Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (406)

Search Parameters:
Keywords = delayed wound healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1505 KiB  
Review
Biological Macromolecule-Based Dressings for Combat Wounds: From Collagen to Growth Factors—A Review
by Wojciech Kamysz and Patrycja Kleczkowska
Med. Sci. 2025, 13(3), 106; https://doi.org/10.3390/medsci13030106 - 1 Aug 2025
Viewed by 335
Abstract
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, [...] Read more.
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, significantly increases the risk of infection, delayed healing, and adverse outcomes. Traditional wound dressings frequently prove inadequate under such extreme conditions, as they have not been designed to address the specific physiological and logistical constraints present during armed conflicts. This review provides a comprehensive overview of recent progress in the development of advanced wound dressings tailored for use in military scenarios. Special attention has been given to multifunctional dressings that go beyond basic wound coverage by incorporating biologically active macromolecules such as collagen, chitosan, thrombin, alginate, therapeutic peptides, and growth factors. These compounds contribute to properties including moisture balance control, exudate absorption, microbial entrapment, and protection against secondary infection. This review highlights the critical role of advanced wound dressings in improving medical outcomes for injured military personnel. The potential of these technologies to reduce complications, enhance healing rates, and ultimately save lives underscores their growing importance in modern battlefield medicine. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

19 pages, 10625 KiB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 292
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

20 pages, 5747 KiB  
Article
Functional Study of the BMP Signaling Pathway in Appendage Regeneration of Exopalaemon carinicauda
by Chaofan Xing, Yong Li, Zhenxiang Chen, Qingyuan Hu, Jiayi Sun, Huanyu Chen, Qi Zou, Yingying Li, Fei Yu, Chao Wang, Panpan Wang and Xin Shen
Biology 2025, 14(8), 940; https://doi.org/10.3390/biology14080940 - 25 Jul 2025
Viewed by 407
Abstract
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages [...] Read more.
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of E. carinicauda. A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h). Additionally, 7740 DEGs were identified between D0 and 14 d post-autotomy (D14d), with 3382 DEGs identified between D18h and D14d. Among them, differentially expressed genes such as EcR, RXR, BMP1, and Smad4 are related to muscle growth or molting and may be involved in the regeneration process. qRT-PCR results revealed that EcBMPR2 was expressed at relatively high levels in the gonad and ventral nerve cord tissues and that the highest level of expression was detected in the regenerative basal tissue at 24 h post-autotomy. In situ hybridization results indicated strong signals of this gene in the cells at the wound site at 72 h post-autotomy. Following knockdown of EcBMPR2, the expression levels of both EcBMPR1B and EcSmad1 were significantly downregulated, and long-term interference with the EcBMPR2 gene resulted in a significantly slower appendage regeneration process compared to the control group. When the downstream transcription factor EcSmad1 was knocked down, the two receptor genes EcBMPR2 and EcBMPR1B were downregulated, whereas EcBMP7 was upregulated. After inhibiting the BMP signaling pathway, the degree of cell aggregation at the autotomy site in the experimental group was significantly lower than that in the control group, the wound healing rate was delayed, and the blastema regeneration time was prolonged from 5 d to 7 d. Collectively, these results indicate that the BMP signaling pathway plays a critical role in the early stages of appendage regeneration in E. carinicauda. This study provides important theoretical insights for understanding limb regeneration in crustaceans. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

