Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (501)

Search Parameters:
Keywords = delay bound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 324 KB  
Article
Controller Design for Continuous-Time Linear Control Systems with Time-Varying Delay
by Hongli Yang, Lijuan Yang and Ivan Ganchev Ivanov
Mathematics 2025, 13(15), 2519; https://doi.org/10.3390/math13152519 - 5 Aug 2025
Viewed by 293
Abstract
This paper addresses the controller design problem for linear systems with time-varying delays. By constructing a novel Lyapunov–Krasovskii functional incorporating delay-partitioning techniques, we establish delay-dependent stability criteria for the solvability of the robust stabilization problem. The derived conditions are formulated as linear matrix [...] Read more.
This paper addresses the controller design problem for linear systems with time-varying delays. By constructing a novel Lyapunov–Krasovskii functional incorporating delay-partitioning techniques, we establish delay-dependent stability criteria for the solvability of the robust stabilization problem. The derived conditions are formulated as linear matrix inequalities (LMIs) that become affine upon fixing a single scalar parameter, thereby facilitating efficient numerical computation. Furthermore, these criteria guarantee that the reachable set of the closed-loop system remains bounded within a prescribed ellipsoid under zero initial conditions. The effectiveness and superiority of the proposed approach are demonstrated through two comparative numerical examples, including a benchmark problem with varying delay. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 3271 KB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 309
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

15 pages, 338 KB  
Article
Nonoscillatory Solutions for m-th-Order Nonlinear Neutral Differential Equations with General Delays: Fixed-Point Approach and Application
by Mouataz Billah Mesmouli, Ioan-Lucian Popa and Taher S. Hassan
Mathematics 2025, 13(15), 2362; https://doi.org/10.3390/math13152362 - 23 Jul 2025
Viewed by 211
Abstract
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The [...] Read more.
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The results extend and generalize previous works by relaxing assumptions on the nonlinear terms and accommodating a wider range of feedback structures, including positive, negative, bounded, and unbounded cases. The mathematical framework is unified and applicable to a broad class of problems, providing a comprehensive treatment of neutral equations beyond the first or second order. To demonstrate the practical relevance of the theoretical findings, we analyze a delayed temperature control system as an application and provide numerical simulations to illustrate nonoscillatory behavior. This paper concludes with a discussion of analytical challenges, limitations of the numerical scope, and possible future directions involving stochastic effects and more complex delay structures. Full article
(This article belongs to the Special Issue Research on Delay Differential Equations and Their Applications)
Show Figures

Figure 1

16 pages, 1856 KB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 609
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

18 pages, 2458 KB  
Article
Periodic Oscillatory Solutions for a Nonlinear Model with Multiple Delays
by Chunhua Feng
Mathematics 2025, 13(14), 2275; https://doi.org/10.3390/math13142275 - 15 Jul 2025
Viewed by 261
Abstract
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system [...] Read more.
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system involves n separate delays, the equations for bifurcation become quite complex and difficult to deal with. In this paper, the existence of periodic oscillatory behavior was studied for a system consisting of n coupled equations with multiple delays. The method begins by rewriting the second-order system of differential equations as a larger first-order system. Then, the nonlinear system of first-order equations is linearized by disregarding higher-degree terms that are locally small. The instability of the trivial solution to the linearized equations implies the instability of the nonlinear equations. Periodic behavior often occurs when the system is unstable and bounded, so this paper also studied the boundedness here. It follows from previous work on the subject that the conditions here did result in periodic oscillatory behavior, and this is illustrated in the graphs of computer simulations. Full article
Show Figures

Figure 1

34 pages, 3299 KB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 297
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

