chemical characteristics | HWSD Global Soil Database (v2.0) (https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/ (accessed on 5 September 2025) |
Meteorological data | Daily precipitation, air temperature, wind speed, relative humidity, and solar radiation, 1959–1980 and 2000–2021 | Dataset of daily values of surface climate data in China (V3.0) (http://www.cmads.org./) |
Hydrological data | Monthly flows at Jiayuguan station and Yuanyangchi (Dam) station, 1959–2021 | Water Resources Bulletin |
Population data | 1 km spatial resolution data, 2002–2021 | Worldp Official Website (https://www.worldpop.org/) |
Statistical data | Water use (domestic, productive and ecological), production, etc. | Relevant statistical yearbooks and the China Economic and Social Data Platform (https://data.cnki.net/) |
Indicator Name | Formula | Performance Evaluation Levels | |||
---|---|---|---|---|---|
Very Good | Good | Satisfied | Unsatisfied | ||
R2 | 0.75~1.00 | 0.65~0.75 | 0.50~0.65 | 0.00~0.50 | |
NSE | 0.75~1.00 | 0.65~0.75 | 0.50~0.65 | 0.00~050 | |
PBIAS (%) | <±10 | ±10~±15 | ±15~±25 | >±25 |
Blue Water Assessment Index | Safety | Supply–Demand Relationship |
---|---|---|
<0.5 | Low | Favorable |
0.5~1 | Middle | Balanced |
1~1.5 | High | Slight Unbalance |
>1.5 | Extremely High | Unbalance |
Mutation Test | Yuanyangchi Station | Mutation Test | Yuanyangchi Station | ||||
---|---|---|---|---|---|---|---|
Test Value | Significance | Mutation Year | Test Value | Significance | Mutation Year | ||
Mann–Kendall | 1.64 | Yes | 2011 | Sliding rank sum test | 1.96 | Yes | 2009 |
Cumulative anomaly | 1.64 | Yes | 2009 | Mann–Whitney–Pitt | 1.24 | No | 1983 |
Ordered clustering | 1.64 | Yes | 2009 | Pettitt | 1.96 | Yes | 2006 |
Lin Haiharin | 1.64 | Yes | 2009 | Buishand U Test | 1.96 | No | 1986 |
Moving t-test | 1.64 | Yes | 2009 | Standard normal state | 0.47 | Yes | 2010 |
Sliding F-test | 1.64 | Yes | 2013 | Slide at equal intervals of 5T | 0.08 | No | 1984 |
Sliding run test | 1.96 | No | 2015 | Bayesian | 1.64 | Yes | 2009 |
Stationary period | 1959–1982 | ||||||
Mutation period | 1983–2021 |
Sensitivity Ranking | Method | Parameter | Initial Range | Optimal Value r | T-Stat | p-Value |
---|---|---|---|---|---|---|
1 | V | GW_DELAY | 0–500 | 376.286 | 11.76 | <0.01 |
2 | V | GWQMN | 0–5000 | 2148.826 | 11.34 | <0.01 |
3 | V | GW_REVAP | 0.02–0.2 | 0.108 | 6.39 | <0.01 |
4 | V | RCHRG_DP | 0–1 | 0.545 | 3.73 | <0.01 |
5 | R | SOL_AWC () | −0.5–0.5 | 0.325 | 3.53 | <0.01 |
6 | V | SLSUBBSN | 10–150 | 79.078 | 3.32 | <0.01 |
7 | V | HRU_SLP | 0–1 | 0.414 | −2.99 | <0.01 |
8 | R | BIOMIX | −0.5–0.5 | −0.058 | −2.34 | 0.02 |
9 | R | SOL_Z () | −0.5–0.5 | 0.390 | 2.19 | 0.29 |
10 | V | CH_N2 | −0.5–0.5 | 0.123 | −2.06 | 0.04 |
11 | V | CANMX | 0–100 | 16.858 | 1.65 | 0.10 |
12 | V | REVAPMN | 0–500 | 229.920 | 1.50 | 0.13 |
13 | V | SMFMX | 0–20 | 14.399 | 1.27 | 0.21 |
14 | V | SMFMN | 0–20 | 4.109 | 1.04 | 0.30 |
15 | V | SFTMP | −20–20 | 6.564 | 1.00 | 0.32 |
16 | R | SOL_BD () | −0.5–0.5 | −0.440 | −0.97 | 0.33 |
17 | V | SMTMP | −20–20 | −17.965 | −0.83 | 0.41 |
18 | R | SOL_ALB | −0.5–0.5 | −0.365 | 0.74 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Fan, X.; Wang, X.; Wang, L.; Wei, J.; Xiao, Y. Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example. Water 2025, 17, 2935. https://doi.org/10.3390/w17202935
Zhang J, Fan X, Wang X, Wang L, Wei J, Xiao Y. Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example. Water. 2025; 17(20):2935. https://doi.org/10.3390/w17202935
Chicago/Turabian StyleZhang, Jiahui, Xinjian Fan, Xinghai Wang, Lirong Wang, Jiafang Wei, and Yuhan Xiao. 2025. "Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example" Water 17, no. 20: 2935. https://doi.org/10.3390/w17202935
APA StyleZhang, J., Fan, X., Wang, X., Wang, L., Wei, J., & Xiao, Y. (2025). Research on Optimal Water Resource Allocation in Inland River Basins Based on Spatiotemporal Evolution Characteristics of Blue and Green Water—Taking the Taolai River Basin of the Heihezi Water System as an Example. Water, 17(20), 2935. https://doi.org/10.3390/w17202935