23 pages, 1118 KiB  
Systematic Review
Management of Preoperative Anxiety via Virtual Reality Technology: A Systematic Review
by Elina Christiana Alimonaki, Anastasia Bothou, Athina Diamanti, Anna Deltsidou, Styliani Paliatsiou, Grigorios Karampas and Giannoula Kyrkou
Nurs. Rep. 2025, 15(8), 268; https://doi.org/10.3390/nursrep15080268 - 25 Jul 2025
Viewed by 231
Abstract
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care [...] Read more.
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care is drawn up with new data resulting from the evolution of technology to upgrade the procedures that need improvement. According to the international literature, a factor considered to be of major importance is high preoperative anxiety and its effects on the patient’s postoperative course. High preoperative anxiety is postoperatively responsible for prolonged hospital stays, increased postoperative pain, decreased effect of anesthetic agents, increased amounts of analgesics, delayed healing of surgical wounds, and increased risk of infections. The use of Virtual Reality technology appears as a new method of managing preoperative anxiety. Objective: This study investigates the effect and effectiveness of Virtual Reality (VR) technology in managing preoperative anxiety in adult patients. Methods: A literature review was performed on 193 articles, published between 2017 and 2024, sourced from the scientific databases PubMed and Cochrane, as well as the trial registry ClinicalTrials, with a screening and exclusion process to meet the criterion of investigating VR technology’s effectiveness in managing preoperative anxiety in adult patients. This systematic review was conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. Results: Out of the 193 articles, 29 were selected. All articles examined the efficacy of VR in adult patients (≥18) undergoing various types of surgery. The studies represent a total of 2.354 participants from 15 countries. There are two types of VR applications: distraction therapy and patient education. From the studies, 14 (48%) used the distraction VR intervention, 14 (48%) used the training VR intervention, and 1 (4%) used both VR interventions, using a range of validated anxiety scales such as the STAI, VAS-A, APAIS, and HADS. Among the 29 studies reviewed, 25 (86%) demonstrated statistically significant reductions in preoperative anxiety levels following the implementation of VR interventions. VR technology appears to manage preoperative anxiety effectively. It is a non-invasive and non-pharmacological intervention with minimal side effects. Conclusions: Based on the review, the management of preoperative anxiety with VR technology shows good levels of effectiveness. Further investigation of the efficacy by more studies and randomized controlled trials, with a larger patient population, is recommended to establish and universally apply VR technology in the preoperative care process as an effective method of managing preoperative anxiety. Full article
Show Figures

Figure 1

11 pages, 1453 KiB  
Case Report
Exosome-Based Therapy for Skin Complications in Oncology Patients Treated with EGFR Inhibitors: A Case Report Highlighting the Need for Coordinated Dermato-Oncologic Care
by Lidia Majewska, Karolina Dorosz and Jacek Kijowski
Pharmaceuticals 2025, 18(8), 1090; https://doi.org/10.3390/ph18081090 - 23 Jul 2025
Cited by 1 | Viewed by 315
Abstract
Patients undergoing epidermal growth factor receptor inhibitor (EGFRI) therapy frequently experience dermatologic side effects, notably papulopustular rash, which impacts 50–90% of recipients. This rash typically appears on the face, chest, and back within weeks of treatment, resembling acne but stemming from distinct pathophysiological [...] Read more.
Patients undergoing epidermal growth factor receptor inhibitor (EGFRI) therapy frequently experience dermatologic side effects, notably papulopustular rash, which impacts 50–90% of recipients. This rash typically appears on the face, chest, and back within weeks of treatment, resembling acne but stemming from distinct pathophysiological mechanisms, causing significant discomfort and reduced quality of life. Prophylactic measures and symptom-based treatment are recommended, emphasizing patient education, topical agents, and systemic therapies for severe cases. A 41-year-old female with advanced colonic mucinous adenocarcinoma developed severe acneiform rash and pruritus during EGFRI therapy with panitumumab. Initial standard treatment with oral doxycycline was discontinued after two days due to severe gastrointestinal intolerance characterized by intense nausea and dyspepsia. With limited access to dermatological consultation, treatment with rose stem cell-derived exosomes (RSCEs) provided rapid symptom relief. Significant improvement was observed within 24 h, with complete resolution of pruritus and substantial reduction in inflammatory lesions within 72 h. RSCEs demonstrate anti-inflammatory effects through the modulation of pro-inflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α, while promoting fibroblast proliferation and collagen synthesis enhancement. They may represent a possible alternative to corticosteroids, avoiding associated side effects such as skin atrophy, delayed wound healing, and local immunosuppression. This case underscores the potential of innovative treatments like RSCEs in managing EGFRI-induced skin complications when standard therapies are not tolerated, particularly in healthcare systems with limited dermato-oncological resources. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