20 pages, 9819 KB  
Article
Performance Degradation and Chloride Ion Migration Behavior of Repaired Bonding Interfaces inSeawater-Freeze-Thaw Environment
by Mengdie Niu, Xiang He, Yaxin Wang, Yuxuan Shen, Wei Zhang and Guoxin Li
Buildings 2025, 15(14), 2431; https://doi.org/10.3390/buildings15142431 - 10 Jul 2025
Viewed by 286
Abstract
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in [...] Read more.
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in the cold region marine environment is not in-depth. In this study, the influence of polyvinyl alcohol (PVA) fibers and crystalline admixtures (CAs) on the mechanical properties and volumetric deformation performance of cementitious repair materials was researched. Furthermore, the deterioration patterns of the bond strength and chloride ion diffusion characteristics of the repair interface under the coupling of seawater-freeze-thaw cycles were investigated. Combined with the composition, micro-morphology, and micro-hardness of hydration products before and after erosion, the damage mechanism of the repaired bonding interface was revealed. The results indicate that the synergistic use of PVA fibers and CAs can significantly improve the compressive strength, bond strength and volume stability of the repair materials. The compressive strength and 40° shear strength of S0.6CA at 28 d were 101.7 MPa and 45.95 MPa, respectively. Under the seawater-freeze-thaw cycle action, the relationship between the contents of free and bound chloride ions in the bonded interface can be better fitted by the Langmuir equation. The deterioration process of the bonding interface and the penetration rate of chloride ions can be effectively delayed by PVA fiber and CAs. After 700 seawater-freeze-thaw cycles, the loss rates of bond strength and chloride diffusion coefficient of S0.6CA were reduced by 26.34% and 52.5%, respectively, compared with S0. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 2288 KB  
Article
Optimal Constructions of Low-Hit Zone Frequency-Hopping Sequence Set Based on m-Sequence
by Changyuan Wang, Yi Zhang, Wanan Yang and Chunhua Ren
Mathematics 2025, 13(14), 2228; https://doi.org/10.3390/math13142228 - 9 Jul 2025
Viewed by 202
Abstract
Quasi-Synchronous Frequency hopping (FH) Multiple Access (QS-FHMA) systems feature high communication efficiency, strong flexibility, and low operational costs, and they have been widely used in various FH communication scenarios such as satellite communication, military communication, and radio measurement. The low-hit zone (LHZ) FH [...] Read more.
Quasi-Synchronous Frequency hopping (FH) Multiple Access (QS-FHMA) systems feature high communication efficiency, strong flexibility, and low operational costs, and they have been widely used in various FH communication scenarios such as satellite communication, military communication, and radio measurement. The low-hit zone (LHZ) FH sequences set (LHZ FHS set) plays a critical role in QS-FHMA systems, enabling user access with permissible time-delay offsets while maintaining superior performance. In this paper, three new methods to construct LHZ FHS sets based on m-sequences are proposed. The newly constructed sequence sets achieve optimality with respect to the Peng–Fan bound. Compared with existing LHZ FHS sets constructed from m-sequences, these new sequence sets offer more flexible parameters. Furthermore, due to the simple structure of m-sequences and their extensive adoption in engineering applications, the proposed new sequence sets possess significant practical value for engineering implementation. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

22 pages, 3082 KB  
Article
A Novel Traffic Scheduling Algorithm for Multi-CQF Using Mixed Integer Programming and Variable Neighborhood Search Genetic Algorithm in Time-Sensitive Networking
by Cheng Wang, Zhiquan Lin, Yuhao Zhao, Fen Hu and Zhan Huan
Sensors 2025, 25(13), 4197; https://doi.org/10.3390/s25134197 - 5 Jul 2025
Viewed by 410
Abstract
Time-Sensitive Networking (TSN) is an advance Ethernet paradigm designed to provide low delay, low jitter, and deterministic transmission time. The Cycling Queuing and Forwarding (CQF) mechanism is introduced in TSN as a scheduler to achieve precise communication. Multi-CQF, as an extension of CQF, [...] Read more.
Time-Sensitive Networking (TSN) is an advance Ethernet paradigm designed to provide low delay, low jitter, and deterministic transmission time. The Cycling Queuing and Forwarding (CQF) mechanism is introduced in TSN as a scheduler to achieve precise communication. Multi-CQF, as an extension of CQF, supports the transmission of various traffic types by assigning different cycle lengths to each queue group. In its original form, Multi-CQF-based scheduling algorithms do not account for flow sorting, leading to increased transmission delays and reduced network efficiency as a network dynamically changes. To enhance the performance of Multi-CQF, this paper initially utilizes queuing theory to analyze and manage traffic, providing foundation solutions. Subsequently, Mixed Integer Programming (MIP) and the Variable Neighborhood Search Genetic Algorithm (VNS-GA) are employed to optimize transmission delay in small- and large-traffic TSN networks, respectively. MIP quickly seeks out the optimal scheduling solution for small-traffic TSN networks using branch-and-bound and linear programming techniques, while the VNS-GA improves efficiency and performance for large-traffic ones by continuously adjusting the search neighborhood strategy. Comparing with other existing schemes, computer simulation reveals that MIP reduces delay by approximately 13% on average in small-traffic TSN networks, while the VNS-GA achieves an average delay reduction of 7% in large-traffic ones. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 1239 KB  
Article
Extremum Seeking for the First Derivative of Nonlinear Maps with Constant Delays via a Time-Delay Approach
by Jianzhong Li, Hongye Su and Yang Zhu
Mathematics 2025, 13(13), 2196; https://doi.org/10.3390/math13132196 - 4 Jul 2025
Viewed by 220
Abstract
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with [...] Read more.
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with the delay-robustness of the introduced ES system via the newly developed time-delay approach. The original ES system is transformed to a nonlinear retarded-type plant with disturbances and the stability condition in the form of linear matrix inequalities is achieved. When the related bounds of the nonlinear map are not known, a rigorous practical stability proof is provided. Second, and more importantly, under the availability of prior knowledge about the nonlinear map, we are able to provide a quantitative calculation on the maximum allowable delay, the upper bound of the dither period, and the ultimate seeking error. Numerical examples are offered to exemplify the effectiveness of the proposed method. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 9809 KB  
Article
Real-Time Multi-Camera Tracking for Vehicles in Congested, Low-Velocity Environments: A Case Study on Drive-Thru Scenarios
by Carlos Gellida-Coutiño, Reyes Rios-Cabrera, Alan Maldonado-Ramirez and Anand Sanchez-Orta
Electronics 2025, 14(13), 2671; https://doi.org/10.3390/electronics14132671 - 1 Jul 2025
Viewed by 551
Abstract
In this paper we propose a novel set of techniques for real-time Multi-Target Multi-Camera (MTMC) tracking of vehicles in congested, low speed environments, such as those of drive-thru scenarios, where metrics such as the number of vehicles, time of stay, and interactions between [...] Read more.
In this paper we propose a novel set of techniques for real-time Multi-Target Multi-Camera (MTMC) tracking of vehicles in congested, low speed environments, such as those of drive-thru scenarios, where metrics such as the number of vehicles, time of stay, and interactions between vehicles and staff are needed and must be highly accurate. Traditional methods of tracking based on Intersection over Union (IoU) and basic appearance features produce fragmented trajectories of misidentifications under these conditions. Furthermore, detectors, such as YOLO (You Only Look Once) architectures, exhibit different types of errors due to vehicle proximity, lane changes, and occlusions. Our methodology introduces a new tracker algorithm, Multi-Object Tracker based on Corner Displacement (MTCD), that improves the robustness against bounding box deformations by analysing corner displacement patterns and several other factors involved. The proposed solution was validated on real-world drive-thru footage, outperforming standard IoU-based trackers like Nvidia Discriminative Correlation Filter (NvDCF) tracker. By maintaining accurate cross-camera trajectories, our framework enables the extraction of critical operational metrics, including vehicle dwell times and person–vehicle interaction patterns, which are essential for optimizing service efficiency. This study tackles persistent tracking challenges in constrained environments, showcasing practical applications for real-world surveillance and logistics systems where precision is critical. The findings underscore the benefits of incorporating geometric resilience and delayed decision-making into MTMC architectures. Furthermore, our approach offers the advantage of seamless integration with existing camera infrastructure, eliminating the need for new deployments. Full article
(This article belongs to the Special Issue New Trends in Computer Vision and Image Processing)
Show Figures

Figure 1

19 pages, 910 KB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 412
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