14 pages, 1574 KiB  
Article
Antimicrobial Efficacy of Impregnated Human Acellular Dermal Substitutes in Burn Wound Models
by Marianna Hajská, Elena Kurin, Silvia Bittner Fialová, Marian Vidiščák and Arpád Panyko
Antibiotics 2025, 14(7), 707; https://doi.org/10.3390/antibiotics14070707 - 14 Jul 2025
Viewed by 354
Abstract
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they [...] Read more.
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they lack intrinsic antimicrobial activity, necessitating their combination with topical agents. Background/Objectives: This study investigates the antimicrobial and cytocompatibility profiles of ADMs impregnated with various antimicrobial agents, using in vitro planktonic and biofilm burn wound models. While the incorporation of antimicrobials into scaffolds has been previously explored, this study is, to our knowledge, the first to directly compare seven clinically relevant antimicrobial agents after they were impregnated into an ADM in a standardized in vitro model. Methods: Seven topical antimicrobials were tested against MDR Pseudomonas aeruginosa and Acinetobacter baumannii from burn patients. Results: The ADM with 1% acetic acid (AA) showed superior antimicrobial activity, achieving > 7 log10 reductions in planktonic assays and complete inhibition of P. aeruginosa biofilms. In NIH 3T3 fibroblast cytotoxicity assays, the 1% AA ADM maintained cell viability at control levels, indicating excellent biocompatibility. Compared with agents such as Betadine®, Octenilin®, and colistin, which showed cytotoxicity, and Prontosan®, which showed low efficacy, 1% AA uniquely combined potent antibacterial effects with minimal toxicity. Conclusions: Among the seven antimicrobial agents impregnated into ADMs, 1% AA demonstrated a unique efficacy and safety profile, supporting its potential for clinical application in integrated wound dressings and implantable biomaterials for infection control in burn care. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Therapy in Intensive Care Unit)
Show Figures

Graphical abstract

17 pages, 7402 KiB  
Article
Multilayered Tissue Assemblies Through Tuneable Biodegradable Polyhydroxyalkanoate Polymer (Mesh)-Reinforced Organ-Derived Extracellular Matrix Hydrogels
by Vasilena E. Getova, Alex Pascual, Rene Dijkstra, Magdalena Z. Gładysz, Didi Ubels, Malgorzata K. Wlodarczyk-Biegun, Janette K. Burgess, Jeroen Siebring and Martin C. Harmsen
Gels 2025, 11(7), 539; https://doi.org/10.3390/gels11070539 - 11 Jul 2025
Viewed by 459
Abstract
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [...] Read more.
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3–5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants. Full article
Show Figures

Graphical abstract

44 pages, 11501 KiB  
Review
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review
by Stefana Avadanei-Luca, Isabella Nacu, Andrei Nicolae Avadanei, Mihaela Pertea, Bogdan Tamba, Liliana Verestiuc and Viorel Scripcariu
Int. J. Mol. Sci. 2025, 26(13), 6469; https://doi.org/10.3390/ijms26136469 - 4 Jul 2025
Viewed by 506
Abstract
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this [...] Read more.
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this process, resulting in delayed healing, excessive scarring, and compromised tissue integrity. This review explores innovative approaches related to wound healing in post-radiotherapy defects, focusing on the integration of adipose-derived stem cells (ADSCs) in protein/polysaccharide bioengineered scaffolds. Such scaffolds, like hydrogels, sponges, or 3D-printed/bioprinted materials, provide a biocompatible and biomimetic environment that supports cell-to-cell and cell-to-matrix interactions. Various proteins and polysaccharides are discussed for beneficial properties and limitations, and their compatibility with ADSCs in wound healing applications. The potential of ADSCs-polymeric scaffold combinations in radiation-induced wound healing is investigated, alongside the mechanisms of cell proliferation, inflammation reduction, angiogenesis promotion, collagen formation, integrin binding, growth factor signaling, and activation of signaling pathways. New strategies to improve the therapeutic efficacy of ADSCs by integration in adaptive polymeric materials and designed scaffolds are highlighted, providing solutions for radiation-induced wounded skin, personalized care, faster tissue regeneration, and, ultimately, enhanced quality of the patients’ lives. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Materials)
Show Figures