21 pages, 3812 KB  
Article
A Design of Leaderless Formation Controller for Multi-ASVs with Sampled Data and Communication Delay
by Wenxu Zhu, Guihua Xia and Xiangli Jiang
J. Mar. Sci. Eng. 2025, 13(7), 1259; https://doi.org/10.3390/jmse13071259 - 28 Jun 2025
Viewed by 286
Abstract
The formation control technology of the multi-ASV (autonomous surface vehicle) system is one of the key technologies required for performing maritime missions. In this paper, a leaderless formation controller is proposed, where the issues of sampled communication and data transmission delays in formation [...] Read more.
The formation control technology of the multi-ASV (autonomous surface vehicle) system is one of the key technologies required for performing maritime missions. In this paper, a leaderless formation controller is proposed, where the issues of sampled communication and data transmission delays in formation are taken into consideration. By introducing the desired displacements and the implicit formation center (IFC), the control goal of the leaderless formation is explicitly defined. Through the application of a state-space transformation, the achievement of the leaderless formation is shown to be equivalent to the stabilization of the transformed subsystem. The implicit formation center of the leaderless framework is derived, which facilitates the description and analysis of formation movements. The stability of the system is rigorously analyzed by using the Lyapunov–Krasovskii functional. Furthermore, an H performance controller is designed to evaluate the tolerance of the leaderless formation against marine environmental disturbances. Numerical simulations with 10 ASVs under sampled communication and transmission delay demonstrate the effectiveness of the proposed controller, achieving an H performance bound γ of 10. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

8 pages, 1848 KB  
Article
Different Kinetics of Complement Opsonization, Immune Uptake, and IL-6 Cytokine Response After Bolus Injection of Superparamagnetic Iron Oxide Nanoworms in Mice
by Yue Li and Dmitri Simberg
J. Nanotheranostics 2025, 6(3), 16; https://doi.org/10.3390/jnt6030016 - 27 Jun 2025
Cited by 1 | Viewed by 408 | Correction
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and [...] Read more.
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and infusion reactions. Here, we systematically map the temporal sequence of immune events following SPIO NW administration, including C3 opsonization, granulocyte uptake, and cytokine release. In both in vitro and in vivo models, C3 deposition occurred rapidly, peaking at approximately 5 min post-incubation or post-injection. Higher Fe/plasma ratios led to reduced C3 deposition per particle, although the absolute amount of C3 bound was greater in vivo than in vitro. Notably, C3 dissociation from the particle surface exhibited a consistent half-life of ~14 min, independent of the NW injected dose and circulation time. Immune uptake by blood granulocytes was delayed relative to opsonization, becoming prominent only at 60 min post-injection. Further, cytokine release, measured by plasma IL-6 levels, displayed an even slower profile, with peak expression at 6 h post-injection. Together, these results reveal a distinct sequential immune response to SPIO NWs: rapid C3 opsonization, delayed cellular uptake, and late cytokine response. Understanding these dynamics provides a basis for developing strategies to inhibit complement activation and improve the hemocompatibility of SPIO-based theranostic agents. Full article
Show Figures

Figure 1

16 pages, 1058 KB  
Article
Ulam–Hyers Stability of Fractional Difference Equations with Hilfer Derivatives
by Marko Kostić, Halis Can Koyuncuoğlu and Jagan Mohan Jonnalagadda
Fractal Fract. 2025, 9(7), 417; https://doi.org/10.3390/fractalfract9070417 - 26 Jun 2025
Viewed by 435
Abstract
This paper investigates the Ulam–Hyers stability of both linear and nonlinear delayed neutral Hilfer fractional difference equations. We utilize the nabla Laplace transform, known as the N-transform, along with a generalized discrete Gronwall inequality to derive sufficient conditions for stability. For the [...] Read more.
This paper investigates the Ulam–Hyers stability of both linear and nonlinear delayed neutral Hilfer fractional difference equations. We utilize the nabla Laplace transform, known as the N-transform, along with a generalized discrete Gronwall inequality to derive sufficient conditions for stability. For the linear case, we provide an explicit solution formula involving discrete Mittag-Leffler functions and establish its stability properties. In the nonlinear case, we concentrate on delayed neutral Hilfer fractional difference equations, a class of systems that appears to be unexplored in the existing literature with respect to Ulam–Hyers stability. In particular, for the linear case, the absolute difference between the solution of the linear Hilfer fractional difference equation and the solution of the corresponding perturbed equation is bounded by the function of ε when the perturbed term is bounded by ε. In the case of the neutral fractional delayed Hilfer difference equation, the absolute difference is bounded by a constant multiple of ε. Our results fill this gap by offering novel stability criteria. We support our theoretical findings with illustrative numerical examples and simulations, which visually confirm the predicted stability behavior and demonstrate the applicability of the results in discrete fractional dynamic systems. Full article
Show Figures

Figure 1

Back to TopTop