Graphical abstract

15 pages, 3122 KiB  
Article
Ac2–26 Hydrogel Modulates IL-1β-Driven Inflammation via Mast Cell-Associated and Immune Regulatory Pathways in Diabetic Wounds
by Monielle Sant’Ana, Rafael André da Silva, Luiz Philipe S. Ferreira, Cristiane D. Gil, Fernando L. Primo, Ana Paula Girol, Karin V. Greco and Sonia M. Oliani
Cells 2025, 14(13), 999; https://doi.org/10.3390/cells14130999 - 30 Jun 2025
Viewed by 529
Abstract
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac [...] Read more.
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac2–26 hydrogel in a streptozotocin-induced diabetic wound model. Treatment significantly accelerated wound closure, improved tissue architecture, and reduced leukocyte infiltration. Immunohistochemical analysis revealed diminished mast cell accumulation and IL-1β expression in treated wounds. Complementary transcriptomic profiling supported the downregulation of pro-inflammatory genes, including Il1b and mast cell-related mediators, confirming the peptide’s regulatory effect on the wound immune landscape. Mounting evidence suggests that dysregulated mast cell activity plays a role in the heightened inflammatory tone and delayed tissue repair observed in diabetic wounds. In our model, Ac2–26 hydrogel treatment attenuated IL-1β expression, suggesting an indirect downregulation of NLRP3 inflammasome activation, potentially mediated through mast cell modulation, though effects on other cell types within the wound microenvironment cannot be excluded. While definitive causality cannot be assigned, the integration of histological and transcriptomic data highlights mast cells as contributors to the IL-1β-driven inflammatory burden in diabetic wounds. These findings underscore the immunomodulatory capacity of Ac2–26 and its potential to restore resolution pathways in chronic wound settings, positioning it as a promising candidate for future therapeutic development. Full article
Show Figures

Figure 1

28 pages, 2337 KiB  
Review
Narrative Review on the Management of Neck of Femur Fractures in People Living with HIV: Challenges, Complications, and Long-Term Outcomes
by Yashar Mashayekhi, Chibuchi Amadi-Livingstone, Abdulmalik Timamy, Mohammed Eish, Ahmed Attia, Maria Panourgia, Dushyant Mital, Oliver Pearce and Mohamed H. Ahmed
Microorganisms 2025, 13(7), 1530; https://doi.org/10.3390/microorganisms13071530 - 30 Jun 2025
Viewed by 586
Abstract
Neck of femur (NOF) fractures are a critical orthopaedic emergency with a high morbidity and mortality prevalence, particularly in people living with Human Immunodeficiency Virus (PLWHIV). A combination of HIV infection, combined antiretroviral therapy (cART), and compromised bone health further increases the risk [...] Read more.
Neck of femur (NOF) fractures are a critical orthopaedic emergency with a high morbidity and mortality prevalence, particularly in people living with Human Immunodeficiency Virus (PLWHIV). A combination of HIV infection, combined antiretroviral therapy (cART), and compromised bone health further increases the risk of fragility fractures. Additionally, HIV-related immune dysfunction, cART-induced osteoporosis, and perioperative infection risks further pose challenges in ongoing surgical management. Despite the rising global prevalence of PLWHIV, no specific guidelines exist for the perioperative and post-operative care of PLWHIV undergoing NOF fracture surgery. This narrative review synthesises the current literature on the surgical management of NOF fractures in PLWHIV, focusing on pre-operative considerations, intraoperative strategies, post-operative complications, and long-term outcomes. It also explores infection control, fracture healing dynamics, and ART’s impact on surgical outcomes while identifying key research gaps. A systematic database search (PubMed, Embase, Cochrane Library) identified relevant studies published up to February 2025. Inclusion criteria encompassed studies on incidence, risk factors, ART impact, and NOF fracture outcomes in PLWHIV. Data were analysed to summarise findings and highlight knowledge gaps. Pre-operative care: Optimisation involves assessing immune status (namely, CD4 counts and HIV-1 viral loads), bone health, and cART to minimise surgical risk. Immunodeficiency increases surgical site and periprosthetic infection risks, necessitating potential enhanced antibiotic prophylaxis and close monitoring of potential start/switch/stopping of such therapies. Surgical management of neck of femur (NOF) fractures in PLWHIV should be individualised based on fracture type (intracapsular or extracapsular), age, immune status, bone quality, and functional status. Extracapsular fractures are generally managed with internal fixation using dynamic hip screws or intramedullary nails. For intracapsular fractures, internal fixation may be appropriate for younger patients with good bone quality, though there is an increased risk of non-union in this group. Hemiarthroplasty is typically favoured in older or frailer individuals, offering reduced surgical stress and lower operative time. Total hip arthroplasty (THA) is considered for active patients or those with pre-existing hip joint disease but carries a higher infection risk in immunocompromised individuals. Multidisciplinary evaluation is critical in guiding the most suitable surgical approach for PLWHIV. Importantly, post-operative care carries the risk of higher infection rates, requiring prolonged antibiotic use and wound surveillance. Antiretroviral therapy (ART) contributes to bone demineralisation and chronic inflammation, increasing delayed union healing and non-union risk. HIV-related frailty, neurocognitive impairment, and socioeconomic barriers hinder rehabilitation, affecting recovery. The management of NOF fractures in PLWHIV requires a multidisciplinary, patient-centred approach ideally comprising a team of Orthopaedic surgeon, HIV Physician, Orthogeriatric care, Physiotherapy, Occupational Health, Dietitian, Pharmacist, Psychologist, and related Social Care. Optimising cART, tailoring surgical strategies, and enforcing strict infection control can improve outcomes. Further high-quality studies and randomised controlled trials (RCTs) are essential to develop evidence-based guidelines. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

17 pages, 3798 KiB  
Article
Integrative Wound-Healing Effects of Clinacanthus nutans Extract and Schaftoside Through Anti-Inflammatory, Endothelial-Protective, and Antiviral Mechanisms
by Nipitpawn Limpanich, Pattarasuda Chayapakdee, Kullanun Mekawan, Saruda Thongyim, Rujipas Yongsawas, Phanuwit Khamwong, Yingmanee Tragoolpua, Thida Kaewkod, Siriphorn Jangsutthivorawat, Jarunee Jungklang, Usawadee Chanasut, Angkhana Inta, Phatchawan Arjinajarn, Aussara Panya and Hataichanok Pandith
Int. J. Mol. Sci. 2025, 26(13), 6029; https://doi.org/10.3390/ijms26136029 - 23 Jun 2025
Viewed by 848
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf extract. In the lipopolysaccharide (LPS)-stimulated murine macrophage cell line (RAW 264.7), both C. nutans extract (5 and 50 μg/mL) and its flavonoid schaftoside (5 and 20 μg/mL) significantly downregulated the expression of pro-inflammatory genes, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), under both pre-treatment and post-treatment conditions. ELISA confirmed dose-dependent inhibition of human COX-2 enzymatic activity, reaching up to 99.3% with the extract and 86.9% with schaftoside. In the endothelial cell models (CCL-209), the extract exhibited low cytotoxicity and effectively protected cells from LPS-induced apoptosis, preserving vascular integrity critical to tissue regeneration. Antiviral assays demonstrated suppression of HSV-2 replication, particularly during early infection, which may help prevent infection-related delays in wound healing. Collectively, these findings suggest that C. nutans and schaftoside promote wound repair by attenuating inflammatory responses, supporting endothelial survival, and controlling viral reactivation. These multifunctional properties highlight their potential as natural therapeutic agents for enhancing wound-healing outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Burn and Wound Healing)
Show Figures

Graphical abstract

16 pages, 1443 KiB  
Article
Potato (Solanum tuberosum L.) Cultivars Interact with Wound Healing Period to Modulate Sprout Emergence, Crop Stand, and Productivity
by Connor L. Buckley, Keegan B. Lloyd, Mohan G. N. Kumar and Jacob M. Blauer
Plants 2025, 14(12), 1830; https://doi.org/10.3390/plants14121830 - 14 Jun 2025
Viewed by 495
Abstract
The effects of wound healing on crop stand and productivity were examined on the potato (Solanum tuberosum L.) cultivars Alturas (Alt), Russet Burbank (RB), and Clearwater Russet (CW). Tuber yields increased linearly with an advancing wound healing period irrespective of the cultivar [...] Read more.
The effects of wound healing on crop stand and productivity were examined on the potato (Solanum tuberosum L.) cultivars Alturas (Alt), Russet Burbank (RB), and Clearwater Russet (CW). Tuber yields increased linearly with an advancing wound healing period irrespective of the cultivar (R2 = 0.91). In contrast to unhealed controls, RB and CW wound-healed for 8 days produced a 6% and 8% greater yield, respectively, while a shorter wound healing period of 2 days increased Alt yield by 7%. Increases in tuber yield, a consequence of enhanced specific tuber weight across wound healing periods, contributed towards increased relative crop value in Alt (13%), RB (22%), and CW (19%). In further lab evaluations, Alt exhibited increased desiccation resistance and was associated with an earlier induction (24 h post-wounding) of feruloyl transferase (FHT) compared to CW and RB. Since FHT facilitates suberin and wax development, delayed FHT induction likely promoted fresh-weight loss in CW and RB compared to Alt. Enzymatic evaluations to assess the production of reactive oxygen species to protect fresh-cut seed found that RB had the highest activities of superoxide dismutase and peroxidase. This study demonstrates the broad benefits of planting wound-healed seed while highlighting opportunities to improve best practices and genetic improvement for wound healing response. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 516 KiB  
Article
Chronic Wound Management in Romania: A Survey on Practices, Protocols, and PRP Efficacy
by Stefania-Mihaela Riza, Andrei-Ludovic Porosnicu, Cristian-Sorin Hariga and Ruxandra-Diana Sinescu
Medicina 2025, 61(6), 1085; https://doi.org/10.3390/medicina61061085 - 13 Jun 2025
Viewed by 597
Abstract
Background and Objectives: Chronic wounds pose a significant challenge to healthcare systems, requiring long-term management and multidisciplinary approaches. The absence of a standardized national therapeutic protocol in Romania has resulted in inconsistent clinical practices, which in turn affect treatment efficacy and patient outcomes. [...] Read more.
Background and Objectives: Chronic wounds pose a significant challenge to healthcare systems, requiring long-term management and multidisciplinary approaches. The absence of a standardized national therapeutic protocol in Romania has resulted in inconsistent clinical practices, which in turn affect treatment efficacy and patient outcomes. The implementation of structured guidelines and the integration of regenerative therapies could enhance the management of chronic wounds. Materials and Methods: This study employs a cross-sectional observational design to assess the current management strategies among physicians treating chronic wounds and to identify variations in treatment approaches. A 37-question questionnaire was distributed among plastic surgeons, general surgeons, vascular surgeons, and dermatologists via Google Forms. The data collection period spanned one month, resulting in a total of 240 responses from medical centers in Bucharest, Romania. Results: The study found that most physicians treated several cases per week (40.8%) of delayed healing wounds, with the most frequent types being bedsores (57.5%) and diabetic (58.3%) or venous ulcers (55%). Challenges in wound care included patient reluctance, financial constraints, and the psychological burden on caregivers. The most relevant decision factor for surgical treatment was wound stage (86.7%). Most physicians used an initial conservative approach in wound care (52.5%) or did not have a standard approach (44.2%). Around a quarter of respondents (25.8%) used PRP as a treatment method, considering it to have moderate effectiveness (51.6%). The most important factor for encouraging PRP usage was having the necessary equipment for the procedure (72.5%). The most frequently considered benefit in the case of implementing a treatment protocol was increased treatment efficacy (62.5%). Physicians were also highly interested in the use of a standardized treatment protocol (40%). Approximately 41.7% of the physicians expressed a very high interest in having a standardized diagnostic system for chronic wounds. Conclusions: This study highlights that wound care practices remain variable and that the decision-making process is often challenging. There is a moderate belief in the effectiveness of PRP, suggesting that logistical barriers need to be addressed to facilitate access to it. Therapeutic protocols were seen as key to improving care efficacy and consistency, therefore pressing the need for national strategies that support protocol development. Full article
(This article belongs to the Special Issue Recent Advances in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

17 pages, 18881 KiB  
Article
Zinc Alginate Hydrogel-Coated Wound Dressings: Fabrication, Characterization, and Evaluation of Anti-Infective and In Vivo Performance
by Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, George Dan Mogoşanu, Marius Rădulescu, Alina Maria Holban, Daniela Manuc, Adina Alberts, Alexandru Mihai Grumezescu and Laurenţiu Mogoantă
Gels 2025, 11(6), 427; https://doi.org/10.3390/gels11060427 - 1 Jun 2025
Cited by 1 | Viewed by 1090
Abstract
The delayed healing and infection risks associated with chronic wounds and burns pose significant clinical challenges. Traditional dressings provide basic coverage but lack the bioactive properties needed for tissue regeneration and antimicrobial protection. In this study, we developed zinc alginate hydrogel-coated traditional wound [...] Read more.
The delayed healing and infection risks associated with chronic wounds and burns pose significant clinical challenges. Traditional dressings provide basic coverage but lack the bioactive properties needed for tissue regeneration and antimicrobial protection. In this study, we developed zinc alginate hydrogel-coated traditional wound dressings (WD@AlgZn) and evaluated their physicochemical properties, antimicrobial performance, and in vivo healing efficacy. Scanning electron microscopy (SEM) revealed a uniform coating of the zinc alginate network on dressing fibers, while Fourier-transform infrared spectroscopy (FT-IR) confirmed the successful incorporation of zinc ions. Antimicrobial assays further demonstrated that WD@AlgZn reduced bacterial loads (CFU/mL counts) by several orders of magnitude for both Staphylococcus aureus and Escherichia coli compared to uncoated controls. An in vivo rat burn wound model exhibited accelerated wound closure when using WD@AlgZn dressings compared to conventional wound care approaches, achieving a 90.75% healing rate by day 21, significantly outperforming the silver sulfadiazine (52.32%), uncoated-dressing (46.58%), and spontaneous-healing (37.25%) groups. Histological analysis confirmed enhanced re-epithelialization, neovascularization, and reduced inflammation in WD@AlgZn-treated tissues. The findings suggest that WD@AlgZn offers a promising alternative for advanced wound management, combining structural robustness with bioactive properties to support efficient wound healing and infection control. These results provide valuable insights into the potential clinical applications of metal-ion cross-linked biopolymeric hydrogel dressings for next-generation wound care strategies. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Figure 1

30 pages, 1146 KiB  
Review
Antimicrobial Smart Dressings for Combating Antibiotic Resistance in Wound Care
by Alina-Georgiana Cristea (Hohotă), Elena-Lăcrămioara Lisă, Simona Iacob (Ciobotaru), Ionut Dragostin, Claudia Simona Ștefan, Iuliu Fulga, Andra Monica Anghel (Ștefan), Maria Dragan, Ionela Daniela Morariu and Oana-Maria Dragostin
Pharmaceuticals 2025, 18(6), 825; https://doi.org/10.3390/ph18060825 - 30 May 2025
Cited by 1 | Viewed by 1836
Abstract
Wound healing is a complex, tightly regulated process essential for maintaining skin barrier function. Chronic wounds, often complicated by biofilm-forming bacteria and elevated oxidative stress, pose significant challenges in clinical management. The rise of antibiotic-resistant bacteria has further exacerbated the problem, limiting therapeutic [...] Read more.
Wound healing is a complex, tightly regulated process essential for maintaining skin barrier function. Chronic wounds, often complicated by biofilm-forming bacteria and elevated oxidative stress, pose significant challenges in clinical management. The rise of antibiotic-resistant bacteria has further exacerbated the problem, limiting therapeutic options and complicating wound treatment. Traditional wound care approaches frequently fail to provide real-time accurate insights into wound status, leading to delayed or suboptimal treatments. Recent advancements in modern and smart wound dressings, which integrate various biosensors, different new drug delivery systems, and wireless communication technology, offers promising solutions for monitoring wound progression over time. These innovations enable early detection of adverse events such as bacterial infections and inflammation, facilitating more effective, on-demand treatment. This review highlights the current state of antibiotic-embedded wound dressings, discusses their limitations, and explores the potential of next-generation wound dressings incorporating microelectronic sensors for real-time monitoring and adaptive therapeutic responses to support healing and combat antimicrobial resistance. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

Back to TopTop